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ABSTRACT. Antarctic coastal sea ice often grows in water that has been supercooled by interaction
with an ice shelf. In these situations, ice crystals can form at depth, rise and deposit under the sea-ice
cover to form a porous layer that eventually consolidates near the base of the existing sea ice. The least
consolidated portion is called the sub-ice platelet layer. Congelation growth eventually causes the sub-
ice platelet layer to become frozen into the sea-ice cover as incorporated platelet ice. In this study, we
simulate these processes in three dimensions using Voronoi dynamics to govern crystal growth kinetics.
Platelet deposition, in situ growth and incorporation into the sea-ice cover are integrated into the
model. Heat and mass transfer are controlled by diffusion. We extract and compare spatial–temporal
distributions of porosity, salinity, temperature and crystallographic c-axes with observations from
McMurdo Sound, Antarctica. The model captures the crystallographic structure of incorporated
platelet ice as well as the topology of the sub-ice platelet layer. The solid fraction, which has previously
been poorly constrained, is simulated to be �0.22, in good agreement with an earlier estimate of
0.25�0.06. This property of the sub-ice platelet layer is important for biological processes, and for the
freeboard–thickness relationship around Antarctica.

KEYWORDS: Antarctic glaciology, sea ice, sea-ice growth and decay, sea-ice modelling, sea-ice/ice-shelf
interactions

INTRODUCTION
When sea water freezes, the resulting sea ice generally
contains pure ice crystals, as well as brine and gas pockets.
Granular ice, formed from the consolidation of a layer of
tiny ice crystals at the air/ocean interface (Maus and De la
Rosa, 2012; Naumann and others, 2012, and references
therein), grows downwards, with faster growth on the crystal
basal plane than in the c-axis direction (Hillig, 1959). The
aspect ratio of this anisotropic growth, i.e. the growth rate in
the basal plane divided by that in the c-axis direction, lies in
the range 20–100 (Smedsrud and Jenkins, 2004; Kawano
and Ohashi, 2009). Consequently, as the ice grows,
geometric selection filters out the granular crystals with
c-axes close to the vertical (Kolmogorov, 1949), and
columnar ice is formed with c-axes lying close to the
horizontal plane. We refer to the sea ice that forms by
conduction of heat through the sea ice to the atmosphere as
congelation ice.

Around the coast of Antarctica, sea ice often grows in
water that has been supercooled by ocean–ice-shelf inter-
actions (e.g. Lewis and Perkin, 1986). Tiny crystals exist
within this supercooled water column. These crystals rise to
the surface and deposit under the sea-ice cover to form a
porous layer in an evolving state of consolidation. The least
consolidated portion is called the sub-ice platelet layer (e.g.
Fig. 1). Eventually heat loss to the atmosphere, as well as to
the near-surface supercooled ocean, causes these crystals to
become frozen into the sea-ice cover as incorporated
platelet ice (Smith and others, 2001; Dempsey and others,

2010; Gough and others, 2012a). Platelet ice is therefore
important because it is a surface expression of processes that
take place deep in an ice-shelf cavity. These processes may
influence sea-ice thickness (e.g. Hellmer, 2004) and extent
(Bintanja and others, 2013). Further, because the sub-ice
platelet layer is highly porous and provides a stable surface
for algal attachment, it harbours some of the highest
accumulations of sea-ice algae found anywhere on Earth
(Arrigo and Thomas, 2004).

In addition, platelet ice influences the measurement of
sea-ice thickness. There are three major techniques for
obtaining sea-ice thickness: drilling, electromagnetic induc-
tion sounding, and airborne and satellite altimeter measure-
ments (Haas and Druckenmiller, 2009). Within limitations
posed by the snow-cover thickness, these methods are fairly
well developed for congelation ice, particularly in the Arctic
(Haas and Druckenmiller, 2009). Around regions of coastal
Antarctica, on the other hand, the situation is further
complicated due to the highly porous, sub-ice platelet
layer. For electromagnetic induction thickness estimates, a
value of the solid fraction of the sub-ice platelet layer is
needed to constrain the electrical conductivity for the
inversion algorithm. The solid fraction of this layer is also
needed to derive sea-ice thickness from freeboard, using the
assumption of hydrostatic equilibrium and altimeter meas-
urements. Price and others (2014) have recently demon-
strated that sea-ice thickness, derived from freeboard
estimates, may be in error by up to 20% because of the
presence of a sub-ice platelet layer.
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It remains a challenge to directly measure the solid
fraction by sampling. A variety of methods has been applied
to obtain the solid fraction of the sub-ice platelet layer (fs),
and Gough and others (2012a) have summarized typical
estimates from several authors to be between 0.2 and 0.5.
The most accurate value to date is fs ¼ 0:25� 0:06, based
on the heat flux measurements of Gough and others (2012a).

One possible way to obtain this sub-ice platelet layer
solid fraction is to simulate a number of ice platelets floating
up from depth, being deposited and continuing to grow
locally under the sea-ice cover. In short, it is a solidification
problem. There are many methods available to solve this
type of problem (e.g. the level set method (Tan and Zabaras,
2006), the phase field model (Kobayashi, 1993), cellular
automata (Spittle and Brown, 1994) and smoothed particle
hydrodynamics (Monaghan and others, 2005)). The accur-
acy of those models is superb, but the complexity of the
mathematics and the demand on computational resources
are also at a high level, especially for simulations in three
dimensions (3-D). Taking these factors into account,
Voronoi dynamics (Ohashi and others, 2004) is a flexible
and simple but efficient method to simulate the physical
processes of interest here. This technique divides space into
a set of points (or seeds) and for each seed there is a
corresponding region consisting of all points closer to that
seed than to any other. The construction of a set of rules
allows crystal growth kinetics to be simulated.

Kawano and Ohashi (2006) performed such simulations
in two dimensions (2-D) and report that their simulated value
of brine area fraction from Voronoi dynamics, combined
with salinity concentration in a 2-D domain, is higher than
that of laboratory-grown sea ice. They point out that the
missing dimension may cause loss of generality in their
simulation. Their more recent paper (Kawano and Ohashi,
2009), in which heat conduction and salinity diffusion are
included, is also limited to a 2-D approximation.

In an independent study, Dempsey (2008) and Dempsey
and others (2010) used a purely mechanical model of
Voronoi dynamics to simulate the accumulation and growth
of platelet ice. Their results have some limitations,
especially with regard to the lack of thermodynamic and
fluid dynamic processes. Most importantly, the temporal
evolution of solid fraction and the resulting salinity profile
require thermodynamic implementation.

Recently, Hahn-Woernle (2011) introduced two simula-
tions with the inclusion of heat and salt transport. The first is a

one-dimensional Voronoi model which simulates the ver-
tical growth of a sea-ice slab due to heat conduction through
an air–ice–sea stack with varying thermal constants. The heat
flux and salt diffusion can be monitored numerically. The
second is a 2-D model of the growth of an individual platelet
crystal through a vertical cut. Voronoi dynamics, including
heat and salt constraints, was again used.

In this paper, we build a direct numerical simulation
using Voronoi dynamics with diffusive heat and mass
transfer. A 3-D model is necessary to understand the
spectrum of growth processes in sea ice, and platelet ice
in particular, starting from individual crystals in the water
column and leading to the formation of a sub-ice platelet
layer. Furthermore, we take into account the advancing
interface, driven by heat loss to the atmosphere, and the
deposition of ice crystals from the ocean to create different
scenarios that imitate the natural process of incorporated
platelet ice formation. In a similar process to taking a sea-ice
core, we extract the solid fraction, temperature, salinity and
crystal orientations from virtual sea-ice cores through the
3-D model domain, and compare the results to physical sea-
ice cores retrieved from Antarctica.

VORONOI DYNAMICS WITH DIFFUSIVE HEAT
AND MASS TRANSFER
The model is built in a 3-D domain �ðr, tÞ. This is
discretized into cells and each cell has four 3-D matrices
associated with it: solid fraction ’ðr, tÞ, characteristic
number Kðr, tÞ, temperature Tðr, tÞ and salinity Sðr, tÞ, where
r ¼ ðx, y, zÞ and t are the position vector and time respect-
ively. Kðr, tÞ identifies whether a cell is brine, ice–brine
mixture or is labelled as an ice crystal to preserve its crystal
orientation.

Voronoi dynamics
Consider a crystal i with seed position ci, c-axis bc and
characteristic number Ki. The magnitude of the relative
position jr � cij of a point with position r in the domain
�ðr, tÞ from position ci (Fig. 2) is stored in the displacement

Fig. 1. The sub-ice platelet layer captured with an underwater
camera (courtesy A.J. Gough and A.R. Mahoney). Note that the
scale between the red lines is 0.05m.

Fig. 2. An ice crystal is seeded at ci with orientation or c-axis
direction bc. r is a position vector relative to xyz coordinates. r � ci
(grey vector) represents a relative displacement from a certain
position in space to the seeding position. Gc and Gb are growth
functions in the c-axis direction and the basal plane, respectively.
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matrix as

RiðrÞ � jr � cij: ð1Þ

The Voronoi dynamics condition, which contains informa-
tion about ice crystal growth kinetics,

RiðrÞ � GiðrÞðti þ�tVÞ < 0, ð2Þ

is well posed and ready to iterate (Fig. 3). �tV is the time
step for the Voronoi dynamics condition. In Eqn (2), GiðrÞ is
the growth matrix of an ice crystal, which is defined as
(Dempsey and others, 2010)

GiðrÞ ¼
RiðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rb
Gb

� �2
þ Rc

Gc

� �2
r , ð3Þ

where Rb and Rc are the magnitudes of the basal-plane and
c-axis components of jr � cij, respectively. Similarly Gb and
Gc are growth functions on the basal plane and along the
c-axis. Except where crystals are deposited from the ocean,
Gb and Gc are constant in this paper, i.e. Gb ¼ gb and
Gc ¼ gc, where gb and gc are growth rates on the basal
plane and along the c-axis. The aspect ratio is defined as
� � gb=gc which is chosen such that geometrically an oblate
spheroid crystal is grown with minor axis aligned with the
c-axis as applied in Dempsey and others (2010). In addition,
if we consider an advancing planar interface, the displace-
ment and growth matrix are z and gint ¼ constant, respect-
ively. The corresponding Voronoi dynamics condition is

z � gintðtþ�tVÞ < 0: ð4Þ

Heat conduction in an anisotropic medium with
phase change
We assume that the transport of heat is purely by thermal
conduction which depends strongly on the various phases of
the medium within the system. From Worster (1986), the
governing equation of heat transfer is

�c
@

@t
Tðr, tÞ ¼ r � krTðr, tÞ

� �
þ �sL

@

@t
’ðr, tÞ, ð5Þ

where T is temperature, ’ is solid fraction, � is the averaged
density, c is the averaged specific heat, L is the latent heat
and �s is the density of the solid. We also assume the solid-
fraction-weighted averages of these thermophysical proper-
ties, i.e. X ¼ Xð’Þ ¼ ’Xs þ ð1 � ’ÞX‘ and XY ¼ ’XsYsþ
ð1 � ’ÞX‘Y‘, where subscripts s and ‘ are solid and liquid
phases, respectively. The values of all constants are given in
Table 1.

Salt diffusion
We use Fick’s second law (e.g. Crank, 1979) for salt
diffusion and assume that diffusion occurs only among
liquid cells, i.e.

@

@t
Sðr, tÞ ¼ Dr2Sðr, tÞ, ð6Þ

where D is the molecular mass diffusivity. In the present
model, fluid dynamics has not been considered, i.e.
turbulent ocean mixing is thus not simulated. As diffusion
is the only method to transfer salt in the system, we
compensate for the effect of fluid transport by increasing the
value of D to be greater than that for molecular diffusion
alone (Hahn-Woernle, 2011) and we call this the effective
mass diffusivity Deff.

Liquidus relation
The freezing temperature of sea water (Dinniman and
others, 2007), which is the linearized version of Foldvik
and Kvinge (1974), is

TLðSÞ ¼ Tm � � S, ð7Þ

where Tm is the surface freezing point. The liquidus slope �

= 0.057°C. Note that the depth dependence has been
omitted from this relation because the system of interest is at
a shallow depth.

NUMERICAL IMPLEMENTATION OF THE MODEL
A full explanation of the method is given by Wongpan
(2013), with an outline presented here.

Fig. 3. To illustrate how Voronoi dynamics works, consider the
liquid domain (white) in two dimensions. An ice cell (grey) is
seeded at position O and it grows iteratively to form the connected
ice cells (light blue) which we call the crystal. The displacement of
other cells from cell O and the growth functions are calculated in
advance and kept in the R and G matrices. At a certain time t,
consider cells A and B. Their displacement vectors OA and OB are
drawn with blue vectors. Note that these two vectors are time-
independent. Their growth functions, describing the crystal growth
kinetics, multiplied by time (Gt) are represented by a red dashed
contour which we call here the ‘Voronoi front’. For cells of interest,
we can construct red vectors from point O to this front and in the
same direction as their displacement vector. These two vectors are
compared for each cell. If the Voronoi dynamics condition
(R � Gt < 0) is satisfied and if the cell is adjacent to at least one
ice cell, it can grow or flip to an ice cell at this time. Thus at the
time illustrated, A remains liquid while B becomes solid.

Table 1. Parameters collected from Kawano and Ohashi (2009) and
Hahn-Woernle (2011)

Specific heat of solid cs 2040 J kg� 1 K� 1

Specific heat of liquid c‘ 4217 J kg� 1 K� 1

Density of solid and liquid �s 916:8 kgm� 3

Density of liquid �‘ 1000 kgm� 3

Thermal conductivity of solid ks 2.0 J kg� 1 K� 1

Thermal conductivity of liquid k‘ 0.6 J kg� 1 K� 1

Thermal diffusivity in solid �s 9:80� 10� 7 m2 s� 1

Thermal diffusivity in liquid �‘ 1:42� 10� 7 m2 s� 1

Latent heat L 334� 103 J kg� 1

Liquidus slope � 0.057 °C
Liquidus intercept Tm 0.0939 °C
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In Ohashi and others (2004), Dempsey (2008) and
Dempsey and others (2010), the only criterion for phase
change from liquid to solid is the Voronoi dynamics
condition (Eqn (2)) which is given in discretized form in
Eqn (8). The Voronoi dynamics condition for cell j with
respect to the seed ice crystal i at time n�tV is

Ri½j� � Gi½j�ðn�tVÞ < 0, ð8Þ

where cell j is liquid at time n�tV (i.e. Knj ¼ 1). In addition,
cell j is adjacent to at least one ice cell with characteristic
number 0 < Ki < 1. Note that different characteristic num-
bers distinguish between different crystals.

Kawano and Ohashi (2009) add a thermodynamic
condition to their 2-D model, where

Tnj � TLðS
n
j Þ, ð9Þ

where Tnj and S
n
j are respectively temperature and salinity at

position j and time n�tV, and TL is given by Eqn (7). Heat
and mass transfer are implemented without latent heat
during a phase change (Kawano and Ohashi, 2009), which
is unrealistic. Later, Hahn-Woernle (2011) included latent
heat in a 2-D model with supercooled water, but a
temperature gradient was not taken into account.

In our model, we include all features from previous
models, and extend them to 3-D with lateral periodic
boundary conditions. We also add an interim phase to the

model, called mixture cells, to make it easier to include
latent heat.

The program runs in two loops (Fig. 4), the outside
Voronoi loop and the inside heat and mass transfer loop.
The corresponding time steps for each loop are �tV and �tS
respectively. Assuming that we run the simulation for a
period of � ¼ N�tV, the outside loop runs from n ¼ 1 to N
steps. For each time step �tV, the inside loop runs from
m ¼ 1 to M steps. In short, � ¼ MN�tS.

Kawano and Ohashi (2009) used a single time step for
Voronoi dynamics and heat and mass transfer. However, in
our simulation, we decided to use two time steps to avoid
checking the Voronoi dynamics condition at every iteration
and to enable us to choose a larger �tV, to span simulation
times from seconds to a daily scale.

In this simulation, we use an explicit method to solve the
partial differential equation because it is easier to imple-
ment. However, the downside of this method is the stability.
The size of this �tS has to be set to be smaller than the limit
determined from Courant and others’ (1967) conditions.

When the simulation starts, the crystal is seeded at
position i in the domain � with its characteristic value Ki.
The displacement of other cells with respect to this seed i
and the growth function are kept in matrices Ri and Gi, and
referred to as Ri½j� and Gi½j� respectively. The Voronoi
dynamics inequality of any cell j with respect to crystal seed
i at time n�tV is given by Eqn (8). By definition, since Ri½i� is
always zero, i.e. it is the displacement to itself, then this
inequality is also valid for the seed cell at any time.

From n�tV to ðnþ 1Þ�tV, �tV is further discretized and
runs from m ¼ 1 to M iterations. Any temperature T and
salinity S of cell j at time m�tS can be denoted as Tmj and Smj
respectively, and updated for each iteration by the heat and
mass transfer without phase change equations

Tmþ1j ¼ Tmj þ�Tmj , ð10Þ

and

Smþ1j ¼ Smj þ�Smj , ð11Þ

where �Tmj and �Smj are given in Wongpan (2013).
When m ¼ M, the Voronoi dynamics condition is

checked for each cell. If cell j passes this condition its
temperature will be compared with its corresponding
liquidus temperature (Eqn (9)), which we call the thermo-
dynamic condition.

If this condition holds, the solidification process starts.
The characteristic number of this cell j at step n (Knj ) changes
from 1 (liquid) to 1þ Ki (mixture). The solid fraction residual
�’�j is calculated from

�’�j ¼
TLðSnj Þ � T

n
j

ð�sLÞ=ð�‘c‘Þ
: ð12Þ

In the heat and mass transfer loop, the temperature for this
cell is set equal to the liquidus temperature during
solidification Tmj ¼ TLðS

n
j Þ. In order to maintain a constant

liquidus temperature, the salinity is required to be constant,
i.e. Smj ¼ S

n
j . However, salt is rejected continuously from the

mixture cell due to the increase in solid (ice) fraction. If there
are no liquid cells to absorb salt from this cell, the
solidification process stops and the characteristic number
of this cell will be set to 2, which is representative of a
brine cell. At step mþ 1, the solid fraction accumulates,

Fig. 4. Flow chart showing the numerical steps. Note that if a
process enters the m ¼ mþ 1 box on a dashed line, and if the exit
logic from m > M is no, then the logic follows the dashed line
when it exits m > M.
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according to

’mþ1j ¼ ’mj þ�’mj , ð13Þ

and it is checked whether

’mþ1j � 1: ð14Þ

Physical constants are updated; that is Xmþ1j ¼ ’mþ1j Xsþ
ð1 � ’mþ1j ÞX‘.

If Eqn (14) is true, the phase of the cell changes. First, the
temperature residual is calculated from the difference of
’mþ1j from 1,

�T�j ¼ ðL=csÞð1 � ’
mþ1
j Þ, ð15Þ

and this is added to the liquidus temperature of that cell:

Tmþ1j ¼ TLðSnj Þ þ�T�j : ð16Þ

Then ’mþ1j is reset to 1. The salinity of this cell is set to zero,
and the characteristic number is changed from 1þ Ki
(mixture) to Ki (solid). On the next step, this cell will be
redirected to the heat and mass transfer without the phase
change scheme. All the processes above are sketched as a
flow chart (Fig. 4). The way we take residuals in temperature
and solid fraction into account is similar to an algorithm,
called the heat integration method (Dusinberre, 1945).

MODEL RESULTS AND DISCUSSIONS
Validation: Stefan problem
Here we perform simulations to evaluate the accuracy of our
code, and to carry out sensitivity experiments by varying the
effective mass diffusivity Deff for each run. To do this, we set
up the domain � to match the situation of a one-
dimensional (1-D) solution (the Stefan problem) as described
in Worster (1986).

To match the Stefan problem, which describes 1-D heat
transfer with phase change, the domain has the property that
x ¼ y!1 and z is finite. We apply periodic boundaries on
the x-y plane to achieve the former property. The lengths of
the periodic simulation box in the x, y, and z directions are
lx, ly and lz. We set lz to a finite length to satisfy the latter
property. We perform the simulation in a domain with
dimensions lx ¼ ly ¼ 0:01m, and lz ¼ 1:0m, using a uni-
form grid with cell length �h ¼ �x ¼ �y ¼ �z ¼ 0:001m.

In the Stefan problem, a slab of sea ice grows downwards
by heat loss to the atmosphere. To do this, we place an ice
slab with temperature Ttop = –5°C at z ¼ 0:001m. The rest of
the domain is sea water with uniform salinity Sbot ¼ 35:16.
Before the simulation starts, an advancing interface is
introduced to the domain at position z ¼ 0:002m, causing
the sudden rejection of salt to all cells in the plane
z ¼ 0:003m with salinity 70.32. Then the simulation begins.

The Voronoi front (Fig. 3) of the advancing interface has a
growth speed gint ¼ 1:0� 10� 5 m s� 1 in Eqn (4). By setting
�tV ¼ 10 s, gint�tV < �h which is another requirement of
Voronoi dynamics (Kawano and Ohashi, 2009; Dempsey
and others, 2010). All simulations in this section run for
1:6� 104�tV, which is equivalent to 1:6� 105 s or �2days.

The thermodynamic set-up has Sbot ¼ 35:16 and a freez-
ing point of TLðSbotÞ= –1.91°C (Eqn (7)). We set Tbot ¼
–1.50°C. We simulate four cases by varying Deff ¼ �D over
four orders of magnitude, ranging from 6:8� 10� 10 to
6:8� 10� 7 m2 s� 1 with � ¼ f1, 10, 100, 1000g.

Comparison of our results with theoretical solutions from
Worster (1986) confirms the accuracy of our code for each
value of Deff (Fig. 5). We select Deff ¼ 100D ¼ 6:8�
10� 8 m2 s� 1 for all further simulations. This is of the same
order of magnitude as applied by Vancoppenolle and others
(2010) and Jeffery and others (2011) in modeling the
transport of tracers in sea ice.

A single ice flux event from the ocean
Having evaluated the simulation code in the previous
subsection, we now explore two scenarios that are likely
to occur in ice-shelf-affected waters. In scenario 1, a flux of
tiny seed crystals arrives at the base of the sea-ice cover in a
single event. They then grow due to heat loss upwards
through the sea ice, as well as to the supercooled ocean.
Scenario 2 begins with the formation of a rough ice/water
interface, by seeding and growing ice crystals as in scenario
1. After a short time, a continuous flux of crystals is
introduced. The advancing interface (driven by heat loss to
the atmosphere) grows from the upper domain to freeze the
crystals in place to become incorporated platelet ice.

In this section, we assume that a flux of seed ice crystals
arrives from the ocean as a single event, under a top-chilled,
flat sea-ice cover. These crystals are assumed to be small
(1 mm diameter) and to have random positions and
orientations. Then they grow locally and we expect a sub-
ice platelet layer to form and increase in solid fraction.
Observations show that without a continuous supply of
loose ice crystals, geometric selection plays a major role,
and eventually resumed columnar fabric forms (Dempsey
and others, 2010; Dempsey and Langhorne, 2012).

We set a domain � with a total number of cells (Nx�
Ny�NzÞ=100�100�100 cells, i.e. the model resolution
is 0.001m. In order to simulate the growth of a thin layer at
the base of a 1m thick sea-ice cover, initial and boundary
conditions are set with Ttop = –2.5°C, Tbot = –1.96°C,
Stop ¼ 0, Sbot ¼ 35:16 and D ¼ 6:8� 10� 8 m2 s� 1 to match
observations within the sub-ice platelet layer from Robinson
and others (2014). The initial temperature of each crystal is
set to TLðSbotÞ= –1.91°C.

In this simulation, we introduce 120 ice crystals, each of
1mm diameter and with random c-axes and seed positions,
to the top 10% of the domain, or equivalently in a region
0.01m thick. Note that to compensate the effect of fluid
dynamics and oceanic turbulence in the entirely liquid

Fig. 5. Interface position versus time. Analytical solutions (Worster,
1986) are plotted with solid lines, while simulation results are
plotted with filled circles.
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region beneath the growing sub-ice platelet layer, in this
simulation we reset the salinity and temperature to Sbot and
Tbot. The growth function of these platelet crystals is oblate
spheroidal (Eqn (3)). We set gb ¼ 5:0� 10� 7 m s� 1, which is
the same order of magnitude as the growth speed of the tip
of an ice platelet reported by Smith and others (2012). The
aspect ratio � ¼ 30 (Dempsey and others, 2010) and,
automatically, gc ¼ gb=30. The simulation runs for
t ¼ 9� 103 steps or 9� 104 s, which is �1 day.

First, we consider the structure of the modeled platelet ice.
A total of 120 platelet crystals start from the size of one cell

and become disc-like shapes at 3� 104 s (Fig. 6). The
mixture cells are on the rim of each crystal. At 6� 104 s, the
platelet crystals interact with each other and mixture cells
begin to form a plane, and to grow as a layer. At 9� 104 s,
the crystals are thicker, causing a wider layer of mixture cells.

To gain a better understanding of the 3-D results, we
consider the profiles found by averaging parameters at each
depth. We display solid-fraction, salinity and temperature
profiles at intervals of 3� 104 s (Fig. 7). In this porous, sub-
ice platelet layer, the salinity exhibits a C-shaped profile
which is a well-known characteristic of landfast, congel-
ation sea ice. Salt diffuses from the growing sub-ice platelet
layer towards the underlying liquid, so that the overall ice
salinity decreases with time as expected.

An advancing interface and a continuous ice flux
from the ocean
In describing the second scenario, we introduce a con-
tinuous deposition of platelet crystals from the ocean to the
sub-ice platelet layer. In addition, we include the incorpor-
ation of platelet crystals by an advancing interface to form
incorporated platelet ice (Smith and others, 2001; Gough
and others, 2012a; Fig. 8). A continuous flux of ice crystals is
expected to play an important role in the resulting crystal
orientations (Dempsey and others, 2010), noting that the
previous work did not include heat and mass transfer.

This simulation is designed to model the western side of
McMurdo Sound where a continuous flux of ice crystals
seems to be deposited from the underlying water column
during the growth of a sea-ice cover (Gow and others,
1998). This scenario represents a flux of ice crystals from the
ocean while sea ice grows rapidly. We select a growth rate
of 2:2� 10� 2 md� 1 which is appropriate for thin ice of
�0.25m thickness (Leonard and others, 2006), so the
simulation has an advancing interface of gint ¼ 2:5�
10� 7 m s� 1. The simulation begins by establishing a rough
interface from seed crystals as in scenario 1. We set
gb ¼ 5:0� 10� 7 m s� 1, causing the diameter of the seed
crystals at 3� 104 s to have grown to �30mm. This is about
three times larger than the diameter of the crystals to be
deposited. Thus the deposited crystals can enter gaps
between the enlarged seed crystals, and together they form
the sub-ice platelet layer (Fig. 8). We start the deposition at

Fig. 6. The ice structure at 0 s, 3� 104 s, 6� 104 s and 9� 104 s
following a single ice flux event from the ocean. Ice viewed from
below and growing downwards. Different shades of red mean
different platelet crystals. Bright green and magenta represent
mixture and brine cells respectively.

Fig. 7. Solid-fraction (a), salinity (b) and temperature (c) profiles for a single ice flux event from the ocean. Red, blue and green are profiles at
3� 104, 6� 104 and 9� 104 s, respectively.

Wongpan and others: Simulation of platelet ice132

https://doi.org/10.3189/2015AoG69A777 Published online by Cambridge University Press

https://doi.org/10.3189/2015AoG69A777


3� 104 s by launching one ice crystal with average diameter
(l) 10mm every ten steps or 100 s. For deposition, we use the
algorithm of Dempsey and others (2010). Therefore the
growth function in the basal plane (Gb) of each deposited
crystal is modified to include the morphology of the crystals
as observed under sea ice. The last platelet crystal arrives at
6� 104 s. In total, there are 300 platelet crystals deposited
under the existing sub-ice platelet layer formed by the
growth of the 120 seed crystals. The simulations run for
9� 104 s as in the previous subsection.

For this set-up, the ice flux from the ocean is
� ¼ ð1=AÞðdN=dtÞ where A is the area beneath the sea ice
and dN=dt is the number of ice crystals rising to the ice base
per second. With A ¼ 0:1� 0:1m2 and dN=dt ¼ 1=100
crystal s� 1, � ¼ 9� 104 crystalsm� 2 d� 1 are accumulated. If
we assume that a sub-ice platelet layer has a uniform solid
fraction fs ¼ 0:25 (Smedsrud and Skogseth, 2006; Gough
and others, 2012a), we can calculate the critical ice flux
which will allow a sub-ice platelet layer to form,
�crit ¼ ðfs=vplÞgint (Dempsey and others, 2010). Here vpl is
the average volume of each ice platelet, which equals
ð4=3Þ�ðl=2Þ3=�. We find �crit is 31� 104 crystals m� 2 d� 1.
Thus, the simulated ice crystal flux is slightly less than the
critical ice flux. This means that if the simulation (Fig. 9) had
run for a longer time the sub-ice platelet layer would have
been consumed by the advancing interface (Dempsey and
others, 2010).

Note that, as expected, the inclusion of an advancing
interface causes the solid fraction to be in the range 0.8–1 at
the top of the simulation domain (Fig. 10a). In this region,
the salinity (Fig. 10b) is �10 as observed in such systems
(Gough and others, 2012b). The final scene of the simulated
sub-ice platelet layer (Fig. 11) is qualitatively similar to the
photographed sub-ice platelet layer (courtesy A.R. Mahoney
and A.J. Gough) from McMurdo Sound, Antarctica, in 2009.

Fabric of platelet ice: simulation versus observation
In examining the crystal orientation and diameter distribu-
tions predicted by the simulation for the two scenarios
described above, the development of crystal fabrics follow-
ing a single ice flux event from the ocean (Fig. 12a) is
analysed. In this scenario we start from isotropy because the
crystals are seeded randomly under the sea-ice cover. These
grow without any additional platelet flux until the crystals
begin to impinge on each other at 3� 104 s. Geometric
selection therefore forces the c-axis orientation towards a
girdle regime, in which c-axes lie predominantly in the
horizontal plane, without a preferred direction in that plane.
The transition from an isotropic fabric at small depths, to a
girdle regime at greater depths, is characteristic of the
development of platelet ice towards resumed columnar ice
(Fig. 12a). This is in agreement with in situ observations
(Gough and others, 2012a) and earlier simulations without
heat and mass transfer (Dempsey and others, 2010;
Dempsey and Langhorne, 2012).

The crystal diameter is defined as the major axis of the
oblate spheroid, and all crystals introduced to the simulation
as seed crystals are included in this distribution (Fig. 13a).
Thus the figure may be regarded as representing the
distribution of crystal diameters in a sub-ice platelet layer.
The increase in diameter with time is evident, leading to
crystals with diameters in excess of 50mm. Such crystals are
not unusual beneath sea ice abutting an ice shelf (Gow and
others, 1998).

For the second scenario (Fig. 8), when ice crystal
deposition from the ocean occurs continuously, the
trajectories of the crystal fabric are confined to the isotropic

Fig. 8. Ice crystals float up to deposit onto the layer of platelet
crystals which have grown beneath the ice bottom, and together
they form the sub-ice platelet layer. The ice bottom, initially at zai,
is also moving downwards due to heat loss to the atmosphere. This
is referred to as the advancing interface zai. The tip of the sub-ice
platelet layer is at position ztip and the distance between zai and ztip
is referred to as zpl. Fig. 9. The ice structure at 0 s, 3� 104 s, 6� 104 s and 9� 104 s of

an advancing interface and a continuous ice flux (crystal diameter
10� 1mm) from the ocean. Ice viewed from below and growing
downwards. Different shades of red mean different platelet crystals.
Bright green and magenta represent mixture and brine cells
respectively.
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regime (Fig. 12b). In this case the simulation is designed to
model ice growth over 0.045m at the base of a thin sea-ice
cover under conditions in which a sub-ice platelet layer may
only exist temporarily. The crystallographic result is in good
agreement with measurements near the top of the sea ice in
western McMurdo Sound (Dempsey and others, 2010; K.G.
Hughes and others, unpublished information), as well as at
the bottom of a thicker sea-ice cover (Gough and others,
2012a).

The crystal diameters are also smaller in the second
scenario (Fig. 13b). At 6� 104 s, the population of crystal
diameters between 10 and 20mm dominates due to the
continuous deposition of ice crystals from the ocean with
diameter 10� 1mm. This deposition began at 3� 104 s and
continued until 6� 104 s. After this, crystal deposition to the
sub-ice platelet layer ceases. Consequently, the crystals
have become larger at time 9� 104 s.

Solid fraction of sub-ice platelet layer
In general, three processes contribute to the solid fraction in
incorporated platelet ice: (1) the deposition of ice crystals
from the ocean to the base of the sea ice, (2) the growth of

these crystals in the supercooled water close to the sea-ice
base, and (3) their eventual incorporation into the sea ice by
the advancing interface (Dempsey and others, 2010).
Processes (1) and (2) determine the solid fraction in the
sub-ice platelet layer.

The upper bound of the sub-ice platelet layer is set at the
advancing interface zai (Fig. 8). The position of the tip of a
platelet crystal is referred to as ztip. We define the mean
solid fraction in a sub-ice platelet layer as

efs ¼
1

ztip � zai

Z ztip

zai
f �s ðzÞ dz, ð17Þ

where f �s ðzÞ is the horizontally averaged value of the solid
fraction at depths from zai to ztip. In words, efs is the area
under the solid fraction profile curve divided by the range of
the specified curve.

Scenario 2, with a flux of crystals of 10� 1mm diameter,
has been shown to display a transitory sub-ice platelet layer.
For this case (Fig. 14), we obtain efs � 0:22 which is in good
agreement with 0:25� 0:06 reported by Gough and others
(2012a), who deduced solid fraction from measurements of
heat flux from ice temperature profiles. It is also in

Fig. 12. The crystal orientations of (a) a single ice flux event from
the ocean and (b) an advancing interface and a continuous ice flux
from the ocean are summarized in the ternary plots (Benn, 1994;
Gough and others, 2012a). Each point represents ðE, IÞ, where E and
I are the elongation (which is close to 1 for aligned fabrics) and the
isotropy (which is close to 1 for isotropic fabrics) axes, respectively.
Depth of each thin section of the simulated sea-ice core is indicated
by its colour from the top of the core at z ¼ 0:005m (violet) to its
bottom at z ¼ 0:045m (red). Note that in (b), the crystal
orientations of the crystals in the advancing interface are omitted
from the plot.

Fig. 10. Solid fraction (a), salinity (b) and temperature (c) profiles for an advancing interface and a continuous ice flux (crystal diameter
10� 1mm) from the ocean. Red, blue and green are profiles at 3� 104, 6� 104 and 9� 104 s, respectively.

Fig. 11. An example of an underwater scene, at 9� 104 s, is shown
from a simulation with an advancing interface and a continuous ice
flux (crystal diameter 10� 1mm) from the ocean. The scale from
blue to blue of the ruler is 0.05m. In the bottom-right corner, a
schematic shows three simulation domains that are connected
together to provide a view similar to that from an underwater
camera.
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agreement with efs � 0:25 for frazil/grease ice samples taken
in an active polynya (Smedsrud and Skogseth, 2006).

To examine the effect of crystal diameter we performed a
simulation with a continuous flux of ice crystals of diameter
5� 1mm. This yields efs � 0:29 (Fig. 14). There are a
number of reasons why a smaller crystal diameter might
produce a higher solid fraction. First we note that the depth
of the sub-ice platelet layer is smaller than it is for 10mm
crystals, leading to a higher solid fraction. In addition,
smaller crystals will have a greater packing efficiency than
larger crystals. Nonetheless solid fraction appears to be
relatively insensitive to the diameter of crystals that impinge
on the interface, with a 30% change in solid fraction
resulting from a halving of the crystal diameter.

CONCLUSION
A simulation based on Voronoi dynamics, and incorporating
heat and mass transfer by diffusive processes, has been
constructed to predict the solid fraction and crystal
orientations in the sub-ice platelet layer. The major limi-
tation is the neglect of fluid dynamics. Our code is evaluated
with 1-D solidification, the so-called Stefan problem. We
extend the results of Dempsey and others (2010) in order to
give a more accurate assessment of the solid fraction in the
porous sub-ice platelet layer. Including the two main
contributing processes, a flux of ice platelets from the ocean
and local growth in the sub-ice platelet layer, we obtain a
solid fraction of �0.22. This result is in good agreement with
the value of 0:25� 0:06 obtained experimentally by Gough

and others (2012a). The final contribution from the
advancing interface, driven by heat flux to the atmosphere,
fills the interstices and increases the solid fraction of the
upper part of the sub-ice platelet layer to become close to 1,
forming incorporated platelet ice.

Instead of solving for sea-ice solid fraction by considering
solidification of a permeable material, as in mushy layer
theory (e.g. Worster, 1986), in this work the growth of
individual crystals was simulated. Good agreement between
the simulated crystal orientation distributions and the
observations of Leonard and others (2006), Dempsey and
others (2010) and Gough and others (2012a) has allowed us
to verify the simulations. Consequently, we are confident
that our model, including the three contributing processes
and with enhanced, diffusion-controlled local growth, is a
reasonable model of platelet ice formation. This is an
important step in understanding the dynamics of the
formation of a sub-ice platelet layer because the layer is
inaccessible, loose and difficult to sample.
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Fig. 14. The solid fraction profile at 9� 104 s for a simulation with a
continuous flux of crystals of diameter 10� 1mm (red dots). The
area under this curve from zai ¼ 0:020m (horizontal dashed line) to
ztip ¼ 0:061m is shaded in blue. Vertical red dashed line marks the
solid fraction equal to 0.25 reported by Gough and others (2012a).
Vertical blue dashed line identifies the mean solid fraction
calculated by Eqn (17). The green line is the solid fraction profile
for a simulation with a continuous flux of crystals of diameter
5� 1mm.

Fig. 13. Distributions of crystal diameter at 3� 104, 6� 104 and
9� 104 s (a) for a single ice flux event of 120 crystals with uniform
diameter of 1mm at 0 s and (b) where an advancing interface and
an ice flux from the ocean of 1 crystal every 100 s is added from
3� 104 s until 6� 104 s. A total of 300 crystals, with a diameter
selected randomly in the range 10� 1mm, are added during the
continuous ice flux.
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