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The Saddle-Point Method and the
Li Coefficients

Kamel Mazhouda

Abstract. In this paper, we apply the saddle-point method in conjunction with the theory of the
Norlund—Rice integrals to derive precise asymptotic formula for the generalized Li coefficients es-
tablished by Omar and Mazhouda. Actually, for any function F in the Selberg class § and under the
Generalized Riemann Hypothesis, we have

d
Ae(n) = fnlogn + cpn+ O(y/nlogn),

with
dr

- 1 5 o 4 2\
= (7= D)+ 2 log\Q), A_Jl_:[lxj ,

where 7 is the Euler’s constant and the notation is as below.

1 Introduction

Let us consider the xi-function £(s) = s(s — 1)I'(s/ 2)7~*/2((s) and the Li coefficients
(An)u>1 defined by

1 d

Ny = —————
(n— 1) ds"

{s”fl log {(s)}
=

Then the Li criterion says that the Riemann Hypothesis holds if and only if the coef-
ficients (\,) are positive numbers. Bombieri and Lagarias [2] obtained an arithmetic
expression for the Li coefficients A, and gave an asymptotic formula as n — oo. More
recently, Maslanka [10] computed ), for I < n < 3300 and empirically studied the
growth behavior of the Li coefficients. Coffey [3,4] studied the arithmetic formula
and established a lower bound for the Archimedean prime contribution by means of
series rearrangements using the Euler-Maclaurin summation. In [11], a generaliza-
tion of the Li criterion for functions F in the Selberg class was given, and in [13] an
explicit formula for the Li coefficients associated to F was established.

The object of this paper is to derive a precise asymptotic formula for the general-
ized Li coefficients using the saddle-point method.

The Selberg class 8§ consists of Dirichlet series

Received by the editors June 18, 2008; revised October 8, 2008.

Published electronically February 10, 2011.

AMS subject classification: 11M41, 11M06.

Keywords: Selberg class, Saddle-point method, Riemann Hypothesis, Li’s criterion.

316

https://doi.org/10.4153/CMB-2011-016-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-016-6

The Saddle-Point Method and the Li Coefficients 317

satisfying the following hypotheses.

¢ Analytic continuation: there exists a non-negative integer m such that (s—1)"F(s)
is an entire function of finite order. We denote by mp the smallest integer m that
satisfies this condition.

* Functional equation: for 1 < j < r, there are positive real numbers Qr, A; and
there are complex numbers /1, w with R(x;) > 0 and |w| = 1, such that

¢r(s) = wep(l —3)

where .
¢r(s) = F(s)Qp Hl L(Ajs+ p))-
j=

¢ Ramanujan hypothesis: a(n) = O(n°).
¢ Euler product: F(s) satisfies

F(s) — HeXP<§ b(pk))

ks
p P

with suitable coefficients b(p¥) satisfying b(p*) = O(p*?) for some 6 < %

It is expected that for every function in the Selberg class the analogue of the Rie-
mann hypothesis holds, i.e, that all non trivial (non-real) zeros lie on the critical line
R(s) = % The degree of F € § is defined by

dp = er:/\j.
j=1

The degree is well defined (although the functional equation is not unique by Legen-
dre’s duplication formula). The logarithmic derivative of F(s) also has the Dirichlet
series expression

—%m = ;Ap(n)n‘s, R(s) > 1,

where Ap(n) = b(n) logn is an analogue of the Von Mongoltd function A(n) defined
by
An) = log p ifn:lt.)kwithkz 1,
0 otherwise.

If Np(T) counts the number of zeros of F(s) € § in the rectangle 0 < R(s) < 1,
|S(s)| < T (according to multiplicities), one can show by standard contour integra-
tion the formula

d
Np(T) = iTlogT +ceT+ O(log T),

in analogy to the Riemann—Von Mangoldt formula for Riemann’s zeta-function ((s),
the prototype of an element in 8. For more details concerning the Selberg class we
refer to the survey of Kaczorowski and Perelli [6].
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2 The Li Criterion

Let F be a function in the Selberg class non-vanishing at s = 1 and let us define
the xi-function &g(s) by €r(s) = s"F(s — 1) ¢r(s). The function &g(s) satisfies the
functional equation £g(s) = w&p(1 —5). The function &f is an entire function of
order 1. Therefore by the Hadamard product, it can be written as

&6 =&OT(1-),

where the product is over all zeros of £r(s) in the order given by |(p)| < T for
T — oo. Let Ag(n), n € 7, be a sequence of numbers defined by a sum over the
non-trivial zeros of F(s) as

1\"
p
where the sum over p is

2= i,

p |Spl<T

These coefficients are expressible in terms of power-series coefficients of functions
constructed from the g-function. For n < —1, the Li coefficients Ag(n) correspond
to the following Taylor expansion at the point s = 1

d l +00
%log&; (1_Z> = ;)\F(—n — I)Z 5

and for n > 1, they correspond to the Taylor expansion ats = 0

+00
-z
= z) = ;)\F(n +1)Z".

Let Z be the multi-set of zeros of £r(s) (counted with multiplicity). The multi-set Z
is invariant under the map p — 1 — p. We have

-(1=0) == () - () - ()

and this gives the symmetry Ap(—n) = Ap(n). Using the corollary in [2, Theorem 1],
we get the following generalization of the Li criterion for the Riemann hypothesis.

dizlong<

Theorem 2.1 Let F(s) be a function in the Selberg class § non-vanishing at s = 1. All
non-trivial zeros of F(s) lie in the line Re(s) = 1/2 if and only if R (A\p(n)) > 0 for
n=12,....

Next, we recall the following explicit formula for the coefficients Ap(#n). Let con-
sider the following hypothesis:
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JH: there exists a constant ¢ > 0 such that F(s) is non-vanishing in the region:

c
s=oc+i;o0>21l— ——— 5.
{ log(QF+1+|t|)}

Theorem 2.2 Let F(s) be a function in the Selberg class § satisfying H. Then we have

d
(2.1) Ap(—n) = mp + n(log Qr — iV)

( =t Ap(k) o m
_Z(l = X_,Hioo{% Fk (log k)’ 1—TF(logX)l}

+oo

: Aj+
+”JZIAJ‘< N+ 10 Zl(l+/\ +]u1 )

Y S0 A)kz(w)k,

j=1 k=2

where -y is the Euler constant.

Examples

* In the case of the Riemann zeta function, m; = 1, Q¢ = a2 r=1 )\ = %,
and p; = 0. With the equality

() = (1 ) o

we find A, which was established by Bombieri and Lagarias [2, p. 281].

¢ TFor the Hecke L-functions, Qp = 2—‘/5, mp =0, A\ = 1,and p; =

Ag(n), which was established by X.-J. Li [9, p. 496].

%, we find

3 Saddle-Point Method and the Norlund-Rice Integrals

Given a complex integral with a contour traversing simple saddle-point, the saddle-
point corresponds locally to a maximum of the integrand along the path. It is then
natural to expect that a small neighborhood of the saddle-point might provide the
dominant contribution to the integral. The saddle-point method is applicable pre-
cisely when this is the case and when this dominant contribution can be estimated
by means of local expansions. The method then constitutes the complex-analytic
counterpart of Laplace’s method for evaluating real integrals depending on a large
parameter, and we can regard it as being

Saddle-point method = Choice of contour + Laplace’s method.

To estimate ff F(z)dz, it is convenient to set F(z) = e/, where f(z) = f,(2), in-
volves some large parameter n. We chose a contour € through a saddle-point 7 such
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that f'(n) = 0. Next, we split the contour as C = €© U €, and the following
conditions are to be verified.

(i)  On the contour € the tails integral | e is negligible

/e Fla)dz = o( /e F(z)dz).

(i) Along €, a quadratic expansion,

f@) = fm) + 3" )z —n)*+O0(¢y)

is valid, with ¢, — 0 as n — oo, uniformly with respect to z € €,
(iii) The incomplete Gaussian integral taken over the central range is asymptotically
equivalent to a complete Gaussian integral with (e = £1):

+00
/ et =’ gy ei/ ef‘f”(")‘%dx =€l 7/2/7T .
cO —o0 |f (77)‘

Assuming (i), (ii), and (iii), one has, with € = %1

1 B ef(n)
— efDdz ~ €

27 Ja V2rfr )

This method is the main tool to prove our result. We finish this section by reviewing
the definition of the Noérlund-Rice integral.

Lemma 3.1 Let f(s) be holomorphic in the half-plane R(s) > 1o — 1. Then the finite
differences of the sequence (f(k)) admit the integral representation

" /n X (=" n!
Z <k)(_l) flo = 2im /@f(s)s(s— 1)...(5_n)d5’

k=ny

where the contour of integration C encircles the integers {no, . .., n} in a positive direc-
tion and is contained in R(s) > 1y — %

Proof The integral on the right is the sum of its residues at s = ny, ..., n, which
precisely equals the sum on the left. ]

4 Asymptotic Formula for the Li Coefficients

A natural problem is to determine the asymptotic behavior of the numbers Ag(#).
Our main result in this paper is stated in the following theorem.

Theorem 4.1 Let E(s) be a function in the Selberg class 8. Then, under the Generalized
Riemann Hypothesis, we have

Ap(n) = %nlogn +cpn + O(\/ﬁlog n) ,
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where

dp 1 ) T
= (y = D)+ S log(AQ), A= 11"

j=1

and vy is the Euler constant.

Remark 4.2 We conjecture that the asymptotic formula for the numbers \p(n) in
Theorem [l holds for any function in the Selberg class without any assumption.

For our purpose, it is sufficient to study sums of the form

(4.1) Hy(m, k) = Z( ) ()C(l”‘)

where ((s, q) is the Hurwitz zeta function given by

+00 )
C(s,q) = ; m

Proposition 4.3 H,(m, k), defined by [@.1)), satisfy the estimate

m 1 n

H,(m,k) = (? — E) - E<¢(%) +logk+1—hn,1> +a,(m, k),

where the a,(m, k) are exponentially small:

an(m, k) =
HE) () o5 5 - ) o).

Here, h, = 1+ % +ooet % is a harmonic number, and 1) (x) is the logarithm derivative
of the Gamma function.

Proof Convert the sum to the Norlund—Rice integral, and extend the contour to the
half-circle at positive infinity. The half-circle does not contribute to the integral. One
obtains

B (—1)" ! 3/2+ico 4(5
" /3/2_1-00 Ks(s—1)---(s— n)

Moving the integral to the left, one encounters a single pole at s = 0 and a pole at
s = 1. The residue of the pole at s = 0 is

et =0 =0 ==L S an( ) o) =) =3
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where ¢ is the digamma function, B; is the Bernoulli polynomial of order 1, and

Res(s=1) = %(1/)(%) +logk+1 —hn_1>.

Then we obtain

H,(m, k) = (% — %) - %(w(%) +logk+1—hn_1) T an(m, k),

where
a,(m, k) = O(e_m)

for a constant K of order m/k. Indeed we have

B (_l)nn' /1/2+ioo C(Sa%

2im ) yppise Ks(s = 1) (s —n)
Recall that the Hurwitz zeta function satisfies the following functional equation
k

(1=5%) = Gy o5 - ) (o p):

I=1

Therefore,
(4.2)
k

n! 32¢i0c 1 P(s)D(s — 1) ws  2wim I
an(m7 k) = 72k171' pn /3/21'00 (27(')5 F(S+ 1’1) COS( - — ) C(S7 7) ds

k 3/2+ico
B n! ; 2xim 1 I'(s)I'(s—1) S I
- 2ki7r§e i /3/2_1.00 Qry T(s+n) ¢ C<5’k)d5

k 3/2+ico
n! _j2rim 1 I'(s)['(s—1) jz l
- 2kin ;z k /3/2,»00 @n)ys T(s+n) ¢ C(S7 k) ds.

For large values of n, those integrals will be evaluated by means of the saddle-point
method. Note that the integrand in (4.2]) has a minimum, on the real axis, near
s = ao = \/2In/k, and so the appropriate parameter is z = s/y/n. Change s by z,
and take z constant and # large. Then

1 2 2mlm (70+i00 - 2mlm UO+iOO 7
(43) a,(mk) = —— Z k{ er / e/Ddz + 7% / ef(z)dz} .
2 P o o

0—i00 0—i00

We have
f(z) =logn! + 1logn + ¢(z\/n),
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with

using the approximation

s, 1K) = (k1) + o( (ﬁ) )

for large s. Furthermore,

+oo A
log () = 3 yeer
2

where A(n) is the Von-Mangoldt function. The asymptotic expansion for the Gamma
function is given by the Stirling expansion

By;j

1 1 +00
IOgF(X) = (X — E) logx — X+ Elog(Zﬂ') + J_zl W,

where By are the Bernoulli numbers. Expanding to O(1/#) and collecting terms, we

deduce
f(z)—llo n—z\/ﬁ(lo (Z—FZ) +iZ 12210 z)
— 2% 8\ % 2 8
z? 1

+log(2m) — 2logz — E+ (10 + 2%)

2 4

6zy/n
1 z Z 73
(1-

+— ———+—) + 032,
2n 2 6 72z*

The saddle-point is obtained by solving the equation f’(z) = 0, and we have

zZy = (1 +1)ﬁ

We need f'(z) = 24/n/z + O(1) to use the saddle-point formula. Substituting, we
obtain

oo+i00
(4.4) / e/Pdz =

(2#2111) 1/46% exp(—(l + i)ﬁ) + O(n_l/‘le_z\/?) .
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The integral for f is the complex conjugate of (£4) (having a saddle-point at the
complex conjugate Z;). Finally, equations (4.3)) and (£.4) together give

wini= (2" S(5) " en ) ol
O(n_l/‘le_z\/@) .

For large n, only the ] = 1 term contributes significantly, and so

an(m, k) =

1/ 2n\ /4 4mn 47n 57  2mm —1/4 —2 ;w)

—| — — —_— _— e — =+ k

k(wk) exp k ) cos( k8 k ) +o(n e ’
which means that the terms a, are exponentially small. ]

Proof of Theorem[4.1] Without loss of generality, we assume that /1 is a real number.
First, write the arithmetic formula of Ag(—n) (equation (Z.I)) as

@5) Ao = me+n(log Qe — o) — Z(l)np(l—l)

+00

)\]‘+/ij 4
R S S I
+nz>\< )\ +MJ le(l+)\j+ﬂj)> ]Zl s

where

1\
nell) = | 1,1) o Jim +OO{ZAF,((")( gh)! — - (logX)"* }

k<x

are the generalized Stieltjes constants and

k
I; _Z(k)( A)kz(il+A +M]) .
Note that
<<kA +1)

which, with the above notation of H,,(m, k) (equation ([.1))), is equal to

n _ Hjoy—1
1 an(1+Aj,)\j )
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Applying PropositionE3lwith m = 1 + & and k = )\j_l, we deduce
7

(4.6)
= (A= 5) = mh (00 + ) +1og ) 1= by ) i, (1452071)
J
where
an(l + %7)\]71) =

)\j(z?n)\j) 1/4 exp(— /4mn\)) cos(W— 5% —27m(A; +Mj)>

+ O( n_1/4e_2\/7TAf) .

The a, are exponentially small, then

i y-1) _
(4.7) an<1+>\—j,)\j ) = o

From (4.8) and (4.7)), we obtain

(48) 1= (N+u- %) = A { WO + ) +10gT ) + 1=y | + O,

Summing (4.38) over j, we get

(4.9) le =
j=1

r r

S (A+mi- %) =D NGO+ ) + 10T + 1= By b+ O().

j=1 j=1

Using the expression
1 Xz
)=y ——+ Y
() 7 z ; I(1+2)
where 7 is the Euler constant, and the estimate

1 1
h, =1 — +—+O<—),
A 2n 2n?

we deduce from (4.3) and (4.9)) that

Ap(—n) = (i)\]) nlogn + { (i)\j) (y—1) +10gQF+i)\jlog)\j}n
=1

j=1 j=1

= > (e —1) + O(n).
=1
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Recalling that dp = 37", A; and noting that A = []’_, )\j/\], we have

(4.10) Ap(—n) = %nlogn+{ %w-m% 1og(AQ§) }n—Z(,")nF(l—l)m(n).
I=1

Now, we obtain a bound for Sg(n) = — E?:I(?)m:(l — 1) in terms of
1\ 7
Ae(-nT)i= 31— (1 _ 7) ,
i |Sp|<T p

where T is a parameter.

Lemma 4.4 If the Generalized Riemann Hypothesis holds for F € §, then
Sr(n) = O(y/nlogn).

Proof The proof is analogous to the argument used by Lagarias in [7]. We use a
contour integral argument, and we introduce the kernel function

= (10 =30,
=1

If C is a contour enclosing the point s = 0 counterclockwise on a circle of small
enough positive radius, the residue theorem gives

100 = 5= [ ) (=6 D) ds = Doy = e,
¢ =1

We deform the contour to the counterclockwise oriented rectangular contour C’ con-
sisting of vertical lines with real part R(s) = o and R(s) = o, where we will choose
—3 < 09 < —2, 01 = 2¢/n and the horizontal lines at S(s) = +T, where we will
choose T = /n + ¢, for some 0 < €, < 1. The residue theorem gives

I'(n) = ﬁ/ kn(s)(—%(s+1)) ds
C/

= Sp(n) + Z (1+pil)n—1+0(1).

5 |Sp|<T

The term O(1) evaluates the residues coming from the trivial zeros of F(s). Using the
symmetry p — 1 — p, we can write

()= (25 -
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Then
I'(n) = Sp(n) — Ap(—n, T) + O(1).

We have
|Ae(—n,v/n) — Ap(—n, T)| = O(logn).

This follows from the observation that |T — /n| < 1, that there are O(logn) zeros

in an interval of length one at this height, and that for each zero p = (§ + iy with
v < |S(p)| < 4/n+ 1 there holds

-1 1
() = [res
p n

We now choose the parameters oy and T appropriately to avoid the poles of the inte-
grand. We may choose oy so that the contour avoids any trivial zero and T = /n+¢,
with 0 < ¢, < 1 so that the horizontal lines do not approach closer than O(log ) to
any zero of F(s). Recall from [16] that for —2 < $(s) < 2 there holds

n/2
<2

%/(5): 3 %p+0<log(QF(l+|s|))>.

{p5 |S(p—9)|<1}

Then on the horizontal line in the interval —2 < R(s) < 2, we have
F/
‘?(H 1)‘ — O(log 7).

The Euler product for F(s) converges absolutely for R(s) > 1, hence the Dirichlet
series for %/(s) converges absolutely for $(s) > 1. More precisely, for o = R(s) > 1

F/
F

For o = R(s) > 2, we obtain the bound

(o) < 0.

F' F’
_— < | = < p—(0=2)
F(S)‘ _‘F (o) <

Consider the integral I’(n) on the vertical segment (L;) having o, = 2+/n. We have

I I\" L \"
1—7) —1’§(1+—) +1§(1+—) < 2) <2V,
‘( s o 2y/n exp(v/n/2)

Then
F/
‘7(5)‘ < Cy2 2V,
F0)| <

Furthermore, the length of the contour is O(f5;), and we obtain II],| = O(1). Let

s = o + it be a point on one of the two horizontal segments. We have T > /n, so
that

’1+1‘ <14 2H1
sl — o2+ T2
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By hypothesis T? > n, so for —2 < o < 2, we have
\k()|<(1+—3 )"+1 o(1)
5 P
" - 4+n

and ,
‘ %(s)’ — O(log? T) = O(log? n),

since we have chosen the ordinate T to stay away from zeros of F(s). We step across
the interval (L;) toward the right, in segments of length 1, starting from o = 2.
Furthermore,

ki(s+1)+1

k.(s) +1

1 n
<(1+gq) <e

and we obtain an upper bound for \kn(s)%/(s)| that decreases geometrically at each
step. After O(log n) steps it becomes O(1), and the upper bound is

|17, 1,(m)| = Olog’ n + \/n) = O(y/n).

For the vertical segment (L3) with R(s) = o9, we have |k,(s)| = O(1) and |%(s)| =
O[Qkr(log(|s| + 1))]. Since the segment (L3) has length O(+/n), we obtain

|I},| = O(v/nlogn).
Totalling the above bounds gives
SF(T’I) = )\F(_na T) + O(\/Elog n)a

with T = /n + ¢,. If the Generalized Riemann Hypothesis holds for F(s), then we
have |1 — ﬁ| = 1. Since each zero contributes a term of absolute value at most 2 to
Ar(—n, T), we obtain using the zero density estimate (Ng(T) ~ Tlog T)

Ap(—n,T) = O(Tlog T + 1).

Therefore A\p(—n, /1) = O(y/nlogn), and Lemma 4] follows. [ ]
Using Lemma[4.4] and the expression [4.I0) of Ap(—n) and Ap(—n) = Ap(n), we
obtain

d d 1
Ap(n) = EFnlogn-k { 7F('y -1+ Elog()\Q%)}n + O(y/nlogn),

which concludes the proof of Theorem[4.1] ]
Examples
* In the case of the Riemann zeta function, we have d; = 1, Q¢ = 7~ '/2, and

A = 2. This proves again under the Riemann Hypothesis the asymptotic formula
established by A. Voros in [17, equation (17), p. 59].
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Also, in the case of the principal L-function L(s, 7) attached to an irreducible cus-
pidal unitary automorpohic representation of GL(N), as in Rudnick and Sarnak
[14, §2], we have D; = N, Qp = Q(m)nN/2, and A = 2~". We find under the
Generalized Riemann Hypothesis the asymptotic formula for A,(7) established by
Lagarias in [7, equations (1.12) and (1.13), p. 4].
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