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1. Introduction
In this paper, the author continues his investigation, initiated in (4) and (5),

into the nature of certain " arithmetical " functions associated with the factoris-
ation of normalised non-zero polynomials in the ring GF[q, Xu ..., Xk~\, where
k ^ 1, GF(q) is the finite field of order q and Xu ..., Xk are indeterminates. By
normalised polynomials we mean that exactly one polynomial has been selected
from equivalence classes with respect to multiplication by non-zero elements of
GF{q). With this normalisation GF[q, Xu ..., Xk~\ becomes a unique factoris-
ation domain. The constant polynomial will be denoted by 1. By the degree
of a polynomial A in GF[q, Xu ..., Xk~\, we shall mean the ordered set (mly..., mk),
where mt is the degree of A in X{, 1 S » ^ k. We shall assume that A{^ 1),
a typical polynomial in GF[q, Xu ..., Xk~\, has prime factorisation

A = n-p?, (i-i)
where Pu ..., Pr are distinct irreducible polynomials (i.e. primes).

We now define the following real functions of GF[q, Xu ..., Xk~\.
Let

^ A = l: d-2)

[0, otherwise;

and yr(A)=< ' l '" ' (1-5)
(0, otherwise,

where in (1.4) and (1.5), r is an integer ^ 1. It follows from (1.2) and (1.3)
that co(A) and Cl(A) are the number of distinct prime factors of A and prime
factors of A, respectively. We are interested in the average values of co(A)
and Cl(A) over all polynomials of the same degree. Accordingly, we consider
the functions w{mu ...,mk) = I.a>(A), and W(mu ...,mk) = Y.Q(A), the sum
in each case being over all polynomials of degree (m1} ..., mk). Similarly, we
put , for r ^ 1, tr(mlt ..., mk) = 2.f}r(A) a n d nr(n^i, •••, mk) = Y.yr(A), where S
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has the same meaning as before. Thus Tr(ml5 ..., mk) is the number of poly-
nomials of degree (mu ..., mk) which are the product of exactly r prime factors,
while n£mu ..., mk) is the number of such polynomials which are square-free,
i.e., which are the product of r distinct primes. In particular, we have

i, ..., mk) = x^mu ..., mk) = n(mu ..., mk), (1.6)

where n{mu ..., mk) is the number of irreducibles of degree (m, mk).
We derive relations involving the functions w, W, rr and nr and the functions

7i and N, where N(mu ..., mk) is the total number of polynomials of degree
(mu ..., mk). Now, if k = 1, then N(m) = qm and n(m) is given explicitly by

7t(m) = m~1 5] M5)<?'> (1-7)
sf = m

~m~1N(m), m->oo. (1.8)

On the other hand, if A: ^ 2, although the value of A^Wj, ...,mk) is known
explicitly (see (4), Lemma 2), it is, in general, a cumbersome function to manipu-
late. Moreover, no explicit value of n(mu ...,mk) is known, although it has
been shown in (3) and (5) that, if mu ..., mk_l are not all zero, then

n(mx, ...,mk)~(l—q1~")N(ml, ..., mk), mk->co, (1.9)

where, if k ^ 2,
n = (m1 + l)...(mfc_1 + l). (1.10)

As a consequence of the above remarks, when k = 1 we can find explicit
formulae for w(m) and W(rn). When we allow m to tend to infinity, these
yield

w(m)~W(m)~(\ogm)N(m),m->oo. (1.11)
However, if k ^ 2, it is not possible to evaluate w and W exactly, although we
prove that

w(mu ...,mk)~ ( l+logI f [ <\-<lx~")~m'$\N(jnu ...,mk),mk-*oo, (1.12)

where n is given by (1.10). In the corresponding expression for W(mu ..., mk),
H(s) in (1.12) is replaced by <f>(s)-

When we attempt to compute xr(tnu ..., mk) and nr{mu ..., mk), we find that
even in the case k = 1, it is difficult to produce exact results. We prove that,
if r ^ 0,

nr + 1(m)~Tr + 1(m)~ -—-—- N{rri), m-*co. (1-13)
rim

Because of the uselessness of (1.13) for small m, when k ^ 2, we can prove only
that

ar+l(mu ..., mfc)~5(r(r)A
r(w1, ..., mk), r ^ 0, mk-+co, (1.14)

where a denotes x or n and Sa(r) is independent of mk. Certainly we have
0<Sa(r) ^ q^~n>.

We note that formulae (1.8), (1.11) and (1.13) (where k = 1) are of an
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entirely different nature from (1.9), (1.12) and (1.14) (where k ^ 2). We note
also that (1.11) and (1.13) appear to be new, whereas most of our single indeter-
minate evaluations in (5) were not. Moreover in Section 5, we indicate how it
is possible to extend these two results to cover the case of " factorable " poly-
nomials in k indeterminates.

It is convenient in what follows to abbreviate, where possible, any function
6(mu ..., mk) to 6(mt). Similarly the degree of a polynomial (mu ..., mk) will

be written (m;). The sum Z ... Z anc^ t n e product TJ ... Y\ W'N be
$1 = 0 Sk = 0 Si = 0 sfc = 0

denoted simply by Z and r j , respectively. No confusion should arise as k, as
Sl Si

well as q, is to be considered fixed. We shall use Z an<i Z t 0 denote
deg A = (mi) C | A

a sum over all polynomials A of degree (m,) and a sum over all divisors C of .4,
respectively, and a similar rotation for products. Moreover, we shall reserve
the letter P in such a sum or product (e.g. Z , Z ) to signify that such

degP = (im) P I A

a sum or product is restricted to irreducible polynomials P.

2. Relations involving the functions
We find relations involving w(m,-) and W{m^ directly from their definitions.

We assume that 7t(0, ..., 0) = 0.

Theorem 1. / / k ^ 1 andmu ...,mk are non-negative integers, we have

Proof. It follows from (1.2) that

deg A = (mO deg A = (mi) P | .4

= 1 Z II- (2-0)
si dcgC = (mi-si) degP = (s()

The result is immediate from (2.0) and the theorem is proved.
Incidentally, we can derive an expression for 7t(w,) from Theorem 1, using

a formula proved in (5). Let n(A) be the Mobius function in GF[g, Xu ..., Xk~\
and put

M(m?)= I n(A). (2.1)
deg A = (m()

By the formula mentioned (5, Theorem 2), we can " invert" the assertion of
Theorem 1 to yield

Before stating the theorem for W{m^ corresponding to Theorem 1 for w{m^),
we introduce the function P(AM,) defined for all non-negative integers mlt ..., mk,
not all zero, by

P(mt)= Z <mje). (2.2)
e | (mi mi,)
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(In (2.2) and wherever the context demands it, (mu ..., mk) means the greatest
common divisor of mlt ..., mk). We set p(0,..., 0) = 0.

Theorem 2. Ifk ^ 1 and mu ..., mk are non-negative integers, we have

si

Proof. By the definition of €i(A) we have

O(A) = £ 1. (2.3)
P'\A

Let h = h(mhst) be the greatest integer such that hs{ ^ mt, i = 1, ..., k. It
follows from (1.3) and (2.3) that

Z
deg A = (m,)

= E t E E
si e = l degC = (m|-esi) deg P = (s()

= 1 1 n{
1

I ( ^ ) ( , | ) (2.4)
ui c I (m uk)

putting Mj = esh i = 1, ..., fc. By (2.4) and (2.2) the theorem is proved.
In dealing with the functions nr and xr it is convenient to extend their

definitions ((1.4) and (1.5)) slightly. First if r ^ 1 and my, ...,mk are integers,
not all non-negative, let Tr(w,) = nr(mt) = 0. Again, for all integers mu ...,mk

(positive, negative, or zero), put
f = ... = mk = 0, ,,, ,.

/ . (2.5)
0, otherwise.

- { .
By an r-polynomial (r ^ 0), will be meant a polynomial which is the product of
exactly r prime factors, i.e., one for which Pr(A) = 1. 1 is the only 0-polynomial.
We note here for future reference that

Tr(m;) = 7rr(m/) = 0 (2.6)
whenever m1 + ...+mk<r.

We now prove two recurrence relations with respect to r for each of tr and
nr. We use a similar approach to that of Lemma 1 of (4).

Theorem 3. Ifr,k^l and mlt ...,mk are non-negative integers, we have
T

"»1Tr(mi) = £ £ s1TP_e(m,-esI-)jt(s,), (2.7)
si e = 1

rr r(mf)=Z E T,_e(w,-es,)Ji(sJ). (2.8)
s, e= 1

Proof. Let •/•"(»*,) be the product of all the T,(m,-) r-polynomials of degree
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(/M,). For any irreducible P let O/m;; P) denote the number of r-polynomials
of degree (mf) relatively prime to P. Extend the definition of $,(/Mi; P) to all
integers mu ...,mk and to r = 0 in the same manner in which we extended
Tr(»Jj). Now, for any irreducible P of degree (jf), any r-polynomial of degree
(«?j) possesses a unique expression of the form PeA where 0 ̂  e ̂  r and A is
an (r—e)-polynomial of degree (m;—as;), with (.4, P) = 1. In particular, if
r = e then /wf = rst, i = 1, ..., k and A = \. Hence, by our conventions,
including (2.5),

F ( m . ) = 11 IT f l pe*r~' {mi~esii P) (2-9)
s« deg P = (s() e = 1

holds for all non-negative (jnu ...,mk) and r ^ 1. Now we can evaluate
O,(mt; P) in terms of xr. Since the set of all r-polynomials of degree (mt) is the
disjoint union of the set of all r-polynomials of degree (m(), which are prime to
P and the set of all /--polynomials of the form PA, where A is an arbitrary
(r— l)-polynomial, of degree (w,-—st) where deg P = (sf), we have

<Dr(m,.; JP) = Tr(mi)-Tr_1(mj-si). (2.10)

Note that, by (2.5), (2.10) holds even if r = 1. Hence
r f

£ eO,_e(TOi-es,; />) = £ TP_e(m,-es,), (2.11)
e = 1 e = 1

since <J>0(
wi—e5i) = ^o(mi~e'si)- Now, if we equate the degree in Xt on either

side of (2.9), we obtain
r

m1Tr(mi)=E £ s i E e<^r_e(mi-esi; P)
s, deg P = (s() e = 1

r
= E £ Si^sX-X^.-eSi),

sj e = 1

by (2.11). This proves (2.7). If instead we equate the number of prime factors
on either side of (2.9), we obtain

" r ( O = £ E £ e*,-.(m,-«,; P). (2.12)
si deg P = (s,) e = 1

(2.12) leads to (2.8) by way of (2.11). The proof is complete.
Theorem 4. Ifr,k^l and mu ...,mk are non-negative integers, we have

= Z E (-ly-'stn^imi-esMs,) (2.13)
s, e = 1

™,K) = E E (-l)*-1*,-^™,-«;>«&)• (2.i4)
s, e= 1

Proof. Let G(m;) be the product of all square-free r-polynomials of degree
(AM,). A similar argument to that used in Theorem 3 yields

G(m£) = n I ! P*'"'""-5'5 P), (2.15)
s, deg P = (s()

E.M.S.—Y
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where $,(m{; P) is the number of square free /--polynomials of degree (mt), prime
to P, and obeys the usual conventions. Now, every square free /--polynomial of
degree (mt) is either prime to a given irreducible P of degree (st) or has the form
PA where A is a square-free (r-l)-polynomial of degree (/M,-S,) .which is
relatively prime to P. It follows that

nr(.
mi) = ^rOflf; P)+®r-l(mi — Si> -P)

holds for all r ^ 1 and hence that

e = 1

Equating degree in X± on either side of (2.15) and substituting (2.16) leads to
(2.13). Similarly (2.14) is obtained by equating the number of prime factors on
either side of (2.15). This completes the proof.

In succeeding work, we employ the expressions (2.7) and (2.13) in preference
to (2.8) and (2.14). For instance, we can use (2.13) to derive a relation (proved
by another method in (5)) involving M(mi) defined by (2.1). It is evident from
the definitions of nr(mi) and M(mi) that

b

M(mt)= E (-l)%(mi)» (2-17)
r = 0

where b = my +...+mk. Hence by (2.13) and (2.17) we have
b r

miMijn-) = 2-i 2-, 2-i (—1) slnr^e{jnt — es()n(s,-). (2.18)
r = 0 S( e = 1

Putting r-e = t in (2.18) yields
b- l h-t

mlM(mi)= E E E (-1)'"
1 = 0 si e = 1

* (b-e

= - E E S l E (-
st e = 1 (t = 0

b

— — E E •s1M(mj—eS()7i(s,), (2.19)
s, e = 1

by (2.17) and (2.6), since we can assume that sr ^ 1 and hence that
ft k

b — e= E m i ~ e = E (m>~csi)-

From (2.19), we immediately deduce the relation= - E si{ E l/e.7i(Si/e)}M(mi-Si),
5| e | ( s i Sk)

which is contained in Theorem 1 of (5).

3. Case of one indeterminate
In order to evaluate the functions we have defined, it is necessary to treat

the case k = 1 separately.
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It is convenient to discuss the functions w and W together. We make some
remarks about p(m) defined by (2.2) with k = 1. By the well known identity

X<r-X= n P, m ^ l ,
deg P | m

we see that p{m) is the number of prime factors of the polynomial Xqm—X.
In fact, we can express p(m) in a form resembling that of n(m) (see (1.7)) where
Euler's function <j>(s) plays the role of n(s).

Lemma 1. If m ^ 1, we have

st = m

Proof. It follows from (2.2) and (1.7) that

u\m st = u

t \ m s | mt~l

= E q'lt.(tlm.<t>(mlt))
t | m

and the lemma is proved.
We now proceed to evaluate w(m) and W(m).

Theorem 5. We have

w(m)~W(m)~ (log m)qm, m-»oo.
More precisely,

m

u = 1 st = u

q-mW(m)= J £ w-VCO^^'^logm + y+^+oaXm^oo, (3.2)

where y is Euler's constant and Ex and E2 are small constants.

Proof. Since N(m) = qm
9 we have by Theorem 2 and Lemma 1

£ {E
U = 1 SI - U

i
= 1

(3.3)
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where E2(l) = 0 and, if m jg 2,

E2(m)= £ £
u = 2 st = v

«£ 2

= E a-"-1)
u = 2

<$-*(«+-1)"1 . (3.4)

Since E2(rri) is increasing, it is evident from (3.4) that E2(m)-+E2 as m-+co,
where

U2q<E2= £ £ M-1^(Og-("-s)<g-*(^-l)-1<l-71, (3.5)
ii ~ 2 s( = u

t £ 2

since # ^ 2. Statement (3.1) now follows from (3.3) and (3.5) by allowing m
to tend to infinity.

By using Theorem 1 and (1.7) we arrive at a similar result for w(rri). In
this case, we have

Ei= £ I «-yo<r(u-s)

u = 2 st =o
t S2

and hence

Moreover,

This completes the proof of the theorem.
The bounds (3.4) and (3.6) for Ex and E2 are sufficient to show that these

constants are very small in general. Thus if q — 26 = 64, we have
| £\ +1/128 |<0.O001 andTi8-<£2<-^.

By comparison, y (= 0.5772...) is large.
We now discuss the functions xr and 7tr with k = 1. Exact formulae proved

by induction on r from Theorems 3 and 4 would be vastly complicated for
r ^ 2. Hence, we prove only an estimate.

Theorem 6. For fixed r ^ 0 and large m, we have

ar+1(m) = ^ i ^ <T+O((log my-1m-lqm)> (3.7)
rim

where <rr denotes either zr or nr.
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Proof. The proof is by induction on r. By (1.6) and (1.7)

for large m. Thus (3.7) holds when r = 0. Assume, therefore, that r ^ 1 and
that (3.7) is valid for all integers less than r. Consider relations (2.7) and (2.13)
with k = 1, and r replaced by r + l . We separate out the terms for which
e = 1 and estimate the remaining terms using the induction hypothesis. Using
also (2.6), (2.5) and (1.8), we obtain for large m

m<xP+1(m) = Y saXm-s)n(s)+O ( £ (log m)'" V s ) +O(gm^+1)), (3.8)
s = 1 \s = 1 /

where the first error term occurs only if r ^ 2 and the second only if e = r + l
and (r+1) | m. Now use the induction hypothesis and (1.7) on the ar terms of
(3.8) to yield

+ O((logm)'-V) (3.9)
Indeed, if r = 1, then by (1.7) the 0((log (m-s))'1) appearing in (3.9) may be
replaced by 0(q~(m~s^12). Now for large m, we have

[log(m-s)] ' - 1
 ( 1 . (

s = 1 d | s m —S V s = 1

= O((logm)p-1). (3.10)
Again, if r ̂  1,

Y DogOn-^r.1 = Y' OoiiT.1
 + 0(l) . (3.11)

s= i m—s s = I s
Now if 1 £ s £ m—1, (log J)1""1/^ is increasing if log s ^ r - 1 and decreasing
if log s ̂  r— 1. It follows that, if log m>r ^ 1, then

r ^ > (312)
s = l S

"1]where c = [er"1]. But

f'Ml1^ r08"/-,^^^,^!. (3.13)
Ji x Jo r

If r ̂  2, the result now follows from (3.9), (3.10), (3.11), (3.12) and (3.13).
Finally, since, when r = 1, by (3.12) and (3.13) we have

"f1 (l + O(<T(m~s)/2)X>"-sr1 = log m+ Y sq-"2 + O(l)

= logw + O(l), (3.14)
the induction hypothesis for r = 1 follows from (3.9) and (3.14). The theorem
is thus proved by induction.
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4. Case of several indeterminates
In this section we assume that k Sg 2 and estimate the functions we have

defined as mk->co. In order to deal with polynomials in which at least two
indeterminates actually appear we shall assume wherever necessary and without
loss of generality that mx, ..., mk are non-negative integers ordered so that

mk-1= max m,- 2:1 (4.1)
1 S I S S - 1

Define the integer Rfe 1, if (4.1) holds) by

« = /imi_1(mft_1-|-l)-1, (4.2)

where n is given by (1.10). We recall the following estimates of N(nji) and
n(/Mj) from (4).

Lemma 2. If 'mlt ...,mk are non-negative integers satisfying (4.1), then

(q - l)N(mt) = (qn - l)qnn*+ O(qRm"), (4.3)

where the implied constant is independent of mk. Moreover,

n(mt) = (l-q1 ""^(m,) -f 0{mkq
Rm"). (4.4)

To assist in our computations, we state another lemma from (4).

Lemma 3. Suppose that k ^ 2 and that mu •••,mk are non-negative integers
satisfying (4.1). Suppose also that su ••-,sk are integers, not all zero, satisfying
0 ^ S; g mt, i = 1, ..., k, and s, ^ mtfor at least one i, 1 ^ i' £ k—\. Then

where the implied constant is independent of mk.

We first estimate

Theorem 7. Ifk^.2 andm±, ...,mk are non-negative integers such that (4.1)
holds, then

W(m,) = (l+log { Ui (1 -I1 -ST"<s)/sj) Nimd + Oim^), (4.5)

where the implied constant is independent of mk and n and r are given by (1.10)
and (4.2), respectively.

Proof. It will be shown during the course of the proof that the infinite
product on the right hand side of (4.5) is convergent.

Since Ttfo) 5J N(s{) it follows from Theorem 1, using Lemma 3, that, for
large mk, we have

£ , m*-!, sk)N(0, . . . ,0, mk-sk)
mfc

£ 7t(0, ..., 0, sk)N(mu ..., mk.u mk-sk)+0(mkq
Rm"),

Sfc = 1

R*), _ (4.6)
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say. In (4.6), St is given by

Sj = n(mu ..., mk_u 0)N(0, ..., 0, mk)

mi,

+ £ n{mu ..., mk-us)N{0, ...,Q, mk-s)
s = 1

+ O(mkq
Rm*), "* (4.7)

using Lemma 2. Simplifying (4.7) we obtain

S, = (« - 1 ) " V - 1)<Tk + 0{mkq
Rm")

R k ) (4.8)

by (4.3) again. The sum S2 in (4.5) is more complicated. We have, by (1.7)
and Lemma 2,

$2= E «(°> •••>0' s)N(mlt ...,mk.umk-s)
s = 1

! I E s-1K09"<B~<1/*Hll +O(m^Rm") (4.9)

= \ E A*(0/' E ti~1q~lnt~iy"> N(tnl) + O(mkq
Rn"'), (4.10)

by (4.3) and putting u = s/r. Let 5(wt) denote the quantity in braces in (4.9)

and (4.10). Using the form in (4.9) we have B(mk) = £ &*• w h e r e since

m

Since the series £ sq(1 ~")Jis convergent as m-^oo providedqi~"<l,it follows,
s = 1

by the comparison test, that B(mk) tends to a finite limit, 5, as mk-* oo. Consider
now (4.10). If 1 ^ t g wt we have

(rin4-V
1"")11*)- C4-11)

It is now a consequence of (4.9) and (4.11) that

B(mk)=- £ (K0/0.loga-q1-'") + 0(mkq«-'-*). (4.12)
i = I

Statement (4.5) follows from (4.12) by allowing mfc to tend to infinity since
B = lim B(mk) exists. The proof of the theorem is complete.
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Theorem 8. If k ^ 2, and mu ...,mk are non-negative integers satisfying
(4.1), then

Win} = (1 + log
V

where the implied constant is independent of mk.

Proof. The proof is identical with that of Theorem 7 except that we use
Theorem 2 and Lemma 1 in place of Theorem 1 and (1.7), i.e., p(mt) and <l>(s)
replace n(mt) and n(s). Now it is clear from (2.2) that for large mk

i'), (4.13)
provided mt_! ^ 1. It follows from (4.13) and (4.4) that

p(mi) = (l-q1-n)N(mi)+OK<Z*m'0. (4.14)

Moreover, the only property of n(s) used in Theorem 7 was the trivial fact that
| fi(s) | ^ s. Accordingly, since (4.14) holds and <j>(s) ^ s, this theorem is
proved by the argument used for the proof of Theorem 7. The proof is com-
plete.

We remark that a more detailed analysis of the above arguments would
indicate that we could improve the results of Theorems 7 and 8 slightly except
when k = 2 and mf = 1 or 2 or k = 3 and tnt = m2 = 1. The improvements
are obtained by replacing 0(mkq

Rm") by O(qRmk) in their statements. We note
also the following behaviour of w(m,) and W(mt) as mk andmk-t tend to infinity.
From (1.9), such behaviour is almost inevitable.

Corollary 9. We have

lira w(mdlN(m?) = lim W(m,)/N(m,) = 1.

Proof. The right hand side of Theorem 8 may be written (without error
term)

(1+ lim B(mt))JV(m,), (4.15)
mk->m

where B(mk) appears in (4.10). Hence

| lim B(mk) | ^ lim 2 uq{i~")u

IBfc- l ,mfc-*OO W f c - 1» OTfc-*OO U — 1

= lim £ Mlirn^1'"'"
mfc-*co ti = 1 n-*oo

= 0. (4.16)

The proof for W(m,) is immediate from (4.15) and (4.16). But

and hence the proof is complete.
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We turn now to the functions xr and %r We will show that, if r ^ 2, then
in order to find lim Tr(wJ,)/N(m,-), say, when k ^ 2, it would be necessary to

know the exact value of rr(
m) (& = 1) f ° r smaLl m ( ^ r). We do not possess

this knowledge. However, we can prove the less precise type of relation (1.14)
by evaluating xr(r) and 7t,(r). In the following lemma, an empty product, is
as usual, taken to be 1.

Lemma 4. Ifk=\ and r ^ 0, we have

and

\.qr (4.18)

Proof. By (2.5), we can assume r ^ 1. Now, if a polynomial in GF[q, X~\
has degree r and r prime factors, they must all be linear. Thus if q < r, then

clearly rc/r) = 0 and (4.18) holds. If q ^ r, it is evident that nr{r) = \ \

which may be written in the form (4.18). This proves (4.18). Again T , ^ ) is
the number of terms of total degree r in the expression

f l (1 + 0 + ' ; + •-•) (4.19)
. 7 = 1

in the q real variables tiy ..., tq, where each tj is associated with a unique element
of GF{q). The product (4.19) exists when \t}\<.\,j=\,...,q. Hence xr{r) is
the coefficient of f'm (l + t+t2 +...)« = (l — t)~q, \ t\<l. Accordingly

which is the same as (4.17). This completes the proof.

Theorem 10. Ifk ^ 2, r ^ 0andmi, ...,mk^l are non-negative integers such
that (4.1) A0W.5 f/ze/j /./cr,. denotes T, or 7tr we have, for large mk,

<jr+ 1(mf) = SJr)N(md + 0( ™fcq*""0, (4.20)

w/iere ^ ( r ) w positive and satisfies

] (4.21)

the + antf — signs in (4.21) /3e/m/ /afcen according as a = z or n respectively.

Proof. By (1.6) and (4.4), when r = 0, (4.20) holds with 5,(0) = 1. There-
fore assume that r ^ 1. Consider the expressions (2.7) and (2.13). It is evident
that ffr(w,) ^ N(mt). Suppose su ...,sk satisfy the conditions of Lemma 3.
Then, if 1 g e g r + 1 ,

t ) (4.22)
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holds for large mk, by that Lemma and (4.4). In fact, even ifSf = mh i = 1, ...,
k — 1 and e ^ 2, then

<Tr+1_.(m,-es,)n(*i) = 0 (4.23)

holds trivially by (2.5) and (2.6) since r ^ 1. Since we can assume st ^ 1 in
(2.7) and (2.13), it is a consequence of these equations together with (4.22) and
(4.23) that

5 = 0

I s = ° J
It follows from (4.24) that (4.20) is true where Sff(r) satisfies

(4.25)

-"(TV

00

5 = 0 s = r

by (2.6). We see from (4.25), using the fact that or(s)<qs, that

( l - « 1 - > r ( r ) q - r n ^ S o ( r ) g £ €<1->».(l-q<1->) = ^1"">r. (4.26)

We deduce immediately from (4.26) and Lemma 4 that Sa(r) satisfies (4.21).
Now (4.21) indicates that Sa(r) is positive except possibly if r>q. However even
if r>q, it is clear that there exists a positive integer s0, independent of mk, which
is the least integer such that ar(*o) 1 1- Thus Sa(r) ^ {\-ql-")q~son and the
theorem is proved.

5. Factorable polynomials
It has been shown (see, for example, (1), (2) and (6)) that the most natural

extensions of results concerning polynomials in GF[q, X] to polynomials in
GF[q, Xu ..., X^\ (where k ^ 1) are obtained by considering only normalised
factorable polynomials in k indeterminates, i.e., polynomials which split into
linear factors in some finite extension of GF{q). The number of such factors
is the degree of such a polynomial. If we further restrict our attention to factor-
able polynomials in which X™ actually appears (m being the degree of the
polynomial) we effect the most exact correspondence. For example, in an
obvious notation, Carlitz (1) has proved that

N(m; k) = qkm (5.1)
and that

«(m; fc) = m"1 £ / W - (5.2)
st = m

Moreover, examination of the proofs of Theorems 1-4 reveals that these
theorems for k = 1 remain valid if we generalise the functions occurring in
the relations of the theorems by the corresponding functions over factorable
polynomials in k indeterminates and in which X™ actually appears. We see
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from these relations that the values of w(m; k), W(m; k),xr(m; k) and nr(m; k)
depend only on (5.1) and (5.2). Thus we can generalise Theorems 5 and 6 to
cover the case of factorable polynomials in k indeterminates by substituting
qk for q in the statement of these theorems. Finally, we observe that the various
relations proved in (5) for k = 1 generalise in the same way. However, the
exact values of functions which are the factorable polynomial generalisation of
those discussed in that paper have already been obtained in (1) and (2).
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