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1. Introduction. In this paper we consider examples of orders in restricted power
semigroups, where for any semigroup S the restricted power semigroup $P(S) is given by

= {X c 5:1 < \X\ < Xo} with multiplication XY = {xy :x e X, y e Y} for all X,Y e
). We use the notion of order introduced by Fountain and Petrich in [2] which first

appears in the form used here in [3]. If 5 is a subsemigroup of Q then S is an order in Q
and Q is a semigroup of quotients of S if any q e Q can be written as q = a*b = cd* where
a,b,c,d e S and a*(d*) is the inverse of a{d) in a subgroup of Q, and in addition, all
elements of 5 satisfying a weak cancellability condition called square-cancellability lie in a
subgroup of (?.

It is clear that the concept of a semigroup of quotients extends that of the group of
quotients G of a commutative cancellative semigroup 5. Our first result shows that for
such an S and G, the restricted power semigroup SP(S) is an order in £?(G).

In the latter part of the paper we turn our attention to orders in a semigroup Q which
is a semilattice V of commutative groups Ga, a"e V. To handle the idempotents of 2P(Q)
we make the further assumption that the groups Ga, a e Y, are torsion-free. We find a
necessary and sufficient condition for an order 5 in such a semigroup Q to have the
property that 3P(S) is an order in 2P(Q). In fact we prove a slightly stronger result. We say
that a subsemigroup 5 of Q is a weak order in Q if any q e Q can be written as
q = a*b = cd* where a,b,c,d e S and a*(d*) is the inverse of a(d) in a subgroup of Q.
Proposition 4.1 gives a necessary and sufficient condition on 5 such that SP(S) is a weak
order in ^(Q), where 5 is an order in Q and Q is a semilattice of torsion-free
commutative groups. We then show that for such an 5 and Q, if 2P(S) is a weak order in
®(Q) then necessarily 9>{S) is an order in 0>(Q).

Section 2 consists of some preliminary definitions and results concerning orders and
Green's relations in certain restricted power semigroups. Section 3 considers restricted
power semigroups of orders in commutative groups. In our last section we turn our
attention to restricted power semigroups of orders in semilattices of commutative
torsion-free groups, and prove the results mentioned in the previous paragraph.

We comment that if 5 is an order in Q then 5° (the semigroup S with a zero adjoined)
is clearly an order in Q°. Moreover it is easy to see that if T is an order in Q° then T = S°
where S is an order in Q. Including the empty set in 2P(S) would correspond to
considering ^(5)°. Thus excluding the empty set from SP(S) does not affect our results in
any essential way, it is merely convenient.

2. Preliminaries. We assume the reader has a basic knowledge of semigroup theory
as in the early chapters of [1] or [4]. Any undefined notation or concepts may be found in
these references. We deviate from standard notation in denoting by a* the group inverse,
where it exists, of an element a of a semigroup Q. That is, a* exists if and only if a lies in
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a subgroup of Q, and the inverse of a in this subgroup is a*. By a famous result of Green
[4, Theorem II 2.5], a* exists if and only if a is related to its square by the relation $f.
Moreover, where a* exists it is unique, being the inverse of a in the group 2^-class Ha.

Let a be an element of a semigroup S. Then a is square-cancellable if for all x,y e S1

xa2 = ya2 implies xa = ya
and

a2x = a2y implies ax = ay.

It is clear that if a lies in a subgroup of an oversemigroup of 5, then a is
square-cancellable. We insist that if S is an order in Q, then all such elements lie in
subgroups of Q. The set of square-cancellable elements of S is denoted by 5^(5).

Let Q be a semilattice Y of commutative groups Ga, a s Y. We follow the usual
practice of abbreviating {g}H where g e Q and H e SP(Q) by gA/. Further, we make the
notational convention that ea denotes the idempotent of Ga, a e Y and also e, denotes the
idempotent of Ga., a, E Y, i e N. For X e Sf(Q) and a e Y put

Xa = X n Gtt

and
supp A1 = {a E V: A',, T̂  0}, max X = maxjsupp A'}.

LEMMA 2.1. For H,K e 9{Q), if HXK then supp H = supp K and \Ha\ = \Ka\ for all
asY.

Proof Suppose that HdKK. Then H = K (in which case the result is clearly true) or
there exist 5,7" e <3>(Q) with / / = SK and /C = 7"//. Let a E max #. Since Ha c Stf there
exists P e max Â  with a < /3. But A^ £ 7// so /3 < y for some -y e max //. Thus a = p = y
so that a e max K. With the dual argument this gives that max H = max K.

Now let 5 E supp H. Then S s a for some a E max /C Since Ka <= 7"// there exists
e s supp 7" with a < e. Let r E 7"e, then r//6 c ^ s o ^ e supp K; hence supp // = supp K.
Further, \HB\ = \tHs\ ̂  |/CS| and with the dual we obtain that \HS\ = \KS\.

The following corollaries are now easy to see.

COROLLARY 2.2 [5]. Let G be a commutative group. Then for any H, K E 9>(G), HWK
if and only if H- gK for some g E G.

COROLLARY 2.3 [5]. Let G be a commutative group. The following conditions are
equivalent for H e @>(G):

(i) H%H2;
(ii) H2 = gH for some g e G;
(hi) H2 = hH for any h E H;
(iv) \H2\ = \H\.

COROLLARY 2.4 [5]. Let G be a commutative group. Then E E $P(G) is idempotent if
and only if E is a finite subgroup. Moreover if H E $P(G) then HIKE if and only if H is a
coset of E.

We now return to the case where Q is a semilattice Y of commutative groups Ga,
a e Y. To adequately describe the idempotents of SP(Q) and the elements of SP(Q) lying
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in group $?-classes, we make henceforth the additional assumption that each Ga is
torsion-free. Clearly then the idempotents of SP(Q) are the finite subsemigroups of E{Q).
By Lemma 2.1, if H e ®{Q) and HWH2 then \Ha\ = 1 for all a E supp// . Also supp H
must be a subsemilattice of Y. We write H = {hu... ,hn) where \H\ = n and h,e Ga.,
l < / < « . Then A/3KE where £ = {e,,. ..,<?„} and e, = e?eG a . , l < / < n . Further, if
/ , / E {1,. . . , /?} and atj^otj then from EH = H we have e;/i, =/i;. This leads us to the
following definition.

An element / / of 0*((?) is balanced if | / / J = 1 for all a E supp / / and a,/3 E supp / /
with a > /3 implies e0ha = h0 where {ha} = //Q and {hp} = //p.

LEMMA 2.5. An element H of @{Q) is in a subgroup of 9P(Q) if and only if supp H is a
subsemilattice of Y and H is balanced. In this case, writing H = {hu... ,hn} where
s u p p / / = {<* , , . . . , «„} and Haj = {h,), 1 < / < / I , then H* = {/if,. . . ,h*} and HH* =
{eu... ,en}.

Proof. We have seen that if H E 9>{Q) and HdKH2 then supp H is a subsemilattice of
V and H is balanced.

Conversely, suppose these conditions hold. Put H = {hu... ,hn} where supp / / =
{ a , , . . . ,an} and {/?,} = //„., 1 < / < n. Certainly E = {eu ... ,en}e E(@Q)) and H g £ / / ;
consider /,;' E {1 , . . . , «} and put ak = a,a;. Then e,/i; = e,ekhj = ekhj = hk as a^ < a; and H
is balanced. So EH e / / and £ / / = //. Putting /C = {/if,... , h*} we have # is balanced so
that also EK = K.

Clearly £ c / / # . Let i , ; e {1 , . . . , n} and again put ak = ataj. Then /J,/J* = hjek(ekhf)
and as Q is an inverse semigroup this gives hjhf = hjek{ekhj)* = hkh% = ek and it follows
that E = HK. Thus H is in a group ^-class of 9{Q) with / /* = {/if,... ,h*} and
f///* = {eu... , en) as required.

3. Power semigroups of orders in commutative groups. In this section we show that
if S is an order in a commutative group G then ^(5) is an order in SP(G). For such a G,
^(G) has identity {e}, where e2 = e, and group of units the singletons of G. If S is an order
in G then as is well known the Common Denominator Theorem holds, that is, given any
gu... ,gn e G there exist a, bu... ,bn E S with g, = a~]bh 1 < / < « . Thus we immedi-
ately have the following lemma.

LEMMA 3.1. Let S be an order in a commutative group G. Then SP(S) is a weak order
in S»(G).

The more difficult task is to show that if 5 is an order in a commutative group G,
then every square-cancellable element H of 8P(S) lies in a subgroup of 2P(G). By
Corollary 2.3 this is equivalent to showing that \H2\ = \H\.

THEOREM 3.2. Let S be an order in a commutative group G. Then ^(5) is an order in

Proof. From Lemma 3.1, SP(S) is a weak order in SP(G). Clearly the singletons of 5
are square-cancellable and lie in a subgroup (the group of units) of S^(G).

At this point it is useful to make the following notational convention. If x e X and
y e X" where X E 0>(S), then by saying that x is an X-factor of y, we mean that there
exist xu... ,*„_, E X such that xx^... xn-x = y.
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Suppose now that X = {x,y} e 5^(^(S)) where x ¥=y. Every element of X* contains x3

or y3 as an A'-factor. Indeed, X5 = {x3,y3}X2. Since X is square-cancellable, X4 =
{x3,y3}X. Looking at the element x2y2 of X4 we have x2y2 = x3x, x3y, y3x or y3y which
each imply that y2 = x2. It follows that A"3 = x2X and so

so that \X\ = \X2\ and by Corollary 2.3, X lies in a subgroup of
Now let /i > 3 and suppose that A" = {xx xn) e y(°P(S)) where \X\ = n. Every

element of A""2 contains an A'-factor x" for some / e { 1 , . . . , « } . Hence

and using the fact that X is square-cancellable we obtain X"+* = {x",. . . , x"n}X.
Suppose that A""+1 = {x",..., x"m)X for some m with 1 < w < n. We show that (with

some re-labelling), A""+1 = {*",... ,x"m-x}X. Since it is certainly true that A"" + 1 =
{x",... ,x"m}X with m = n, we obtain in « - 1 steps that A""+1 = x"X. As above it follows
that \X\ = \X2\ so that X lies in a subgroup of ^ (C) .

Given A""+1 = {x",.. . , JC^JA" with Km^n we show that *, is an A'-factor of x" for
some i,j e { 1 , . . . ,m} with i # ; . Consider first the element X,A-2 . . . j:m_,A'2^cm+1 . . . xn of
A"n+1. This element has the following possible forms:

•x=<

x"

or x"Xj

or x"xm

or x"xj

o r x"mXj

or^+1

or x"Xi

where 1 < / < m

\<i<m

1 < / < m

7, w <j<n

m <j<n.
In the first four cases we have xm is an A'-factor of x" for some / e { 1 , . . . , m - 1}. In the
last two, X] is an A'-factor of x"m.

In the fifth case,
^2

X\ . . . . . . Xn — X

where 1 ̂  i < m, giving

so that, unless m = 2, we have Xj is an A'-factor of x"m for some / E { 1 , . . . , m - 1}. In the
case where m = 2, xlx3... xn = x\ so that x3... xn = x\~2. At this point we look at the
element x\x2... xn. Again using the hypothesis that A""+1 = {x",... ,x"m}X we have that

X \ X 2 • • • Xn ~

v n + l
Xl

or x"x2

or x"xj

or l

or

where
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Except for the second case, this yields that x, is an A1-factor of x" or x2 is an A'-factor of
x". In the second case we have x2... xn = x"~2. Since also we know that x 3 . . . xn = x\~2

we have x"~2 = xi'2 and so xx is certainly an A'-factor of x\.
We have now verified that there exist i,j e { 1 , . . . ,m} with i ¥^j such that x, is an

A'-factor of A:". For convenience we re-label xu ... ,xm so that i = 1 and j = m, that is, x] is
an A"-factor of x"m. Since every product of n + 1 elements of X contains an A'-factor x" for
some / e { 1 , . . . , m), by raising A" to a high enough power / we have that every element of
X' contains an A'-factor xf for some i e { 1 , . . . , m). But if i = m then as x^ is an A'-factor
of xn

m we have that x" is an A'-factor of x"]. Thus every element of X' contains an A'-factor
x'i for some i E {1,. . . ,m - \). Then A" = {x"u... , J C - I } A " ~ " and as X e 9>{SP(S)),
A""+1 = {*?,... ^ ^ - J A " . This completes the proof that X lies in a subgroup of

4. Power semigroups of orders in semilattices of torsion-free commutative
groups. Let Q be a semilattice Y of torsion-free commutative groups Ga, a e Y. We
recall from Section 2 that E e $*((?) is idempotent if and only if £ is a finite subsemilattice
of the idempotents of Q. Further, H e $P(Q) is in a subgroup of &(Q) if and only if
supp H is a subsemilattice of Y and H is balanced.

Suppose now that S is an order in Q. As shown in Theorem 3.1 of [3], S is a
semilattice y of commutative cancellative semigroups Sa = S fl Ga, and 5Q is an order in
Ga, a eY. It is not true that for any such S and Q, 2P(S) is an order in 0>((2)- In fact, as
we show below, J?(5) need not be a weak order in SP(Q).

At this stage it is useful to make an elementary remark about weak orders, which we
will use without further comment. Given a commutative semigroup Q we write ^x for the
preorder associated with Green's relation $?. Now if 5 is a weak order in Q and q e Q,
then q = a*b for some a,b e 5. But then q = (a2)*ab and ab^^a2. Thus given q e Q, we
may write q as q = c*d for some c,d E 5 with d ^ ^ c in Q. Further, if h,k E Q and & lies in
a subgroup of Q then from h ^xk we deduce that hkttfh. So if g = c*d with d<%-c we
have <??&/; it follows that 5 intersects every 2f-class of Q.

Consider the three element semilattice Q = {a, /3, y} where a < /3 and a ^ y. Clearly
Q is an order in Q\ if &{Q) were a weak order in 8P(Q) then {/3, -y} could be written as
{0, y} = U*V for some U,V e 3>(Q) with V<XU. As commented above, K$?{/3, y} so that
by Lemma 2.1, V = {/3, y} and {j3, y} = t/{)3, y}. But no such U E Sf(Q) exists. Thus ^ ( 0 )
is not a weak order in itself.

For the remainder of this section suppose that S is an order in Q, where Q is a
semilattice Y of torsion-free commutative groups Ga, a e Y. Our aim is to give necessary
and sufficient conditions on 5 such that 8P(S) is a weak order in 9>{Q). We then show that
in this case, square-cancellable elements of 9>{S) lie in subgroups of SP(Q) so that 2P(S) is
an order in SP(Q).

PROPOSITION 4.1. The semigroup 2P(S) is a weak order in Sf(Q) if and only //(*) holds:
(*) given any distinct au... ,an eY with s, e Sa., 1 < / < «, there exists a E Y with a > ah

1 < / < n and elements f, E Sa., a E Sa such that aea. = s,f,, 1 < / < n.

Proof. Suppose that (*) holds and A" E 9>{Q); say A" = {*,•,•: 1 < i < « , 1 < / < m,-}
where xn,... ,xim. E Ga., l < i ^ n and a , , . . . , an are distinct elements of Y. Since Sa. is
an order in Ga., l < / < n , there are elements 5,-, yiU... ,y,m, e 5tt | with xij = sfyij,
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Let a E Y and a, tu...,tneS be chosen as in (*). For i e{l,... ,n} and
j G { 1 , . . . , ifij} we have

Xij = sfyy = sNt^ = {SittYtjyij = (fl<?Qj)*r,-y,> = a*eaiiyij = a*;,y,y.

So
X = o*{r, y,y: 1 < i < n, 1 «=/ < m,},

giving that ^(S) is a weak order in 0>((2).
Conversely, suppose that SP(S) is a weak order in 8P(Q). First we take mutually

incomparable elements /3 , , . . . , 0n in 7. We show that {/3,,... , /?,,} has an upper bound in
y.

Pick x, E 5ft, 1 £ i < n. Then {xu...,*„} = H*K for some H,K E 0>(S) with K<XH
in 0>(<2). Thus H*KdKK so that by Lemma 2.1, K = {yu..., yn) where y, e 5ft, 1 < / < «.
Since *i E H*K we have that x, = pk for some p e H* and A: E K; if /? E Gr, then /3j ̂  y.
If / e {2,... ,«} then py, s //*/C = {*,,... , xn) and py, e Gs where 5 = y/3,. If /3, ^ y then
5</3,. But this is impossible since 8 = fr for some / and )3i,.. . ,/3n are mutually
incomparable. Thus /3, s y for all i e {1,.. . ,«}.

Now suppose that au... ,an m Y are distinct and s, E 5Q., 1 < I <AJ. By the above
there exists y eY with y s a,, 1 < / < «. Choose x e 5 r , where if y = a, we take x = s,.
Then {x*,sf,... ,s*} = X*Y for some A 1 . / ^ ^ ) with Y^^X in ^(Q), so that
YS£{x*,s*,... ,s*}. From Lemma 2.1, 7 = {y,^,. • • ,tn) where y E 5y and r,-e 5Oi.,
1 < j < «; if y = a, then also y = /,.

Since A:* E X*Y we have that x* = zw for some z e A1* and w e Y. If z s Ga then
y<ffso that a, s a for all / E {1,.. . , n}. By Lemma 2.5, z = a* for some a e Sa. Now for
/ G { 1 , . . . , / I } , a*r,EAr*y = {x*,5f,...,5*} and a*t, e GBi so that a% = sf. The semi-
group Q is inverse so that af* = s, and aea. = atftt = 5,r,, l s i < n , Thus (*) holds.

We note that in the above proposition we showed that if @{S) is a weak order in
&(Q) then any X e 9>(Q) can be written as X = a*Y where a e Sa, y s 9>{S) and /3 < a
for all j8 E supp 7. Hence X3W in ^ (g) . We now set out to prove that if &(S) is a weak
order in @{Q) then it is necessarily an order.

LEMMA 4.2. / / 0>(S) is a weak order in 2P(Q) and X E SP(S) is square-cancellable in
2P(S), then X is square-cancellable in

Proof. Suppose that 9>(S) is a weak order in §>{Q) and X e 5^(^(5)). Let
U,V e 3>{Q) with UX2 = VX2. We can express UUV as UUV = a*W for some a s Sa

and W E Sf(S) such that /3 < a for all /3 e supp W. Clearly there exist subsets Wu W2 of W
such that U = a*Wl and V = o*W2. Now a*W1X

2 = a*W2X
2 so that eaW,Z2 = eaW2X

2;
but ea is an identity for all elements of W, so that WXX2 = W2X

2. Since X E y(S^(5)) we
have W^X = W^Z and so a*W}X = fl*^^ and UX = VX.

If U E 0((2) and i/Z2 = * 2 , then in view of (*) UX2 = eaA"2 where a > /3 for all
/3 E supp X Thus UX = eaX = X. Hence X is square-cancellable in 2P(Q).

For A' E 0>(0 we put 0{X) = |supp X\.

LEMMA 4.3. Suppose that @(S) is a weak order in @{Q) and X e 5^(^(5). / /
a E max X then \Xa\ = 1.

Proof. If 9(X) = 1 then X c 5a for some a E 7 and certainly A1 e 5^(^)(5'a)) so that

https://doi.org/10.1017/S0017089500031232 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031232


ORDERS IN POWER SEMIGROUPS 45

by Theorem 3.2 A lies in a subgroup of SP(Ga). Since {ea} is the only idempotent of ?f{Ga)
we have by Corollary 2.4 that \X\ = 1.

Suppose now that 8(X)> 1. Take a e max A'; we aim to show that Xa e Sf(2P(So)),
so that as above \Xa\ = 1. Put Y = X\XO and note that if y e Y and x e A" then yjc e A,,.
Let M = max yAa. Suppose now that U,Ve &(Sa) and UX\ = VX2

a. Put

£/ = U U LKeyt/: y E M} U LJ{e7V: y e A/}

and

V = V U U K 1/: y e M} U U K V: y e M}.

Then

t/A'2 = i/A2 U T = U(Xa UY)2UT = U(X2
Q UXaYUY2)U T,

where

T = (\J{eyU: y e M}U UKV: y e M}jx2.

If /3 e supp t/A"oy then /3 < -y for some y e M so that if x e (UXQY)P then * = e^ e 7".
Similarly, (/y2 c 7. Thus

= VX2
a U T;

dually,

VX2 = VA"i U 7"

so that UX2 = VA"2 and as X e ^(^(5)), UX = VA. It follows easily that UXa = VXa.
Finally, if U e Ŝ (5Q) and f/A"2 = A"2, then taking a e 5Q we have flt/At = aA2, and

the above shows that aUXa = aXa\ hence f/Aa = Xa and A"Q e ^(^(5Q)).

We are now in a position to prove our final result.

THEOREM 4.4. The semigroup ^(S) is an order in 8P(Q) if and only if S satisfies
condition (*).

Proof. In view of Proposition 4.1 it only remains to show that if ^(S) is a weak order
in &(Q) then if X G y(Sr\S)), X lies in a subgroup of &(Q). We use induction on 0(A) to
show that A is balanced. If 6{X) = 1 then A c £a for some a e y and then from Theorem
3.2 X lies in a subgroup of SP(Q) so that in particular, A is balanced by Lemma 2.5.

We make the inductive assumption that 0(A)>1 and if Y e y(9>(S)) with 6(Y)<
6(X), then y is balanced.

Let a 6 max A; by Lemma 4.3, |AJ = 1. Suppose there exists /3 e supp A with /3 < a.
Write

A" = ( $ , / , , . . . , ' * , " i , - •• ,um}

where 5 e Ao, tu... ,tn are distinct elements of A^ and « , , . . . , « m are distinct elements of
X\(Xa U A^). Pick any a e 5^ and put Z = aX; since /3a = /3j3 we have that 0(Z) < 0(A).
It is then easy to see that Z e 5^(^(5)) so that by the inductive assumption, Z is
balanced. In particular, \ZP\ = 1. Thus atx = . . . = atn and so r, = . . . = tn, that is, \XP\ = 1.
Moreover ai = at^ so that 5 ^ = t^.
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We can carry out this procedure for any a e max A1 and /3 e supp X with /3 < a; it
follows that |A"y| = 1 for all y e supp A:. Suppose now that /3, y £ supp A1 and (3 < y. Then
/3 < y < a for some a e max A"; from the above, if x E Xp, y E Xy and z e Xa, then
z = zee and y = zey. Thus yep = zeyep = zep = x and so X is balanced. By induction on
6(X), every element of Sf(^(S)) is balanced.

By Lemma 2.5, to show that X e y(@(S)) lies in a subgroup of @(Q), it remains to
show that supp A" is a subsemilattice of Y. If 9(X) = n then supp X" is a subsemilattice
and also X" e 5^(^(5)). By the above, A"" is balanced so that by Lemma 2.5, X" lies in a
subgroup of &(Q). Further, if supp X" = {a,,. . . , am} then £Ar"=A"1 where E =
{eu... , em). We now call on Lemma 4.2 to give that EX = X. Let a,/3 e supp A"; then
a = a, e supp A"" and if * e Xp then e,x e £A" = X so that a/3 e supp A". Thus supp A" is a
subsemilattice of Y and this completes the proof that X lies in a subgroup of SP(Q). Hence

is an order in

Theorem 4.4 simplifies slightly in the case where Y is a chain.

COROLLARY 4.5. // Y is a chain then SP(S) is an order in 3P(Q) if and only if S satisfies
condition (**):
(**) for a,/3 E Y with a > (3 and x e Sa, ye Sp, there exists p e.Sa and q e Sp with
xpep = yq.

Proof. If 9>{S) is an order in &(Q) then by Theorem 4.4, (*) holds. Let a,/3 e Y with
a > /3 and x e Sa, y e Sp. By (*) there exists y e Y with y > a > (3 and elements p e Sa,
q E Sp and a e Sy with aea = xp, aep = yq. Then xpe$ = aeaep = aee = yq and (**) holds.

Conversely, suppose that (**) holds. Let au... ,an be distinct elements of Y and
Si E Sa., 1 < / < n . Note that (*) holds trivially when n = 1. We assume inductively that
/J > 1 and (*) holds for all natural numbers less than n.

Without loss of generality we assume that a, > a 2 > . . . > an. By the inductive
assumption there exist a' e Y with a' > a 2 and elements a' e SQ., t\ e Sa., 2<i<n with
fl'^c = •*/'/, 2 < / < « . Let 6 E 5Q2; by (**) with x=su y=a'b there exist p e Sa< and
? E Sa2 with sipeai = a'bq. Put a = a,, a =S]/?, ?, = p and t^t-bq e 5Q., 2<i<n. Then
aeai = s l p e a i = s l p = s , r i a n d for « e { 2 , . . . , « } aea. = sxpea= sypea^a= a'bqea =
ri = SA. Thus (*) holds.

We end the paper by illustrating Theorem 4.4 and Corollary 4.5 with a number of
examples.

EXAMPLE 4.6. We consider several cases of orders in a two-element chain of
torsion-free commutative groups.

Let G be the infinite cyclic group generated by an element z and let T be the infinite
monogenic semigroup generated by z, so that T is an order in G.

Put Q] = G1 and 5] = T\ so that 5j is an order in Q,. For any z" E T,

so that (**) fails with JC = 1 and y = z.
Now take Q2 = G° and 52 = T0 so that again S2 is an order in Q2. Then for any

z" E 7\

z"zO = 00
so that (**) holds.
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With G and T as above let H be the infinite cyclic group generated by t and let U be
the infinite monogenic semigroup generated by /, so that U is an order in H. Moreover if
we let cp: G —> H be the trivial homomorphism then S3 = T U U is an order in Q3 = G U H,
where Q3 is the two element chain of groups G and H with structure homomorphism <f>.
Now for any rj > 1,

so that (**) does not hold with x = z and y = t.
On the other hand let ip:G—>H be the homomorphism given by t{/(z) = tn where

n > 1. Put 54 = T U U and QA = G I) H with structure homomorphism i/f. Again, S4 is an
order in Q4. Let rj > 1 and pick « with «(r + u) >s. Then

) (l())ut° = t"{r+u)t° = r n ( r + u ) = ft"(r+a)~s

which shows that (**) holds.

Moving now to an example of an order 5 in Q, where Q is an arbitrary semilattice Y
of torsion-free commutative groups, we remark that by (*), if V has a finite set of
elements without an upper bound, then 2P(S) is not a weak order in SP(Q). In particular, if
Q is the three element semilattice with two incomparable elements then @(Q) is not a
weak order in itself, as shown at the beginning of this section.

EXAMPLE 4.7. Let V be the four element semilattice {au... ,a4} where a^a2,
a3 s a4. For / e { 1 , . . . , 4} let GQ, be the infinite cyclic group generated by x; and let Ta be
the order in GO| consisting of the positive powers of *,. Let Q be the semilattice Y of
groups GQ| with structure homomorphisms <i>a,a'Ga<—*Ga given by 4>aia{Xj) = Xj. Putting
5 to be the subsemigroup of Q consisting of positive words we have that S is an order in
Q.

Consider positive integers au...,a4 and choose n with n>max{au. . . ,a4}. Put
a = a,, a = x", and t, = *,"""', l s / < 4 . Then

ae, = x"ej = x"

thus showing that (*) holds.

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, (Mathematical
Surveys 7, Vol 1 American Math. Soc. 1961).

2. J. B. Fountain and M. Petrich, Completely 0-simple semigroups of quotients, J. Algebra 101
(1986), 365-402.

3. V. A. R. Gould, Clifford semigroups of left quotients, Glasgow Math. J. 28 (1986), 181-191.
4. J. M. Howie, An introduction to semigroup theory (Academic Press 1976).
5. J.-E. Pin, Power semigroups and related varieties of finite semigroups in Semigroups and

their applications (eds. S. M. Goberstein and P. M. Higgins 1987), 139-152.

SCHOOL OF MATHEMATICS AND STATISTICS DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SYDNEY UNIVERSITY OF YORK

NSW 2006 HESLINGTON

AUSTRALIA YORK YO1 5DD

ENGLAND

https://doi.org/10.1017/S0017089500031232 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500031232

