
Glasgow Math. J. 52 (2010) 41–64. C© Glasgow Mathematical Journal Trust 2009.
doi:10.1017/S0017089509990152.

THE MOMENTS OF MINKOWSKI QUESTION MARK
FUNCTION: THE DYADIC PERIOD FUNCTION

GIEDRIUS ALKAUSKAS
The Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, Lithuania and
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK

e-mail: giedrius.alkauskas@gmail.com

(Received 28 October 2008; accepted 22 May 2009)

Abstract. The Minkowski question mark function ?(x) arises as a real distribution
of rationals in the Farey tree. We examine the generating function of moments of
?(x). It appears that the generating function is a direct dyadic analogue of period
functions for Maass wave forms and it is defined in the cut plane � \ (1,∞). The
exponential generating function satisfies an integral equation with kernel being the
Bessel function. The solution of this integral equation leads to the definition of dyadic
eigenfunctions, arising from a certain Hilbert–Schmidt operator. Finally, we describe
p-adic distribution of rationals in the Stern–Brocot tree. Surprisingly, the Eisenstein
series G2(z) does manifest in both real and p-adic cases.
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Secondary – 33C10.

1. Introduction. This paper is the first in the series of four papers (others being
[1–3]) which are devoted to the study of moments and integral transforms of the
Minkowski question mark function (unfortunately, it appears in print the last).

The function ?(x) (‘the question mark function’) was introduced by Minkowski in
1904 [29] as an example of continuous and monotone function ? : [0, 1] → [0, 1], which
maps rationals to dyadic rationals, and quadratic irrationals to non-dyadic rationals. It
is though more convenient to work with the function F(x) :=?( x

x + 1 ), x ∈ [0,∞) ∪ {∞}.
Thus, for non-negative real x it is defined by the expression

F([a0, a1, a2, a3, . . .]) = 1 − 2−a0 + 2−(a0+a1) − 2−(a0+a1+a2) + · · · , (1)

where x = [a0, a1, a2, a3, . . .] stands for the representation of x by a (regular) continued
fraction [20]. Hence, according to our convention, ?(x) = 2F(x) for x ∈ [0, 1]. For
rational x the series terminates at the last non-zero element an of the continued fraction.

1.1. Short literature overview. The Minkowski question mark function was
investigated by many authors. In this subsection we give an overview of available
literature.

Denjoy [9] gave an explicit expression for F(x) in terms of a continued fraction
expansion, that is, formula (1). He also showed that ?(x) is purely singular: the
derivative, in terms of the Lebesgue measure, vanishes almost everywhere. Salem [38]
proved that ?(x) satisfies the Lipschitz condition of order log 2

2 log γ
, where γ = 1+√

5
2 ,

and this is in fact the best possible exponent for the Lipschitz condition. The
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Figure 1. The Minkowski question mark function F(x), x ∈ [0, 2].

Fourier–Stieltjes coefficients of ?(x), defined as
∫ 1

0 e2π inx d?(x), where also investigated
in the same paper (these coefficients also appeared in [5]; see also [36]). The author, as
an application of Wiener’s theorem about Fourier series, gives average results on these
coefficients without giving an answer to yet unsolved problem whether these coefficients
vanish, as n → ∞ (it is worth noting that in [2] analogous Fourier coefficients are
introduced and examined). Kinney [21] proved that the Hausdorff dimension of growth
points of ?(x) (denote this set byA) is equal to α = 1

2 (
∫ 1

0 log2(1 + x) d?(x))−1. Numerical
estimates for this constant were obtained in [23] and [42]; based on a three term
functional equation, we are able to calculate the Kinney’s constant to a high precision
(in the appendix of [3] we calculate 35 exact digits; note that some digits presented in [37]
are incorrect). Also, if x0 ∈ A, ?(x) at a point x0 satisfies the Lipschitz condition with
exponent α. The function ?(x) is mentioned in [8] in connection with a ‘box’ function.
In [24] Lagarias and Tresser introduce the so called �−tree: an extension of the Farey
tree which contains all (positive and negative) rationals. Tichy and Uitz [42] extended
Kinney’s approach (mainly, calculation of a Hausdorff dimension) to a parametrised
class of singular functions related to ?(x). C. Bower, unpublished note, 1999 considers
the solution of the equation ?(x) = x, different from x = 0, 1

2 or 1. There are two of
them (symmetric with respect to x = 1

2 ), the first one is given by x = 0.42037233+
(S. R. Finch, unpublished note, 2008). Apparently, no closed form formula exists
for it. In [10] Dilcher and Stolarsky introduced what they call Stern polynomials.
The construction is analogous to similar constructions given in [3, 13]. Nevertheless,
in [10] all polynomials have coefficients 0 and 1, and their structure is compatible
with regular continued fraction algorithm. In [11] Dushistova and Moshchevitin find
conditions in order ?′(x) = 0 and ?′(x) = ∞ to hold (for certain fixed positive real x)
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in terms of lim supt→∞
a0 + a1 + ··· + at

t and lim inf t→∞ a0 + a1 + ··· + at
t respectively, where

x = [a0, a1, a2, . . .] is represented by a continued fraction. The nature of singularity
of ?(x) was clarified by Viader, Paradı́s and Bibiloni [34]. In particular, the existence
of the derivative ?′(x) in � for fixed x forces it to vanish. Some other properties
of ?(x) are demonstrated in [33]. In [19] Kesseböhmer and Stratmann studied various
fractal geometric aspects of the Minkowski question mark function F(x). They showed
that the unit interval can be written as the union of three sets: �0 := {x : F ′(x) =
0}, �∞ := {x : F ′(x) = ∞}, and �∼ := {x : F ′(x) does not exist and F ′(x) 
= ∞}. Their
main result is that the Hausdorff dimensions of these sets are related in the following
way: dimH(νF ) < dimH(�∼) = dimH(�∞) = dimH(L (htop)) < dimH(�0) = 1. Here
L (htop) refers to the level set of the Stern–Brocot multifractal decomposition at
the topological entropy htop = log 2 of the Farey map Q, and dimH(νF ) denotes the
Hausdorff dimension of the measure of maximal entropy of the dynamical system
associated with Q. The notions and technique were developed earlier by authors in [18].
The paper (J. C. Lagarias, unpublished manuscript, 1991), deals with the interrelations
among the additive continued fraction algorithm, the Farey tree, the Farey shift and
the Minkowski question mark function. The motivation for the work [32] is a fact that
the function ?(x) can be characterised as the unique homeomorphism of the real unit
interval that conjugates the Farey map with the tent map. In [32] Panti constructs an
n-dimensional analogue of the Minkowski function as the only homeomorphism of an
n-simplex that conjugates the piecewise-fractional map associated to the Mönkemeyer
continued fraction algorithm with an appropriate tent map. In [5] Bonanno and Isola
introduce a class of one-dimensional maps which can be used to generate the binary
trees in different ways, and study their ergodic properties. This leads to studying some
random processes (Markov chains and martingales) arising in a natural way in this
context. In the course of the paper, the authors also introduce a function ρ(x) =?( x

x + 1 ),
which is, of course, exactly F(x). Okamoto and Wunsch [31] construct yet another
generalisation of ?(x), though their main concern is to introduce a new family of
purely singular functions. Meanwhile, the paper by Grabner, Kirschenhofer and Tichy
[15], out of all papers in the bibliography list, is the closest in spirit to the current
article. In order to derive precise error bounds for the so called Garcia entropy of a
certain measure, the authors consider the moments of the continuous and singular
function F2([a1, a2, . . .]) = ∑∞

n=1(−1)n−13−(a1+···+an−1)(qn + qn−1), where q� stand for a
corresponding denominator of the convergent to [a1, a2, . . .]. Lamberger [25] showed
that F(x) and F2(x) are the first two members of a family (indexed by natural numbers)
of mutually singular measures, derived from the subtractive Euclidean algorithm. The
latter two papers are very interesting and promising, and the author of this article
does intend to generalise the results about F(x) to the whole family Fj(x), j ∈ �. Other
references include [4, 14, 16, 35, 37].

1.2. Stern–Brocot tree. Recently, Calkin and Wilf [6] (re-)defined a binary tree
which is generated by the iteration

a
b

�→ a
a + b

,
a + b

b
,

starting from the root 1
1 (this tree is a permutation of the well-known Stern–Brocot

tree). Elementary considerations show that this tree contains any positive rational
number once and only once, each represented in lowest terms [6]. First four iterations
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Thus, the nth generation consists of 2n−1 positive rationals x(i)
n , 1 ≤ i ≤ 2n−1. We denote

this tree by T , and its nth generation by T (n). The limitation of this tree to the interval
[0, 1] is the well-known Farey tree (albeit with different order). Reading the tree line
by line, this enumeration of Q+ starts with

1
1

,
1
2

,
2
1

,
1
3

,
3
2

,
2
3

,
3
1

,
1
4

,
4
3

,
3
5

,
5
2

,
2
5

,
5
3

,
3
4

,
4
1

, . . . .

This sequence was already investigated by Stern [41], where one encounters the
definition of the Stern–Brocot tree. The sequence satisfies the remarkable iteration
discovered by Newman [30]:

x1 = 1, xn+1 = 1/(2[xn] + 1 − xn),

thus giving an example of a simple recurrence which produces all positive rationals,
and answering affirmatively to a question by D. E. Knuth. The nth generation of T
consists of exactly those rational numbers whose elements of the continued fraction
sum up to n; this observation is due to Stern [41]. Indeed, this can be easily inherited
directly from the definition. First, if rational number a

b is represented as a continued
fraction [a0, a1, . . . , ar], then the map a

b → a+b
b maps a

b to [a0 + 1, a1 . . . , ar]. Second,
the map a

b → a
a+b maps a

b to [0, a1 + 1, . . . , ar] in case a
b < 1, and to [0, 1, a0, a1, . . . , ar]

in case a
b > 1. This simple fact is of utmost importance in our work: though it is not

used in explicit form, this highly motivates the investigations of moments ML and mL,
given by (5). The sequence of numerators of the Calkin–Wilf tree

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, . . .

is called the Stern diatomic sequence [29, 44] and it satisfies the recurrence relations

s(0) = 0, s(1) = 1, s(2n) = s(n), s(2n + 1) = s(n) + s(n + 1). (2)

In the next section we will show that each generation of the Calkin–Wilf tree
possesses a distribution function Fn(x), and Fn(x) converges uniformly to F(x). This is
by far not a new fact. Nevertheless, we include the short proof of it for the sake of self-
containedness. The function F(x), as a distribution function, is uniquely determined by
the functional equation (3). This implies the explicit expression (1) and the symmetry
property F(x) + F(1/x) = 1. The mean value of F(x) was investigated by several
authors (J. Steuding, personal communication, 2006 and [48]) and was proved to
be 3/2. We will obtain this result using quite a different method.
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1.3. Motivation and description of results. The aim of this paper is to give a
different treatment of Minkowski’s ?(x). All papers so far were concerned with F(x)
as the function per se. Nevertheless, it appears that there exist several natural integral
transforms of F(x), which are analytic functions and which encode certain substantial
(in fact, all) information about the question mark function. Each of these transforms
is characterised by regularity properties and a functional equation. Lastly and most
importantly, let us point out that, surprisingly, there are striking similarities and
analogies between the results proved here as well as in [2, 3] with Lewis–Zagier’s
[28] results on period functions for Maass wave forms. That work is an expanded
and clarified exposition of an earlier paper by Lewis [27]. The concise exposition of
these objects, their properties and relations to Selberg zeta function can be found in
[46]. The reader is strongly urged to compare results in this work with those in [28].
Let, for example, u(z) be a Maass wave form for PSL2(�) with spectral parameter s.
The similarity arises due to the fact that the limit value of u(z) on the real line, given
by u(x + iy) ∼ y1−sU(x) + ysU(x) as y → 0+, satisfies (formal) functional equations
U(x + 1) = U(x) and |x|2s−2U(− 1

x ) = U(x). Thus, these are completely analogous to
the functional equations for F(x), save the fact that U(x) is only a formal function – it
is a distribution (e.g. a continuous functional in properly defined space of functions).
Thus, our objects G(z), m(t) and M(t) are analogues of objects ψ(z), g(w) and φ(w)
respectively (see Section 2 of this work and [28]). In [2] it is shown that in fact L-
functions attached to Maass wave forms also do have an analogue in context of the
Minkowski question mark function.

This work is organised as follows. In Section 2 we demonstrate some elementary
properties of the distribution function F(x). Since the existence of all moments is
guaranteed by the exponential decay of the tail, our main object is the generating
function of moments, denoted by G(z). In Section 3 we prove two functional equations
for G(z). In Section 4 we demonstrate the uniqueness of solution of this functional
equation (subject to regularity conditions). Surprisingly, the Eisenstein series G2(z)
appears on the stage. In Section 5 we prove the integral equation for the exponential
generating function. In Section 6 a new class of functions emerging from eigenfunctions
of a Hilbert–Schmidt operator (we call them ‘dyadic eigenfunctions’) is introduced.
These are dyadic analogues of functions discovered by Wirsing [44] in connection with
the Gauss–Kuzmin–Lévy problem. In Section 7 we describe the p-adic distribution of
rationals in the Calkin–Wilf tree. In the final section, some concluding remarks are
presented.

2. Some properties of the distribution. The following proposition was proved
by many authors in various forms, concerning (very related) Stern–Brocot, Farey or
Calkin–Wilf trees, and this seems to be a well-known fact about a distribution of
rationals in these trees. For the sake of completeness we present a short proof, since
the functional equations for G(z) and m(t) (see Sections 3 and 5) heavily depend on the
functional equation for F(x) and are in fact reformulations of these in different terms.

PROPOSITION 1. Let Fn(x) denote the distribution function of the nth generation, i.e.,

Fn(x) = 21−n#{j : x(n)
j ≤ x}.

Then uniformly Fn(x) → F(x). Thus, F(0) = 0, F(∞) = 1. Moreover, F(x) is continuous,
monotone and singular, i.e. F ′(x) = 0 almost everywhere.
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Proof. Let x ≥ 1. One half of the fractions in the n + 1-st generation do not exceed
1, and hence also do not exceed x. Further,

a + b
b

≤ x ⇐⇒ a
b

≤ x − 1.

Hence,

2Fn+1(x) = Fn(x − 1) + 1, n ≥ 1.

Now assume 0 < x < 1. Then

a
a + b

≤ x ⇐⇒ a
b

≤ x
1 − x

.

Therefore,

2Fn+1(x) = Fn

(
x

1 − x

)
.

The distribution function F , defined in the formulation of the Proposition 1, satisfies
the functional equation

2F(x) =
{

F(x − 1) + 1 if x ≥ 1,

F
( x

1−x

)
if 0 < x < 1.

(3)

For instance, the second identity is equivalent to 2F( t
t + 1 ) = F(t) for all positive t. If

t = [b0, b1, . . .], then t
t + 1 = [0, 1, b0, b1, . . .] for t ≥ 1, and t

t + 1 = [0, b1 + 1, b2, . . .] for
t < 1, and the statement follows immediately.

Now define δn(x) = F(x) − Fn(x). In order to prove the uniform convergence Fn →
F , it is sufficient to show that

sup
x≥0

|δn(x)| ≤ 2−n. (4)

It is easy to see that the assertion is true for n = 1. Now suppose the estimate is true
for n. In view of the functional equation for both Fn(x) and F(x), we have

2δn+1(x) = δn

(
x

1 − x

)

for 0 < x < 1, which gives sup0≤x<1 |δn+1(x)| ≤ 2−n−1. Moreover, we have

2δn+1(x) = δn(x − 1)

for x ≥ 1, which yields the same bound for δn(x) in the range x ≥ 1. This proves (4). As
it was noted, the singularity of F(x) was proved in [9] and it follows from Khinchin’s
results on metric properties of continued fractions. �

Since F(x) has a tail of exponential decay (1 − F(x) = O(2−x), as it is clear from
(1)), all moments do exist. Let

ML =
∫ ∞

0
xL dF(x), mL =

∫ ∞

0

(
x

x + 1

)L

dF(x) = 2
∫ 1

0
xL dF(x) =

∫ 1

0
xL d?(x).
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Therefore, ML and mL can also be defined as

ML = lim
n→∞ 21−n

∑
a0+a1+···+as=n

[a0, a1, . . . , as]L, mL = lim
n→∞ 22−n

∑
a1+···+as=n

[0, a1, . . . , as]L,

(5)

where the summation takes place over all rationals, whose elements of the continued
fraction sum up to n. These expressions highly motivate our investigation of moments.
Though the authors in [15] considered the moments of F2(x) (see the introduction), it
is surprising that the moments of Minkowski question mark function itself were never
investigated. Numerically, one has

M1 = 1.5, M2 = 4.290926, M3 = 18.556, M4 = 107.03;
m1 = 0.5, m2 = 0.290926, m3 = 0.186389, m4 = 0.126992.

We will see that the generating function of mL possesses certain fascinating properties.
Let ω(x) be a continuous function of at most polynomial growth: ω(x) = O(xT ), x →
∞. The functional equation (3) gives F(x + n) = 1 − 2−n + 2−nF(x), x ≥ 0. Hence

∫ ∞

0
ω(x) dF(x) =

∞∑
n=0

∫ 1

0
ω(x + n) dF(x + n)

=
∫ 1

0

∞∑
n=0

ω(x + n)
2n

dF(x)
x→ t

t+1=
∞∑

n=0

∫ ∞

0

ω
( t

t+1 + n
)

2n+1
dF(t).

Since, as noted above, F(x) has a tail of exponential decay, this integral does exist
(all changes of order of summation and integration are easily justifiable minding the
condition on ω(x)). Let ω(x) = xL, L ∈ �0. Then, if we denote Bs = ∑∞

n=0
ns

2n+1 , we have

∫ ∞

0
xL dF(x) =

∫ ∞

0

L∑
i=0

(
x

x + 1

)i (L
i

)
BL−i dF(x).

Whence the relation

ML =
L∑

i=0

mi

(
L
i

)
BL−i, L ≥ 0. (6)

The exponential generating function of BL is

B(t) =
∞∑

L=0

BL

L!
tL =

∞∑
L=0

∞∑
n=0

nLtL

2n+1L!
=

∞∑
n=0

ent

2n+1
= 1

2 − et
.

Denote by M(t) and m(t) the corresponding exponential generating functions of the
coefficients ML and mL, respectively. Accordingly,

M(t) =
∫ ∞

0
ext dF(x), m(t) =

∫ ∞

0
exp

(
xt

x + 1

)
dF(x) = 2

∫ 1

0
ext dF(x).
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The relation (6) in terms of M(t) and m(t) reads as

M(t) =
∞∑

L=0

ML

L!
tL = 1

2 − et

∞∑
L=0

mL

L!
tL = 1

2 − et
m(t). (7)

We see that the function m(t) is entire and M(t) has a positive radius of convergence.
The last identity implies the asymptotic formula for ML.

PROPOSITION 2. For L ∈ N0,

ML = m(log 2)
2 log 2

(
1

log 2

)L

L! + Oε

(
(4π2 + (log2 2)1/2 − ε)−L)

L!

=
(

m(log 2)
2 log 2

(
1

log 2

)L

+ O(6.3−L)

)
L!

Proof. By Cauchy’s formula, for any sufficiently small r,

ML = L!
2π i

∫
|z|=r

M(z)
zL+1

dz.

Changing the path of integration, we get by the calculus of residues

ML = −Resz=log 2

(
m(z)

(2 − ez)zL+1

)
− L!

2π i

∫
|z|=R

m(z)
2 − ez

dz
zL+1

,

where R satisfies log 2 < R < | log 2 + 2π i| (which means that there is exactly one
simple pole of the integrand located in the interior of the circle |z| = R). It is easily
seen that the residue coincides with the main term in the formula of the proposition;
the error term follows from estimating the integral. �

Also, (7) gives the inverse to linear equations (6):

mL = ML −
L−1∑
s=0

Ms

(
L
s

)
, L ≥ 0. (8)

Since B(t)(2 − et) = 1, the coefficients BL can be calculated recursively: BL =∑L−1
s=0

(L
s

)
Bs. Thus, B0 = 1, B1 = 1, B2 = 3, B3 = 13, B4 = 75, B5 = 541. This sequence

has number A000670 in [40], and traces its history back from Cayley.
In the future, we will consider integrals which involve m(t), and hence we need the

evaluation of this function for negative t.

LEMMA 1. Let C = e−
√

log 2 = 0.4349+. Then C2
√

t � m(−t) � C
√

t as t → ∞.

Proof. In fact, m(−t) = ∫ ∞
0 exp(− xt

x+1 ) dF(x). Hence, m(t) is positive for t ∈ �. Let
0 < M < 1. Since 1 − F(x) � 2−x as x → ∞, and F(x) + F(1/x) = 1,

m(−t) =
(∫ M

0
+

∫ ∞

M

)
exp

(
− xt

x + 1

)
dF(x) � 2−1/M + exp

(
− Mt

M + 1

)
.
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This is valid for every M < 1 and a universal constant. A choice M =
√

log 2√
t gives the

desired upper bound. To obtain the lower bound, note that

m(−t) >

∫ M

0
exp

(
− xt

x + 1

)
dF(x) � 2−1/M · exp

(
− Mt

M + 1

)
.

The same choice for M establishes the lower bound. Naturally, similar evaluation holds
for the derivative, since m′(−t) = ∫ ∞

0
x

x + 1 exp(− xt
x + 1 ) dF(x). �

We will prove one property of the function m(t) which represents the symmetry of
F given by F(x) + F(1/x) = 1.

PROPOSITION 3. We have: m(t) = etm(−t).

Proof. In fact,

m(t) =
∫ ∞

0
exp

(
xt

x + 1

)
dF(x) = −

∫ ∞

0
exp

(
t/x

1/x + 1

)
dF(1/x)

=
∫ ∞

0
exp

(
t

x + 1

)
dF(x) = et

∫ ∞

0
exp

(
− xt

x + 1

)
dF(x) = m(−t)et.

�
Whence the relations

mL =
L∑

s=0

(
L
s

)
(−1)sms, L ≥ 0.

Thus, m1 = m0 − m1, which gives m1 = 1/2, and this implies M1 = 3/2. Also, 2m3 =
−1/2 + 3m2. These linear relations are further investigated in [2].

3. The dyadic period function G(z). We introduce the generating power function
of moments

M(z) =
∞∑

L=0

mLzL.

A priori, this series converges in the unit circle. Recall that
∫ ∞

0 xne−x dx = �(n + 1) =
n!. Thus, for real z < 1, the symmetry relation for m(t) gives:

M(z) =
∫ ∞

0
m(zt)e−t dt =

∫ ∞

0
m(−zt)e−t(1−z) dt

=
∫ ∞

0
m

(
t

z
z − 1

)
1

(1 − z)
e−t dt = M

(
z

z − 1

)
1

1 − z
. (9)

Both integrals converge for z < 1 (since mL ≤ 1, |m(z)| ≤ ez), hence for these values
of z we have the above identity. The function M(z) was initially defined for |z| < 1;
nevertheless, the above identity gives a holomorphic continuation of M(z) to the half
plane �z < 1/2.

LEMMA 2. The function M(z) can be analytically continued to the domain �\�x>1.

https://doi.org/10.1017/S0017089509990152 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990152


50 GIEDRIUS ALKAUSKAS

Proof. In fact, m(t) = ∫ ∞
0 exp( x

x + 1 t) dF(x). As noted above, |m(t)| ≤ et for positive
t (actually, Lemma 1 combined with Proposition 3 gives a slightly better estimate).
Therefore, for real z < 1 we have:

M(z) =
∫ ∞

0

∫ ∞

0
exp

(
x

x + 1
zt

)
e−t dF(x) dt =

∫ ∞

0

1
1 − x

x+1 z
dF(x).

Thus, M(z) is a certain Stieltjes transform of the distribution F(x), and the statement
of the lemma is a well-known (and almost obvious) fact about such transforms. �

The system (6) gives us the expression of ML in terms of ms. In fact, there exists
one more system which is independent of the distribution F(x); it simply encodes the
relation among functions tL and ( t

t+1 )s, given by

tL =
∑
s≥L

(
s − 1
L − 1

) (
t

t + 1

)s

L ≥ 1, t ≥ 0.

(This is the Taylor series for ( x
1−x )L, after an additional substitution x = t

t+1 ).
Ultimately,

ML =
∑
s≥L

(
s − 1
L − 1

)
ms. (10)

For the convenience, we introduce a function

G(z) = M(z) − 1
z

=
∞∑

L=1

mLzL−1 =
∫ ∞

0

x
x+1

1 − x
x+1 z

dF(x) = 2
∫ 1

0

x
1 − xz

dF(x). (11)

Next theorem is our main result about G(z). The power series converges in the disc
|z| ≤ 1 (including the boundary, as can be inherited from (10); moreover, this implies
that there exist all left derivatives of G(z) at z = 1). The integral converges in the cut
plane � \ (1,∞).

THEOREM 1. Let mL = ∫ ∞
0 ( x

x+1 )L dF(x). Then the generating power function, defined
as G(z) = ∑∞

L=1 mLzL−1, has an analytic continuation to the domain �\�x>1. It satisfies
the functional equation

− 1
1 − z

− 1
(1 − z)2

G
(

1
1 − z

)
+ 2G(z + 1) = G(z), (12)

and also the symmetry property

G(z + 1) = − 1
z2

G
(

1
z

+ 1
)

− 1
z
.

Moreover, G(z) = o(1) as z → ∞ and the distance from z to �+ tends to infinity.

Proof. In analogy to M(z), for real z < 0 define the following function: M0(z) =∫ ∞
0 M(zt)e−t dt. In view of (7), this integral converges for real z < 0. Thus,

M0(z) =
∫ ∞

0

∫ ∞

0
exp(xzt)e−t dF(x) dt =

∫ ∞

0

1
1 − xz

dF(x).
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From argument akin to the one used in proving Lemma 2 we deduce that M0(z)
extends as an analytic function to the region �\�>0. In this domain we see that

M0(z) − 1
z

= M(z + 1) − 1
z + 1

, (13)

which is the consequence of the algebraic identity

(
1

1 − xz
− 1

)
· 1

z
=

(
1

1 − x
x+1 (z + 1)

− 1

)
· 1

z + 1
.

The relation (13) is independent of the specific distribution function, it simply encodes
the information contained in (10) about the relation of powers of x to powers of
x/(x + 1). On the other hand, the specific information about F(x) is encoded in (6)
or (7). The comparison of these two relations gives the desired functional equation
for G(z). In fact, for real t < 0 the following estimate follows from (7) and Lemma 1:
|M(t)| = |m(t)(2 − et)−1| ≤ |m(t)| � 1; and thus for real z < 0 we have:

M(z) =
∫ ∞

0
m(zt)e−t dt =

∫ ∞

0
(2 − ezt)M(zt)e−t dt

= 2M0(z) −
∫ ∞

0
M(zt)e−t(1−z) dt = 2M0(z) − M0

(
z

1 − z

)
1

1 − z
.

Finally, the substitution (13) gives us the functional equation

1 − z
1 + z

− z
1 − z

M
(

1
1 − z

)
+ 2

z
z + 1

M(z + 1) = M(z).

The principle of analytic continuation implies that this equation should be satisfied
for all values of arguments in the region of holomorphicity of M(z). Direct inspection
shows that for G(z) = M(z) − 1

z this equation reads as (12). Also, the symmetry property
is a reformulation of (9). This proves the first part of the Theorem.

Obviously, the last assertion follows from the integral representation of G(z) given
by (11). �

We call G(z) the dyadic period function, since its functional equation is completely
parallel to a three term functional equations which are satisfied by rational period
functions and period functions associated with Maass wave forms [28]. The word
‘dyadic’ refers to the binary origin of the distribution function F(x). Indeed, thorough
inspection shows that the multiplier 2 in equations (20) and (12) emerges exactly
from the fact that every generation of T has twice as many members as a previous
generation.

4. Uniqueness of G(z). In this section, we prove the uniqueness of a function
having the properties described in Theorem 1. Note that two functional equations for
G(z) can be merged into a single one. It is easy to check that

1
z

+ 1
z2

G
(

1
z

)
+ 2G(z + 1) = G(z) (14)
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is equivalent to both together. In fact, the change z �→ 1/z in the equation (14) gives
the symmetry property, and application of it to the term G(1/z) of the above recovers
the functional equation (12).

PROPOSITION 4. The function which satisfies the conditions of Theorem 1 is unique.

Proof. Suppose there exist two such functions. Then their difference G0(z) has
the same behaviour at infinity, and it satisfies the homogenic form of the equation
(14). Let M = sup−1≤x≤0 |G0(x)| = |G0(x0)|, x0 ∈ [−1, 0]. We will show that M = 0;
by the principle of analytic continuation this will imply that G0(z) ≡ 0. Let z be real,
−1 ≤ z ≤ 0. Let us substitute z �→ z − n in the equation (14), n ∈ �, n ≥ 1, and divide
it by 2n. Thus, we obtain:

G0(z − n)
2n

− G0(z − n + 1)
2n−1

= 1
2n(z − n)2

G0

(
1

z − n

)
. (15)

Note that for z in the interval [−1, 0], 1
z − n belongs to the same interval as well. Now

sum this over n ≥ 1. The series on both sides are absolutely convergent, minding the
behaviour of G0(z) at infinity. Therefore,

−G0(z) =
∞∑

n=1

1
2n(z − n)2

G0

(
1

z − n

)
.

The evaluation of the right hand side gives:

|G0(z)| ≤
∞∑

n=1

1
2nn2

M =
(

π2

12
− 1

2
log2 2

)
M for − 1 ≤ z ≤ 0.

The constant is < 1. Thus, unless M = 0, this is contradictory for z = x0. This proves
the proposition. �

Note the similarity between (15) and the expression for the Gauss–Kuzmin–
Wirsing operator W. The latter is defined for bounded smooth functions f : [0, 1] → �

by the formula

[Wf ](x) =
∞∑

k=1

1
(k + x)2

f
(

1
k + x

)
.

The eigenvalue 1 corresponds to the function 1
1 + x (see [20] chapter III, for Kuzmin’s

treatment). The second largest eigenvalue −0.303663 . . . (the Wirsing constant) leads
to a function with unknown analytic expression [44]; this eigenvalue determines the
speed of convergence of iterates [W(n)f ](x) to c

1 + x (for certain c ∈ �). The spectral
analysis of our operator is presented in Section 6. Ref. [2] contains much more details
and results in this direction.

Let �z > 0. We remind that the Eisenstein series of weight 2 for PSL2(�) is defined
as [39]

G2(z) =
∑
n∈�

∑
m∈�

′ 1
(m + nz)2
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(mind the order of summation, since the series is not absolutely convergent). This series
has the following Fourier expansion: if q = e2π iz, then

G2(z) = π2

3
− 8π2

∞∑
n=1

σ1(n)qn,

where σ1(n) = ∑
d|n d. Then this function is not completely modular, but we have the

following identities ([39], chapter VII):

G2(z + 1) = G2(z), G2(−1/z) = z2G2(z) − 2π iz.

Note that for �z > 0, all arguments in (12) simultaneously belong to the upper half
plane. It is surprising (but not coincidental) that the function i

2π
G2(z) satisfies the

functional equation (12) for �z > 0 (see the remarks in Section 8 about possible
connections in idelic setting). To check this statement, note that

i
2π

G2

(
− 1

z − 1

)
= i

2π
((z − 1)2G2(z − 1) − 2π i(z − 1)) = i

2π
(1 − z)2G2(z) − (1 − z).

Thus, plugging this into (12), we obtain an identity. If we define G2(z) = G2(z) for
�z < 0, one checks directly that the symmetry property is also satisfied. This is a
surprising phenomena. See the last section of [2] for more speculations on this topic,
where the space of dyadic period functions in the upper half plane (denoted by DPF0)
is introduced.

We end this section with presenting a system of linear equations satisfied by the
moments mL. This system is derived from the three term functional equation (14) and
is a superior result in numerical calculations: whereas directly from the definition we
can recover only a few digits of the moments, this method allows to calculate up to 60
digits and more.

PROPOSITION 5. Denote cL = ∑∞
n=1

1
2nnL = LiL( 1

2 ). The moments ms satisfy the
infinite system of linear equations

ms =
∞∑

L=0

(−1)LcL+s

(
L + s − 1

s − 1

)
mL, s ≥ 1.

Proof. Indeed, for �z ≤ 0 we have (recall that m0 = 1):

−G(z) =
∞∑

n=1

1
2n(z − n)

+
∞∑

n=1

1
2n(z − n)2

G
(

1
z − n

)
=

∞∑
n=1

1
2n

∞∑
L=0

mL

(
1

z − n

)L+1

.

This series is absolutely and uniformly convergent for �z ≤ 0, as is implied by (10). We
obtain the needed result after taking the sth left derivative at z = 0. �

Numerical calculations are presented in [3]. This method gives high-precision
values for other constants, including the Kinney’s constant.

5. Exponential generating function m(t). The aim of this section is to interpret
(14) in terms of m(t). The following theorem, along with the boundary condition
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m(0) = 1 and regularity property as in Lemma 1, uniquely determines the function
m(t) .

THEOREM 2. The function m(s) satisfies the integral equation

m(−s) = (2es − 1)
∫ ∞

0
m′(−t)J0(2

√
st) dt, s ∈ �+, (16)

where J0(∗) stands for the Bessel function: J0(z) = 1
π

∫ π

0 cos(z sin x) dx.

Proof. For �z < 1, we have that G(z) = ∫ ∞
0 m′(zt)e−t dt. Thus,

G(z) = −1
z

∫ ∞

0
m′(−t)et/z dt for �z < 0, G(z) = 1

z

∫ ∞

0
m′(t)e−t/z dt for 0 < �z < 1.

Thus, the functional equation for G(z) in the region �z < −1 in terms of m′(t) reads as

1
z

=
∫ ∞

0
m′(−t)

(
2

z + 1
e

t
z+1 + 1

z
etz − 1

z
e

t
z

)
dt. (17)

Now, multiply this by e−sz and integrate over �z = −σ < −1, where s > 0 is real. We
have ([26], p. 465)∫ −σ+i∞

−σ−i∞

e−sz

z
dz = −2π i;

2
∫ −σ+i∞

−σ−i∞

e
t

z+1 −sz

z + 1
dz = −2es

∫ σ−1+i∞

σ−1−i∞

esz− t
z

z
dz

= −2es
∫ σ0+i∞

σ0−i∞

e
√

stz−
√

st
z

z
dz = −4π iesJ0(2

√
st),

where σ0 = (σ − 1)
√

t
s > 0, and Jν(∗) stands for the Bessel function (see [26], p. 597

for the representation of the Bessel function by this integral). Further,

∫ −σ+i∞

−σ−i∞

e(t−s)z

z
dz =

{
−2π i if s > t,
0 if s < t,

∫ −σ+i∞

−σ−i∞

e
t
z −sz

z
dz = −2π iJ0(2

√
st).

Thus, eventually

−2π i = −2π i
∫ ∞

0
m′(−t)(2es − 1)J0(2

√
st) dt − 2π i

∫ s

0
m′(−t) dt;

since m(0) = 1, this proves the proposition. �
Thus, we have obtained an integral equation for m(s), which corresponds to the

functional equation (14) for G(z). They are both, in fact, mere reformulations of (1) in
different terms.

6. Dyadic eigenfunctions. In this Section, we introduce the sequence of functions
Gλ(z), which satisfy the functional equation analogous to (14).
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Since J ′
0(∗) = −J1(∗), J1(0) = 0, integration by parts in (16) leads to∫ ∞

0

m(−t)√
t

J1(2
√

st) dt = 1√
s

− m(−s)√
s(2es − 1)

. (18)

Recall that the Hankel transform of degree ν > −1/2 of the function f (r) (provided
that

∫ ∞
0 f (r)

√
r dr converges absolutely) is defined as

g(ρ) =
∫ ∞

0
f (r)Jν(rρ)r dr,

where Jν(∗) stands for the νth Bessel function. The inverse is given by the Hankel
inversion formula with exactly the same kernel ([43], chapter XIV, section 14.4.). Thus,
after a proper change of variables, Hankel transform can be read as

g(ρ) =
∫ ∞

0
f (r)Jν(2

√
rρ) dr ⇔ f (r) =

∫ ∞

0
g(ρ)Jν(2

√
rρ) dρ.

Thus, application of this inversion to the identity (18) yields

m(−s)√
s

=
∫ ∞

0

J1(2
√

st)√
t

dt −
∫ ∞

0

m(−t)√
t(2et − 1)

J1(2
√

st) dt.

The first integral on the r.h.s. is equal t − 1√
s J0(2

√
st) |∞t=0 = 1√

s . Let ψ(s) = (2es − 1)1/2.
Then this equation can be rewritten as

m(−s)√
sψ(s)

= 1√
sψ(s)

−
∫ ∞

0

m(−t)√
tψ(t)

· J1(2
√

st)
ψ(s)ψ(t)

dt.

Hence, if we denote

J1(2
√

st)
ψ(s)ψ(t)

= K(s, t),
m(−s) − 1√

sψ(s)
= m(s),

we obtain a second type Fredholm integral equation with symmetric kernel ([22],
Chapter 9):

m (s) = �(s) −
∫ ∞

0
m (t)K(s, t) dt,

where �(s) = − 1
ψ(s)

∫ ∞

0

J1(2
√

st)√
t(2et − 1)

dt = 1√
sψ(s)

( ∞∑
n=1

e−s/n2−n − 1

)
.

The behaviour at infinity of the Bessel function is given by an asymptotic formula

J1(x) ∼
(

2
πx

)1/2

cos
(

x − 3
4
π

)

([43], chapter VII, section 7.1). Therefore, obviously,∫ ∞

0

∫ ∞

0
|K(s, t)|2 ds dt < ∞,

∫ ∞

0
|�(s)|2 ds < ∞.
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Thus, the operator associated with the kernel K(s, t) is the Hilbert–Schmidt operator
([22], p. 532). The theorem of Hilbert–Schmidt ([22], p. 283) states that the solution
of this type of integral equations reduces to finding the eigenvalues λ and the
eigenfunctions Aλ(s). We postpone the solution of this integral equation for the future.
Till the end of this section, we deal only with eigenfunctions. The integral operator,
consequently, is a compact self-conjugate operator in the Hilbert space, it possesses
a complete orthogonal system of eigenfunctions Aλ(s), all λ are real and λn → 0,
as n → ∞. If we denote Aλ(s)ψ(s) = Bλ(s), then the equation for an eigenfunction
reads as ∫ ∞

0
Bλ(t)

J1(2
√

st)
2et − 1

dt = λBλ(s).

This gives Bλ(0) = 0. Since Aλ(s) ∈ L2(0,∞), and J1(∗) is bounded, this implies that
Bλ(s) is uniformly bounded for s ≥ 0 as well. Moreover, since the Taylor expansion of
J1(∗) contains only odd powers of the variable, Bλ(s)

√
s has a Taylor expansion with

centre 0 and is an entire function. Now, multiply this by
√

se−s/z, z > 0, and integrate
over s ∈ �+. The Laplace transform of

√
sJ1(2

√
s) is 1

z2 e−1/z ([26], p. 503). Thus, we
obtain

1
λ

∫ ∞

0

Bλ(t)
√

t
2et − 1

e−tz dt = 1
z2

∫ ∞

0
Bλ(s)

√
se− s

z ds. (19)

Denote by Gλ(−z) the function on both sides of this equality. Thus, Gλ(z) is defined at
least for �z ≤ 0. Since 2et(z+1) − etz = (2et − 1)etz, we have

λ (2Gλ(z + 1) − Gλ(z)) =
∫ ∞

0
Bλ(t)

√
tetz dt = 1

z2
Gλ(1/z).

Therefore, we have proved the first part of the following theorem.

THEOREM 3. For every eigenvalue λ of the integral operator, associated with the kernel
K(s, t), there exists at least one holomorphic function Gλ(z) (defined for z ∈ � \ �>1),
such that the following holds:

2Gλ(z + 1) = Gλ(z) + 1
λz2

Gλ

(
1
z

)
. (20)

Moreover, Gλ(z) for �z < 0 satisfies all regularity conditions imposed by it being an
image under the Laplace transform ([26], p. 469).
Conversely: for every λ, such that there exists a non-zero function, which satisfies (20)
and these conditions, λ is the eigenvalue of this operator. The set of all possible λs is
countable, and λn → 0, as n → ∞.

Proof. The converse is straightforward, since, by the requirement, Gλ(z) for �z ≤ 0
is a Laplace image of a certain function, and all the above transformations are invertible.
We leave the details. If the eigenvalue has multiplicity higher than 1, then these λ-forms
span a finite dimensional �-vector space. Note that the proof of Proposition 1 implies
|λ| < 0.342014+. Finally, the functional equation (20) gives the analytic continuation of
Gλ(z) to the half-plane �z ≤ 1. Further, if z ∈ U , where U = {0 ≤ �z ≤ 1} \ {|z| < 1},
we can continue Gλ(z) to the region U + 1, and, inductively, to U + n, n ∈ �. Let U0 be
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the union of these. We can, obviously, continue Gλ(z) to the set U−1
0 + n, n ∈ �. Similar

iterations cover the described domain. �
Note that, in contrast to G(z), we do not have a symmetry property for Gλ(z).

The following calculations produce the first few eigenvalues. Let the Taylor
expansion of Gλ(z) be given by

Gλ(z) =
∞∑

L=1

m(λ)
L zL−1.

It converges in the unit circle, including its boundary (as is clear from (20), there exist
all left derivatives at z = 1). Thus, m(λ)

L have the same vanishing properties as mL (which
guarantees the convergence of the series in (10)). And therefore, as in Proposition 5,
we obtain:

λm(λ)
s =

∞∑
L=1

(−1)L−1cL+s

(
L + s − 1

s − 1

)
m(λ)

L , s ≥ 1.

Here cL = ∑∞
n=1

1
2nnL . If we denote es,L = (−1)L−1cL+s

(L+s−1
s−1

)
, then λ is the eigenvalue

of the infinite matrix E∞
s,L=1. The numerical calculations with the augmentation of this

matrix at sufficiently high level give the following first eigenvalues in decreasing order,
with all digits exact:

λ1 = 0.25553210+, λ2 = −0.08892666+, λ3 = 0.03261586+, λ4 = −0.01217621+.

Ref. [2] contains graphs of Gλ(z) for the first six eigenvalues, and, more importantly,
‘pair-correlation’ results among different eigenvalues, including the ‘eigenvalue’ -1,
which corresponds precisely to G(z). These results reveal the importance of Gλ(z) in
the study of F(x).

7. p-adic distribution. In the previous sections, we were interested in the
distribution of the nth generation of the tree T in the field of real numbers. Since
the set of non-equivalent valuations of � contains a valuation associated with any
prime number p, it is natural to consider the distribution of the set of each generation
in the field of p-adic numbers �p. In this case we have an ultrametric inequality, which
implies that two circles are either co-centric or do not intersect. We define

Fn(z, ν) = 2−n+1#
{a

b
∈ T (n) : ordp

(a
b

− z
)

≥ ν
}

, z ∈ �p, ν ∈ �.

(When p is fixed, the subscript p in Fn is omitted). Note that in order to calculate
Fn(z, ν) we can confine to the case ordp(z) < ν; otherwise ordp( a

b − z) ≥ ν ⇔ ordp( a
b ) ≥

ν. We shall calculate the limit distribution μp(z, ν) = limn→∞ Fn(z, ν), and also some
characteristics of it, e.g. the zeta function

Zp(s) =
∫

u∈�p

|u|sdμp, s ∈ �, z ∈ �p,

where | ∗ | stands for the p-adic valuation.
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To illustrate how the method works, we will calculate the value of Fn in two special
cases. Let p = 2 and let E(n) be the number of rational numbers in the nth generation
with one of a or b being even, and let O(n) be the corresponding number fractions with
both a and b odd. Then E(n) + O(n) = 2n−1. Since a

b in the nth generation generates
a

a+b and a+b
b in the (n + 1)st generation, each fraction a

b with one of the a, b even will
generate one fraction with both numerator and denominator odd. If both a, b are odd,
then their two offsprings will not be of this kind. Therefore, O(n + 1) = E(n). Similarly,
E(n + 1) = E(n) + 2O(n). This gives the recurrence E(n + 1) = E(n) + 2E(n − 1), n ≥
2, and this implies

E(n) = 2n + 2(−1)n

3
, O(n) = 2n−1 + 2(−1)n−1

3
, μ2(0, 0) = 2

3
.

(For the last equality note that a
b and b

a simultaneously belong to T (n), and so the
number of fractions with ord2(∗) > 0 is E(n)/2). We will generalise this example to
odd prime p ≥ 3. Let Li(n) be the part of the fractions in the nth generation such that
ab−1 ≡ i mod p for 0 ≤ i ≤ p − 1 or i = ∞ (that is, b ≡ 0 mod p). Thus,

∑
i∈�p∪∞

Li(n) = 1;

in other words, Li(n) = Fn(i, 1). For our later investigations we need a result from the
theory of finite Markov chains.

LEMMA 3. Let A be a matrix of a finite Markov chain with s stages. That is, ai,j ≥ 0
and

∑s
j=1 ai,j = 1 for all i. Suppose that A is irreducible (for all pairs (i, j), and some m,

the entry a(m)
i,j of the matrix Am is strictly positive), acyclic and recurrent (this is satisfied,

if all entries of Am are strictly positive for some m). Then the eigenvalue 1 is simple and
if λ is another eigenvalue, then |λ| < 1, and Am, as m → ∞, tends to the matrix B, with
entries bi,j = πj , where (π1, . . . , πs) is a unique left eigenvector with eigenvalue 1, such
that

∑s
j=1 πj = 1.

A proof of this lemma can be found in [17], Section 3.1., Theorem 1.3.

PROPOSITION 6. μp(z, 1) = 1
p+1 for z ∈ �p.

Proof. Similarly as in the above example, a fraction a
b from the nth generation

generates a
a + b and a + b

b in the (n + 1)st generation, and it is routine to check that

Li(n + 1) = 1
2

L i
1−i

(n) + 1
2

Li−1(n) for i ∈ �p ∪ {∞}, (21)

(Here we make a natural convention for i
1−i and i − 1, if i = 1 or ∞). In this equation,

it can happen that i − 1 ≡ i
1−i mod p; thus, (2i − 1)2 ≡ −3 mod p. The recurrence for

this particular i is to be understood in the obvious way, Li(n + 1) = Li−1(n). Therefore,
if we denote the vector-column (L∞(n), L0(n), . . . , Lp−1(n))T by vn, and if A is a matrix
of the system (21), then vn+1 = A vn, and hence

vn = An−1v1,
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where v1 = (0, 0, 1, 0, . . . , 0)T . In any particular case, this allows us to find the values
of Li explicitly. For example, if p = 7, the characteristic polynomial is

f (x) = 1
16

(x − 1)(2x − 1)(2x2 + 1)(4x4 + 2x3 + 2x + 1).

The list of roots is

α1 = 1, α = 1
2
, α3,4 = ± i√

2
, α5,6,7,8 = −1 − √

17
8

±
√

1 + √
17

2
√

2
,

(with respect to the two values for the root
√

17), the matrix is diagonalisible, and the
Jordan normal form gives the expression

Li(n) =
8∑

s=1

Ci,sα
n
s .

Note that the elements in each row of the (p + 1) × (p + 1) matrix A are non-negative
and sum up to 1, and thus, we have a matrix of a finite Markov chain. We need to
check that it is acyclic. Let τ (i) = i − 1, and ς (i) = i

1−i for i ∈ �p ∪ {∞}. The entry a(m)
i,j

of Am is

a(m)
i,j =

∑
i1,...,im−1

ai,i1 · ai1,i2 · . . . · aim−1,j.

Therefore, we need to check that for some fixed m, the composition of m ς ′s or τ ′s
leads from any i to any j. One checks directly that for any positive k, and i, j ∈ �p,

τ p−1−j ◦ ς ◦ τ k ◦ ς ◦ τ i−1(i) = j,

τ p−1−j ◦ ς ◦ τ k(∞) = j,

τ k ◦ ς ◦ τ i−1(i) = ∞;

(for i = 0, we write τ−1 for τ p−1). For each pair (i, j), choose k in order the amount
of compositions used to be equal (say, to m). Then obviously all entries of Am are
positive, ant this matrix satisfies the conditions of Lemma 3. Since all columns also
sum up to 1, (π1, . . . , πp+1), πj = 1

p+1 , 1 ≤ j ≤ p + 1, is the needed eigenvector. This
proves the proposition. �

The next theorem describes μ(z, ν) in all cases.

THEOREM 4. Let ν ∈ � and z ∈ �p, and ordp(z) < ν (or z = 0). Then, if z is a p-adic
integer,

μ(z, ν) = 1
pν + pν−1

.

If z is not p-adic integer, ordp(z) = −λ < 0,

μ(z, ν) = 1
pν+2λ + pν+2λ−1

.
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For z = 0, −ν ≤ 0, we have

μ(0,−ν) = 1 − 1
pν+1 + pν

.

This theorem allows the computation of the associated zeta-function:

COROLLARY 1. For s in the strip −1 < �s < 1,

Zp(s) =
∫

u∈�p

|u|sdμp = (p − 1)2

(p − p−s)(p − ps)
,

and Zp(s) = Zp(−s).

The proof is straightforward. It should be noted that this expression encodes all the
values of μ(0, ν) for ν ∈ �.

Proof of Theorem 4. For shortness, when p is fixed, denote ordp(∗) by v(∗). As
before, we want a recurrence relation among the numbers Fn(i, κ), i ∈ �+. For each
κ ∈ �, we can confine to the case i < pκ . If i = 0, we only consider κ > 0 and call
these pairs (i, κ) ‘admissible’. In these recurrence relations we are forced to include also
Gn(0,−κ) for κ ≥ 1, which are defined this way:

Gn(0,−κ) = 2−n+1#
{a

b
∈ T (n) : v

(a
b

)
≤ −κ

}
, z ∈ �p, κ ∈ �.

(note that compared with the definition of Fn, the inequality is reversed). As before,
a fraction a

b in the nth generation generates the fractions a
a+b and a+b

b in the (n + 1)st
generation. Let τ (i, κ) = ((i − 1) mod pκ , κ). Then for all admissible pairs (i, κ), i 
= 0,
the pair τ (i, κ) is also admissible, and

v

(
a + b

b
− i

)
= κ ⇔ v

(a
b

− (i − 1)
)

= κ.

Second, if a
a+b = i + pκu, i 
= 1, u ∈ �p, and (i, κ) is admissible, then

a
b

− i
1 − i

= pκu
(1 − i)(1 − i − pκu)

.

Since v( i
1−i ) = v(i) − v(1 − i), this is 0 unless i is an integer, equals to v(i) if the latter

is > 0 and equals to −v(1 − i) if v(1 − i) > 0. Further, this difference has valuation
≥ κ0 = κ, if i ∈ �, i 
≡ 1 mod p, valuation ≥ κ0 = κ − 2v(1 − i), if i ∈ �, i ≡ 1 mod p,
and valuation ≥ κ0 = κ − 2v(i) if i is not integer. In all three cases, easy to check, that,
if we define i0 = i

1−i mod pκ0 , the pair ς (i, κ) =def(i0, κ0) is admissible. For the converse,
let a

b = i0 + pκ0 u, u ∈ �p. Then

a
a + b

− i0
1 + i0

= pκ0

(1 + i0 + pκ0 u)(1 + i0)
.

If i = i0
1+i0

is a p-adic integer, i 
≡ 1 mod p, this has a valuation ≥ κ = κ0; if i is a p-
adic integer, i ≡ 1(p), this has valuation ≥ κ = κ0 − 2v(i0) = κ0 + 2v(1 − i); if i is not
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a p-adic integer, this has valuation ≥ κ = κ0 − 2v(1 + i0) = κ0 + 2v(i). Thus,

v

(
a

a + b
− i

)
≥ κ ⇔ v

(a
b

− i0
)

≥ κ0.

Let i = 1. If a
a+b = 1 + pκu, then κ > 0, u ∈ �p, and we obtain a

b = −1 − 1
pκ u , v( a

b ) ≤
−κ. Converse is also true. Finally, for κ ≥ 1,

v

(
a + b

b

)
≤ −κ ⇔ v

(a
b

)
≤ −κ,

and

v

(
a

a + b

)
≤ −κ ⇔ v

(a
b

+ 1
)

≥ κ.

Therefore, we have the recurrence relations:⎧⎪⎨
⎪⎩

Fn+1(i, κ) = 1
2 Fn(τ (i, κ)) + 1

2 Fn(ς (i, κ)), if (i, κ) is admissible,

Fn+1(1, κ) = 1
2 Fn(0, κ) + 1

2 Gn(0,−κ), κ ≥ 1,

Gn+1(0,−κ) = 1
2 Gn(0,−κ) + 1

2 Fn(−1, κ), κ ≥ 1.

(22)

Thus, we have an infinite matrix A, which is a change matrix for the Markov chain.
If vn is an infinite vector-column of F ′

ns and G′
ns, then vn+1 = Avn, and, as before,

vn = An−1v1. It is direct to check that each column also contains exactly two non-zero
entries 1

2 , or one entry, equal to 1. In terms of Markov chains, we need to determine
the classes of orbits. Then in proper rearranging, the matrix A looks like⎛

⎜⎜⎜⎜⎜⎜⎝

P1 0 . . . 0 . . .

0 P2 . . . 0 . . .
...

. . .
...

...
0 0 . . . Ps 0
...

... . . . 0
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Ps are finite Markov matrices. Thus, we claim that the length of each orbit is
finite, every orbit has a representative G∗(0,−κ), κ ≥ 1, the length of it is pκ + pκ−1,
and the matrix is recurrent (that is, every two positions communicate). In fact, from
the system above and form the expression of the maps τ (i, κ) and ς (i, κ), the direct
check shows that the complete list of the orbit of G∗(0,−κ) consists of (and each pair
of states are communicating):

G∗(0,−κ),

F∗(i, κ) (i = 0, 1, 2, . . . , pκ − 1),

F∗(p−λu, κ − 2λ) (λ = 1, 2, . . . , κ − 1, u ∈ �, u 
≡ 0 mod p, u ≤ pκ−λ).

In total, we have

1 + pκ +
κ−1∑
λ=1

(pκ−λ − pκ−λ−1) = pκ + pκ−1
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members in the orbit. Thus, each Pκ in the matrix above is a finite dimensional �κ × �κ

matrix, where �κ = pκ + pκ−1. For κ = 1, the matrix P1 is exactly the matrix of the
system (21). As noted above, the vector column (1, 1, . . . , 1)T is the left eigenvector. As
in the previous Proposition, it is straightforward to check that this matrix is irreducible
and acyclic (that is, the entries of Pn

κ are strictly positive for sufficiently large n). In fact,
since by our observation, each two members in the orbit communicate, and since we
have a move G∗(0,−κ) → G∗(0,−κ), the proof of the last statement is immediate: there
exists n such that any position is reachable from another in exactly n moves, and this
can be achieved at the expense of the move just described. Therefore, all entries of Pn

κ

are strictly positive. Thus, the claim of the Theorem follows from the Lemma 3. �

8. Conclusion. We end the paper with the following remarks. As is implied by
Theorem 4, the measure μp of those rationals in the Calkin–Wilf tree which are
invertible elements of �p is equal to p−1

p + 1 . We follow the line of the Tate thesis [7], and

modify this measure so that �∗
p has measure 1; accordingly, let us define μ′

p = p + 1
p − 1μp.

Thus, we are lead to the formal definition of the zeta function

ζT (s) =
∏

p

∫
u∈�p

|u|s dμ′
p =

∏
p

(
1 − 1

p2

) ∏
p

1
1 − p−s−1

· 1
1 − ps−1

= 6
π2

ζ (s + 1)ζ (−s + 1).

This product diverges everywhere; nevertheless, if we apply the functional equation of
the Riemann ζ function for the second multiplier, we obtain

ζT (s) = 12
π2

(2π )−s cos
(πs

2

)
�(s)ζ (s)ζ (s + 1).

From the above definition it is clear that, formally, this zeta function is the sum of
the form

∑
r∈�+ μrr−s, where, if r ∈ �+, and μr stands for the limit measure of those

rationals in the nth generation of T , which have precisely the same valuation as r at
every prime which appears in the decomposition of r, times the factor

∏
ordp(r)
=0

p+1
p−1 .

Surprisingly, the product ζ (s)ζ (s + 1) is the zeta function of the Eisenstein series G2(z),
which is related to the distribution of rationals in T at the infinite prime �∞ = �. In
fact, ∫ ∞

0
(G2(iz) − G2(i∞)) zs−1 dz = −8π2(2π )−s�(s)ζ (s)ζ (s + 1).

This is a strong motivation to investigate the tree T and the Minkowski question mark
function in a more general – idelic – setting, thus revealing the true connection between
p-adic and real distribution, and clarifying the nature of continued fractions in this
direction. We hope to realise this in subsequent papers.

Unfortunately, currently we left the most interesting question (the explicit
description of the moments of ?(x)) unanswered. It is desirable to give the function G(z)
and dyadic forms Gλ(z) certain other description than the one which arises directly
from the tree T . This is in part accomplished in [2] and [3]. These papers form a direct
continuation of the current work. Among the other results, the dyadic zeta function
ζM(s) is introduced: it is given by ζM(s)�(s + 1) = ∫ ∞

0 xs dF(x); the nature of dyadic
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eigenfunctions Gλ(z) is clarified; certain integrals which involve F(x) are computed; and
finally, this research culminates with the proof that in the half plane �z < 1 the dyadic
period function G(z) can be represented as an absolutely convergent series of rational
functions with rational coefficients. Possibly, this technique can find its applications in
the study of period functions for Maass wave forms.
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9. A. Denjoy, Sur une fonction réelle de Minkowski, J. Math. Pures Appl. 17 (1938),

105–151.
10. K. Dilcher and K. B. Stolarsky, A polynomial analogue to the Stern sequence, Int. J.

Number Theory 3(1) (2007), 85–103.
11. A. Dushistova and N. G. Moshchevitin, On the derivative of the Minkowski question

mark funtion ?(x), arXiv:0706.2219.
12. M. D. Esposti, S. Isola and A. Knauf, Generalized Farey trees, transfer operators and

phase transitions, Comm. Math. Phys. 275(2) (2007), 297–329.
13. S. R. Finch, Mathematical constants (Cambridge University Press, Cambridge, UK,

2003), 441–443, 151–154.
14. R. Girgensohn, Constructing singular functions via Farey fractions, J. Math. Anal.

Appl. 203 (1996), 127–141.
15. P. J. Grabner, P. Kirschenhofer and R. F. Tichy, Combinatorial and arithmetical

properties of linear numeration systems, Combinatorica 22(2) (2002), 245–267.
16. S. Isola, On the spectrum of Farey and Gauss maps, Nonlinearity 15 (2002), 1521–1539.
17. S. Karlin, A first course in stochastic processes (Academic Press, New York and London,

1968).
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