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The Saddle-Point Method and the
Li Coefficients

Kamel Mazhouda

Abstract. In this paper, we apply the saddle-point method in conjunction with the theory of the

Nörlund–Rice integrals to derive precise asymptotic formula for the generalized Li coefficients es-

tablished by Omar and Mazhouda. Actually, for any function F in the Selberg class S and under the

Generalized Riemann Hypothesis, we have

λF(n) =
dF

2
n log n + cFn + O(

√
n log n),

with

cF =
dF

2
(γ − 1) +

1

2
log(λQ2

F), λ =

r
Y

j=1

λ
2λ j

j ,

where γ is the Euler’s constant and the notation is as below.

1 Introduction

Let us consider the xi-function ξ(s) = s(s− 1)Γ(s/2)π−s/2ζ(s) and the Li coefficients

(λn)n≥1 defined by

λn =
1

(n − 1)!

dn

dsn

[

sn−1 log ξ(s)
]

s=1
.

Then the Li criterion says that the Riemann Hypothesis holds if and only if the coef-

ficients (λn) are positive numbers. Bombieri and Lagarias [2] obtained an arithmetic

expression for the Li coefficients λn and gave an asymptotic formula as n → ∞. More

recently, Maslanka [10] computed λn for 1 ≤ n ≤ 3300 and empirically studied the

growth behavior of the Li coefficients. Coffey [3, 4] studied the arithmetic formula

and established a lower bound for the Archimedean prime contribution by means of

series rearrangements using the Euler-Maclaurin summation. In [11], a generaliza-

tion of the Li criterion for functions F in the Selberg class was given, and in [13] an

explicit formula for the Li coefficients associated to F was established.

The object of this paper is to derive a precise asymptotic formula for the general-

ized Li coefficients using the saddle-point method.

The Selberg class S consists of Dirichlet series

F(s) =

+∞
∑

n=1

a(n)

ns
, ℜ(s) > 1
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satisfying the following hypotheses.

• Analytic continuation: there exists a non-negative integer m such that (s−1)mF(s)

is an entire function of finite order. We denote by mF the smallest integer m that

satisfies this condition.
• Functional equation: for 1 ≤ j ≤ r, there are positive real numbers QF, λ j and

there are complex numbers µ j , ω with ℜ(µ j) ≥ 0 and |ω| = 1, such that

φF(s) = ωφF(1 − s)

where

φF(s) = F(s)Qs
F

r
∏

j=1

Γ(λ js + µ j).

• Ramanujan hypothesis: a(n) = O(nǫ).
• Euler product: F(s) satisfies

F(s) =
∏

p

exp
(

+∞
∑

k=1

b(pk)

pks

)

with suitable coefficients b(pk) satisfying b(pk) = O(pkθ) for some θ < 1
2
.

It is expected that for every function in the Selberg class the analogue of the Rie-

mann hypothesis holds, i.e, that all non trivial (non-real) zeros lie on the critical line

ℜ(s) =
1
2
. The degree of F ∈ S is defined by

dF = 2

r
∑

j=1

λ j .

The degree is well defined (although the functional equation is not unique by Legen-

dre’s duplication formula). The logarithmic derivative of F(s) also has the Dirichlet

series expression

−F ′

F
(s) =

+∞
∑

n=1

ΛF(n)n−s, ℜ(s) > 1,

where ΛF(n) = b(n) log n is an analogue of the Von Mongoltd function Λ(n) defined

by

Λ(n) =

{

log p if n = pk with k ≥ 1,

0 otherwise.

If NF(T) counts the number of zeros of F(s) ∈ S in the rectangle 0 ≤ ℜ(s) ≤ 1,

|ℑ(s)| ≤ T (according to multiplicities), one can show by standard contour integra-

tion the formula

NF(T) =
dF

2π
T log T + cFT + O(log T),

in analogy to the Riemann–Von Mangoldt formula for Riemann’s zeta-function ζ(s),

the prototype of an element in S. For more details concerning the Selberg class we

refer to the survey of Kaczorowski and Perelli [6].
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2 The Li Criterion

Let F be a function in the Selberg class non-vanishing at s = 1 and let us define

the xi-function ξF(s) by ξF(s) = smF (s − 1)mF φF(s). The function ξF(s) satisfies the

functional equation ξF(s) = ωξF(1 − s). The function ξF is an entire function of

order 1. Therefore by the Hadamard product, it can be written as

ξF(s) = ξF(0)
∏

ρ

(

1 − s

ρ

)

,

where the product is over all zeros of ξF(s) in the order given by |ℑ(ρ)| < T for

T → ∞. Let λF(n), n ∈ Z, be a sequence of numbers defined by a sum over the

non-trivial zeros of F(s) as

λF(n) =

∑

ρ

[

1 −
(

1 − 1

ρ

) n]

,

where the sum over ρ is
∑

ρ

= lim
T 7→∞

∑

|ℑρ|≤T

.

These coefficients are expressible in terms of power-series coefficients of functions

constructed from the ξF-function. For n ≤ −1, the Li coefficients λF(n) correspond

to the following Taylor expansion at the point s = 1

d

dz
log ξF

(

1

1 − z

)

=

+∞
∑

n=0

λF(−n − 1)zn,

and for n ≥ 1, they correspond to the Taylor expansion at s = 0

d

dz
log ξF

( −z

1 − z

)

=

+∞
∑

n=0

λF(n + 1)zn.

Let Z be the multi-set of zeros of ξF(s) (counted with multiplicity). The multi-set Z

is invariant under the map ρ 7−→ 1 − ρ. We have

1 −
(

1 − 1

ρ

)−n

= 1 −
( ρ − 1

ρ

)−n

= 1 −
( −ρ

1 − ρ

) n

= 1 −
(

1 − 1

1 − ρ

) n

and this gives the symmetry λF(−n) = λF(n). Using the corollary in [2, Theorem 1],

we get the following generalization of the Li criterion for the Riemann hypothesis.

Theorem 2.1 Let F(s) be a function in the Selberg class S non-vanishing at s = 1. All

non-trivial zeros of F(s) lie in the line ℜe(s) = 1/2 if and only if ℜ (λF(n)) > 0 for

n = 1, 2, . . . .

Next, we recall the following explicit formula for the coefficients λF(n). Let con-

sider the following hypothesis:
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H: there exists a constant c > 0 such that F(s) is non-vanishing in the region:

{

s = σ + it ; σ ≥ 1 − c

log(QF + 1 + |t|)

}

.

Theorem 2.2 Let F(s) be a function in the Selberg class S satisfying H. Then we have

λF(−n) = mF + n
(

log QF −
dF

2
γ
)

(2.1)

−
n

∑

l=1

(n
l )

(−1)l−1

(l − 1)!
lim

X−→+∞

{

∑

k≤X

ΛF(k)

k
(log k)l−1 − mF

l
(log X)l

}

+ n

r
∑

j=1

λ j

(

− 1

λ j + µ j

+

+∞
∑

l=1

λ j + µ j

l(l + λ j + µ j)

)

−
r

∑

j=1

n
∑

k=2

(n
k )(−λ j)

k

+∞
∑

l=0

( 1

l + λ j + µ j

) k

,

where γ is the Euler constant.

Examples

• In the case of the Riemann zeta function, mζ = 1, Qζ = π−1/2, r = 1, λ1 =
1
2
,

and µ1 = 0. With the equality

(−1)k

+∞
∑

l=0

( 1

2l + 1

) k

= (−1)k
(

1 − 1

2k

)

ζ(k),

we find λζ , which was established by Bombieri and Lagarias [2, p. 281].

• For the Hecke L-functions, QF =

√
N

2π , mF = 0, λ1 = 1, and µ1 =
1
2
, we find

λE(n), which was established by X.-J. Li [9, p. 496].

3 Saddle-Point Method and the Nörlund–Rice Integrals

Given a complex integral with a contour traversing simple saddle-point, the saddle-

point corresponds locally to a maximum of the integrand along the path. It is then

natural to expect that a small neighborhood of the saddle-point might provide the

dominant contribution to the integral. The saddle-point method is applicable pre-

cisely when this is the case and when this dominant contribution can be estimated

by means of local expansions. The method then constitutes the complex-analytic

counterpart of Laplace’s method for evaluating real integrals depending on a large

parameter, and we can regard it as being

Saddle-point method = Choice of contour + Laplace’s method.

To estimate
∫ B

A
F(z)dz, it is convenient to set F(z) = e f (z), where f (z) ≡ fn(z), in-

volves some large parameter n. We chose a contour C through a saddle-point η such
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that f ′(η) = 0. Next, we split the contour as C = C(0) ∪ C(1), and the following

conditions are to be verified.

(i) On the contour C
(1) the tails integral

∫

C(1) is negligible

∫

C(1)

F(z)dz = O
(

∫

C

F(z)dz
)

.

(ii) Along C
(0), a quadratic expansion,

f (z) = f (η) + 1
2

f ′ ′(η)(z − η)2 + O(φn)

is valid, with φn → 0 as n → ∞, uniformly with respect to z ∈ C
(0).

(iii) The incomplete Gaussian integral taken over the central range is asymptotically

equivalent to a complete Gaussian integral with (ǫ = ±1):

∫

C(0)

e
1
2

f ′ ′(η)(z−η)2

dz ∼ ǫi

∫ +∞

−∞
e−| f ′ ′(η)| x2

2 dx ≡ ǫi

√

2π

| f ′ ′(η)| .

Assuming (i), (ii), and (iii), one has, with ǫ = ±1

1

2π

∫ B

A

e f (z)dz ∼ ǫ
e f (η)

√

2π f ′ ′(η)
.

This method is the main tool to prove our result. We finish this section by reviewing

the definition of the Nörlund–Rice integral.

Lemma 3.1 Let f (s) be holomorphic in the half-plane ℜ(s) ≥ η0 − 1
2
. Then the finite

differences of the sequence ( f (k)) admit the integral representation

n
∑

k=n0

(

n

k

)

(−1)k f (k) =
(−1)n

2iπ

∫

C

f (s)
n!

s(s − 1) · · · (s − n)
ds,

where the contour of integration C encircles the integers {n0, . . . , n} in a positive direc-

tion and is contained in ℜ(s) ≥ η0 − 1
2
.

Proof The integral on the right is the sum of its residues at s = n0, . . . , n, which

precisely equals the sum on the left.

4 Asymptotic Formula for the Li Coefficients

A natural problem is to determine the asymptotic behavior of the numbers λF(n).

Our main result in this paper is stated in the following theorem.

Theorem 4.1 Let F(s) be a function in the Selberg class S. Then, under the Generalized

Riemann Hypothesis, we have

λF(n) =
dF

2
n log n + cFn + O

(√
n log n

)

,
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where

cF =
dF

2
(γ − 1) +

1

2
log(λQ2

F), λ =

r
∏

j=1

λ
2λ j

j

and γ is the Euler constant.

Remark 4.2 We conjecture that the asymptotic formula for the numbers λF(n) in

Theorem 4.1 holds for any function in the Selberg class without any assumption.

For our purpose, it is sufficient to study sums of the form

(4.1) Hn(m, k) =

n
∑

l=2

(−1)l

(

n

l

)

ζ(l, m
k

)

kl
,

where ζ(s, q) is the Hurwitz zeta function given by

ζ(s, q) =

+∞
∑

n=0

1

(n + q)s
.

Proposition 4.3 Hn(m, k), defined by (4.1), satisfy the estimate

Hn(m, k) =

( m

k
− 1

2

)

− n

k

(

ψ
( m

k

)

+ log k + 1 − hn−1

)

+ an(m, k),

where the an(m, k) are exponentially small:

an(m, k) =

1

k

( 2n

πk

) 1/4

exp
(

−
√

4πn

k

)

cos
(

√

4πn

k
− 5π

8
− 2πm

k

)

+ O
(

n−1/4e−2
√

πn
k

)

.

Here, hn = 1 + 1
2

+ · · · + 1
n

is a harmonic number, and ψ(x) is the logarithm derivative

of the Gamma function.

Proof Convert the sum to the Nörlund–Rice integral, and extend the contour to the

half-circle at positive infinity. The half-circle does not contribute to the integral. One

obtains

Hn(m, k) =
(−1)n

2iπ
n!

∫ 3/2+i∞

3/2−i∞

ζ(s, m
k

)

kls(s − 1) · · · (s − n)
ds.

Moving the integral to the left, one encounters a single pole at s = 0 and a pole at

s = 1. The residue of the pole at s = 0 is

Res(s = 0) = ζ(0,
m

k
) = − 1

kπ

k
∑

l=1

sin
( 2πlm

k

)

ψ
( l

k

)

= −B1

( l

k

)

=
1

2
− m

k
,
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where ψ is the digamma function, B1 is the Bernoulli polynomial of order 1, and

Res(s = 1) =
n

k

(

ψ
( m

k

)

+ log k + 1 − hn−1

)

.

Then we obtain

Hn(m, k) =

( m

k
− 1

2

)

− n

k

(

ψ
( m

k

)

+ log k + 1 − hn−1

)

+ an(m, k),

where

an(m, k) = O
(

e−
√

Kn
)

for a constant K of order m/k. Indeed we have

an(m, k) =
(−1)n

2iπ
n!

∫ −1/2+i∞

−1/2−i∞

ζ(s, m
k

)

kls(s − 1) · · · (s − n)
.

Recall that the Hurwitz zeta function satisfies the following functional equation

ζ
(

1 − s,
m

k

)

=
2Γ(s)

(kπk)s

k
∑

l=1

cos
( πs

2
− 2πlm

k

)

ζ
(

s,
l

k

)

.

Therefore,

an(m, k) = − n!

2kiπ

k
∑

l=1

∫ 3/2+i∞

3/2−i∞

1

(2π)s

Γ(s)Γ(s − 1)

Γ(s + n)
cos

( πs

2
− 2πlm

k

)

ζ
(

s,
l

k

)

ds

= − n!

2kiπ

k
∑

l=1

ei 2πlm
k

∫ 3/2+i∞

3/2−i∞

1

(2π)s

Γ(s)Γ(s − 1)

Γ(s + n)
e−i πs

2 ζ
(

s,
l

k

)

ds

− n!

2kiπ

k
∑

l=1

e−i 2πlm
k

∫ 3/2+i∞

3/2−i∞

1

(2π)s

Γ(s)Γ(s − 1)

Γ(s + n)
ei πs

2 ζ
(

s,
l

k

)

ds.

(4.2)

For large values of n, those integrals will be evaluated by means of the saddle-point

method. Note that the integrand in (4.2) has a minimum, on the real axis, near

s = σ0 =
√

2ln/k, and so the appropriate parameter is z = s/
√

n. Change s by z,

and take z constant and n large. Then

(4.3) an(m, k) = − 1

2iπ

∑

l=1

k
{

ei 2πlm
k

∫ σ0+i∞

σ0−i∞
e f (z)dz + e−i 2πlm

k

∫ σ0+i∞

σ0−i∞
e f (z)dz

}

.

We have

f (z) = log n! + 1
2

log n + φ(z
√

n),
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with

φ(s) = −s log
( 2πl

k

)

− i
πs

2
+ log

(

Γ(s)Γ(s − 1)

Γ(s + n)

)

+ O
(( l

k + l

) s)

,

using the approximation

ζ(s, l/k) = (k/l)s + O
(( l

k + l

) s)

for large s. Furthermore,

log ζ(s) =

+∞
∑

n=2

Λ(n)

ns log n
,

where Λ(n) is the Von-Mangoldt function. The asymptotic expansion for the Gamma

function is given by the Stirling expansion

log Γ(x) =

(

x − 1

2

)

log x − x +
1

2
log(2π) +

+∞
∑

j=1

B2 j

2 j(2 j − 1)x2 j−1
,

where Bk are the Bernoulli numbers. Expanding to O(1/n) and collecting terms, we

deduce

f (z) =
1

2
log n − z

√
n
(

log
( 2πl

k

)

+ i
π

2
+ 2 − 2 log z

)

+ log(2π) − 2 log z − z2

2
+

1

6z
√

n
(10 + z2)

+
1

2n

(

1 − z2

2
− z4

6
+

73

72z2

)

+ O(n−3/2).

The saddle-point is obtained by solving the equation f ′(z) = 0, and we have

z0 = (1 + i)

√

πl

k
.

We need f ′ ′(z) = 2
√

n/z + O(1) to use the saddle-point formula. Substituting, we

obtain

(4.4)

∫ σ0+i∞

σ0−i∞
e f (z)dz =

( 2π3ln

k

) 1/4

e
iπ
8 exp

(

−(1 + i)

√

4πln

k

)

+ O
(

n−1/4e−2
√

πln
k

)

.
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The integral for f is the complex conjugate of (4.4) (having a saddle-point at the

complex conjugate z0). Finally, equations (4.3) and (4.4) together give

an(m, k) =
1

k

( 2n

π

) 1/4
k

∑

l=1

( l

k

) 1/4

exp
(

−
√

4πln

k

)

cos
(

√

4πln

k
− 5π

8
− 2πlm

k

)

+ O
(

n−1/4e−2
√

πln
k

)

.

For large n, only the l = 1 term contributes significantly, and so

an(m, k) =

1

k

( 2n

πk

) 1/4

exp
(

−
√

4πn

k

)

cos
(

√

4πn

k
− 5π

8
− 2πm

k

)

+ O
(

n−1/4e−2
√

πn
k

)

,

which means that the terms an are exponentially small.

Proof of Theorem 4.1 Without loss of generality, we assume that µ j is a real number.

First, write the arithmetic formula of λF(−n) (equation (2.1)) as

(4.5) λF(−n) = mF + n
(

log QF −
dF

2
γ
)

−
n

∑

l=1

(n
l )ηF(l − 1)

+ n

r
∑

j=1

λ j

(

− 1

λ j + µ j

+

+∞
∑

l=1

λ j + µ j

l(l + λ j + µ j)

)

−
r

∑

j=1

I j ,

where

ηF(l) =
(−1)l

l!
lim

X−→+∞

{

∑

k≤X

ΛF(k)

k
(log k)l − mF

l + 1
(log X)l+1

}

are the generalized Stieltjes constants and

I j =

n
∑

k=2

(n
k )(−λ j)

k

+∞
∑

l=0

( 1

l + λ j + µ j

) k

.

Note that

I(1)
j =

n
∑

k=2

(n
k )(−λ j)

k

+∞
∑

l=0

1

(l + λ j + µ j)k
=

n
∑

k=2

(n
k )(−1)k ζ(k, λ j + µ j)

(λ−1
j )k

,

which, with the above notation of Hn(m, k) (equation (4.1)), is equal to

I(1)
j = Hn

(

1 +
µ j

λ j

, λ−1
j

)

.
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Applying Proposition 4.3 with m = 1 +
µ j

λ j
and k = λ−1

j , we deduce

(4.6)

I j =

(

λ j + µ j −
1

2

)

− nλ j

(

ψ(λ j + µ j) + log(λ−1
j ) + 1− hn−1

)

+ an

(

1 +
µ j

λ j

, λ−1
j

)

,

where

an

(

1 +
µ j

λ j

, λ−1
j

)

=

λ j

( 2n

π
λ j

) 1/4

exp(−
√

4πnλ j) cos
(√

4πnλ j −
5π

8
− 2π(λ j + µ j)

)

+ O
(

n−1/4e−2
√

πnλ j

)

.

The an are exponentially small, then

(4.7) an

(

1 +
µ j

λ j

, λ−1
j

)

= O(1).

From (4.6) and (4.7), we obtain

(4.8) I j =

(

λ j + µ j −
1

2

)

− nλ j

{

ψ(λ j + µ j) + log(λ−1
j ) + 1 − hn−1

}

+ O(n).

Summing (4.8) over j, we get

(4.9)

r
∑

j=1

I j =

r
∑

j=1

(

λ j + µ j −
1

2

)

− n

r
∑

j=1

λ j

{

ψ(λ j + µ j) + log(λ−1
j ) + 1 − hn−1

}

+ O(n).

Using the expression

ψ(z) = −γ − 1

z
+

+∞
∑

l=1

z

l(l + z)
,

where γ is the Euler constant, and the estimate

hn = log n − γ +
1

2n
+ O

( 1

2n2

)

,

we deduce from (4.5) and (4.9) that

λF(−n) =

(

r
∑

j=1

λ j

)

n log n +
{(

r
∑

j=1

λ j

)

(γ − 1) + log QF +

r
∑

j=1

λ j log λ j

}

n

−
n

∑

l=1

(n
l )ηF(l − 1) + O(n).
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Recalling that dF =
∑r

j=1 λ j and noting that λ =
∏r

j=1 λ
2λ j

j , we have

(4.10) λF(−n) =
dF

2
n log n+

{ dF

2
(γ−1)+

1

2
log

(

λQ2
F

)}

n−
n

∑

l=1

(n
l )ηF(l−1)+O(n).

Now, we obtain a bound for SF(n) = −∑n
l=1(n

l )ηF(l − 1) in terms of

λF(−n, T) :=
∑

ρ; |ℑρ|≤T

1 −
(

1 − 1

ρ

) n

,

where T is a parameter.

Lemma 4.4 If the Generalized Riemann Hypothesis holds for F ∈ S, then

SF(n) = O(
√

n log n).

Proof The proof is analogous to the argument used by Lagarias in [7]. We use a

contour integral argument, and we introduce the kernel function

kn :=
(

1 +
1

s

) n

− 1 =

n
∑

l=1

(n
l )

( 1

s

) l

.

If C is a contour enclosing the point s = 0 counterclockwise on a circle of small

enough positive radius, the residue theorem gives

I(n) =
1

2iπ

∫

C

kn(s)
(

−F ′

F
(s + 1)

)

ds =

n
∑

l=1

(n
l )ηl−1 = SF(n).

We deform the contour to the counterclockwise oriented rectangular contour C ′ con-

sisting of vertical lines with real part ℜ(s) = σ0 and ℜ(s) = σ1, where we will choose

−3 < σ0 < −2, σ1 = 2
√

n and the horizontal lines at ℑ(s) = ±T, where we will

choose T =
√

n + ǫn for some 0 < ǫn < 1. The residue theorem gives

I ′(n) =
1

2iπ

∫

C ′

kn(s)
(

−F ′

F
(s + 1)

)

ds

= SF(n) +
∑

ρ; |ℑρ|≤T

(

1 +
1

ρ − 1

) n

− 1 + O(1).

The term O(1) evaluates the residues coming from the trivial zeros of F(s). Using the

symmetry ρ 7→ 1 − ρ, we can write

( 1 − ρ

−ρ

) n

− 1 =

( ρ − 1

ρ

) n

− 1.
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Then

I ′(n) = SF(n) − λF(−n, T) + O(1).

We have

|λF(−n,
√

n) − λF(−n, T)| = O(log n).

This follows from the observation that |T − √
n| < 1, that there are O(log n) zeros

in an interval of length one at this height, and that for each zero ρ = β + iγ with√
n ≤ |ℑ(ρ)| <

√
n + 1 there holds

∣

∣

∣

( ρ − 1

ρ

)
∣

∣

∣
≤

∣

∣

∣
1 +

1

n

∣

∣

∣

n/2

≤ 2.

We now choose the parameters σ0 and T appropriately to avoid the poles of the inte-

grand. We may choose σ0 so that the contour avoids any trivial zero and T =
√

n+ǫn

with 0 ≤ ǫn ≤ 1 so that the horizontal lines do not approach closer than O(log n) to

any zero of F(s). Recall from [16] that for −2 < ℜ(s) < 2 there holds

F ′

F
(s) =

∑

{ρ; |ℑ(ρ−s)|<1}

1

s − ρ
+ O

(

log(QF(1 + |s|))
)

.

Then on the horizontal line in the interval −2 ≤ ℜ(s) ≤ 2, we have

∣

∣

∣

F ′

F
(s + 1)

∣

∣

∣
= O(log2 T).

The Euler product for F(s) converges absolutely for ℜ(s) > 1, hence the Dirichlet

series for F ′

F
(s) converges absolutely for ℜ(s) > 1. More precisely, for σ = ℜ(s) > 1

∣

∣

∣

F ′

F

∣

∣

∣
(σ) < ∞.

For σ = ℜ(s) > 2, we obtain the bound

∣

∣

∣

F ′

F
(s)

∣

∣

∣
≤

∣

∣

∣

F ′

F

∣

∣

∣
(σ) ≤ 2−(σ−2).

Consider the integral I ′(n) on the vertical segment (L1) having σ1 = 2
√

n. We have

∣

∣

∣

(

1 − 1

s

) n

− 1
∣

∣

∣
≤

(

1 +
1

σ1

) n

+ 1 ≤
(

1 +
1

2
√

n

) n

≤ exp(
√

n/2) < 2
√

n.

Then
∣

∣

∣

F ′

F
(s)

∣

∣

∣
≤ C02−2(

√
n+2).

Furthermore, the length of the contour is O( n
log n

), and we obtain |I ′L1
| = O(1). Let

s = σ + it be a point on one of the two horizontal segments. We have T ≥ √
n, so

that
∣

∣

∣
1 +

1

s

∣

∣

∣
≤ 1 +

σ + 1

σ2 + T2
.
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By hypothesis T2 ≥ n, so for −2 ≤ σ ≤ 2, we have

|kn(s)| ≤
(

1 +
3

4 + n

) n

+ 1 = O(1)

and
∣

∣

∣

F ′

F
(s)

∣

∣

∣
= O(log2 T) = O(log2 n),

since we have chosen the ordinate T to stay away from zeros of F(s). We step across

the interval (L2) toward the right, in segments of length 1, starting from σ = 2.

Furthermore,
∣

∣

∣

kn(s + 1) + 1

kn(s) + 1

∣

∣

∣
≤

(

1 +
1

T2

) n

≤ e,

and we obtain an upper bound for |kn(s) F ′

F
(s)| that decreases geometrically at each

step. After O(log n) steps it becomes O(1), and the upper bound is

|I ′L2,L4
(n)| = O(log2 n +

√
n) = O(

√
n).

For the vertical segment (L3) with ℜ(s) = σ0, we have |kn(s)| = O(1) and | F ′

F
(s)| =

O[QF(log(|s| + 1))]. Since the segment (L3) has length O(
√

n), we obtain

|I ′L3
| = O(

√
n log n).

Totalling the above bounds gives

SF(n) = λF(−n, T) + O(
√

n log n),

with T =
√

n + ǫn. If the Generalized Riemann Hypothesis holds for F(s), then we

have |1 − 1
ρ−1

| = 1. Since each zero contributes a term of absolute value at most 2 to

λF(−n, T), we obtain using the zero density estimate (NF(T) ∼ T log T)

λF(−n, T) = O(T log T + 1).

Therefore λF(−n,
√

n) = O(
√

n log n), and Lemma 4.4 follows.

Using Lemma 4.4 and the expression (4.10) of λF(−n) and λF(−n) = λF(n), we

obtain

λF(n) =
dF

2
n log n +

{ dF

2
(γ − 1) +

1

2
log(λQ2

F)
}

n + O(
√

n log n),

which concludes the proof of Theorem 4.1.

Examples

• In the case of the Riemann zeta function, we have dζ = 1, Qζ = π−1/2, and

λ =
1
2
. This proves again under the Riemann Hypothesis the asymptotic formula

established by A. Voros in [17, equation (17), p. 59].
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• Also, in the case of the principal L-function L(s, π) attached to an irreducible cus-

pidal unitary automorpohic representation of GL(N), as in Rudnick and Sarnak

[14, §2], we have DL = N, QL = Q(π)π−N/2, and λ = 2−n. We find under the

Generalized Riemann Hypothesis the asymptotic formula for λn(π) established by

Lagarias in [7, equations (1.12) and (1.13), p. 4].
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