The Saddle-Point Method and the Li Coefficients

Kamel Mazhouda

Abstract. In this paper, we apply the saddle-point method in conjunction with the theory of the Nörlund-Rice integrals to derive precise asymptotic formula for the generalized Li coefficients established by Omar and Mazhouda. Actually, for any function F in the Selberg class \mathcal{S} and under the Generalized Riemann Hypothesis, we have

$$
\lambda_{F}(n)=\frac{d_{F}}{2} n \log n+c_{F} n+O(\sqrt{n} \log n)
$$

with

$$
c_{F}=\frac{d_{F}}{2}(\gamma-1)+\frac{1}{2} \log \left(\lambda Q_{F}^{2}\right), \quad \lambda=\prod_{j=1}^{r} \lambda_{j}^{2 \lambda_{j}}
$$

where γ is the Euler's constant and the notation is as below.

1 Introduction

Let us consider the xi-function $\xi(s)=s(s-1) \Gamma(s / 2) \pi^{-s / 2} \zeta(s)$ and the Li coefficients $\left(\lambda_{n}\right)_{n \geq 1}$ defined by

$$
\lambda_{n}=\frac{1}{(n-1)!} \frac{d^{n}}{d s^{n}}\left[s^{n-1} \log \xi(s)\right]_{s=1}
$$

Then the Li criterion says that the Riemann Hypothesis holds if and only if the coefficients $\left(\lambda_{n}\right)$ are positive numbers. Bombieri and Lagarias [2] obtained an arithmetic expression for the Li coefficients λ_{n} and gave an asymptotic formula as $n \rightarrow \infty$. More recently, Maslanka [10] computed λ_{n} for $1 \leq n \leq 3300$ and empirically studied the growth behavior of the Li coefficients. Coffey [3,4] studied the arithmetic formula and established a lower bound for the Archimedean prime contribution by means of series rearrangements using the Euler-Maclaurin summation. In [11], a generalization of the Li criterion for functions F in the Selberg class was given, and in [13] an explicit formula for the Li coefficients associated to F was established.

The object of this paper is to derive a precise asymptotic formula for the generalized Li coefficients using the saddle-point method.

The Selberg class \mathcal{S} consists of Dirichlet series

$$
F(s)=\sum_{n=1}^{+\infty} \frac{a(n)}{n^{s}}, \quad \Re(s)>1
$$

[^0]satisfying the following hypotheses.

- Analytic continuation: there exists a non-negative integer m such that $(s-1)^{m} F(s)$ is an entire function of finite order. We denote by m_{F} the smallest integer m that satisfies this condition.
- Functional equation: for $1 \leq j \leq r$, there are positive real numbers Q_{F}, λ_{j} and there are complex numbers μ_{j}, ω with $\Re\left(\mu_{j}\right) \geq 0$ and $|\omega|=1$, such that

$$
\phi_{F}(s)=\omega \overline{\phi_{F}(1-\bar{s})}
$$

where

$$
\phi_{F}(s)=F(s) Q_{F}^{s} \prod_{j=1}^{r} \Gamma\left(\lambda_{j} s+\mu_{j}\right)
$$

- Ramanujan hypothesis: $a(n)=O\left(n^{\epsilon}\right)$.
- Euler product: $F(s)$ satisfies

$$
F(s)=\prod_{p} \exp \left(\sum_{k=1}^{+\infty} \frac{b\left(p^{k}\right)}{p^{k s}}\right)
$$

with suitable coefficients $b\left(p^{k}\right)$ satisfying $b\left(p^{k}\right)=O\left(p^{k \theta}\right)$ for some $\theta<\frac{1}{2}$.
It is expected that for every function in the Selberg class the analogue of the Riemann hypothesis holds, i.e, that all non trivial (non-real) zeros lie on the critical line $\Re(s)=\frac{1}{2}$. The degree of $F \in \mathcal{S}$ is defined by

$$
d_{F}=2 \sum_{j=1}^{r} \lambda_{j}
$$

The degree is well defined (although the functional equation is not unique by Legendre's duplication formula). The logarithmic derivative of $F(s)$ also has the Dirichlet series expression

$$
-\frac{F^{\prime}}{F}(s)=\sum_{n=1}^{+\infty} \Lambda_{F}(n) n^{-s}, \quad \Re(s)>1,
$$

where $\Lambda_{F}(n)=b(n) \log n$ is an analogue of the Von Mongoltd function $\Lambda(n)$ defined by

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k} \text { with } k \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

If $N_{F}(T)$ counts the number of zeros of $F(s) \in \mathcal{S}$ in the rectangle $0 \leq \Re(s) \leq 1$, $|\Im(s)| \leq T$ (according to multiplicities), one can show by standard contour integration the formula

$$
N_{F}(T)=\frac{d_{F}}{2 \pi} T \log T+c_{F} T+O(\log T)
$$

in analogy to the Riemann-Von Mangoldt formula for Riemann's zeta-function $\zeta(s)$, the prototype of an element in \mathcal{S}. For more details concerning the Selberg class we refer to the survey of Kaczorowski and Perelli [6].

2 The Li Criterion

Let F be a function in the Selberg class non-vanishing at $s=1$ and let us define the xi-function $\xi_{F}(s)$ by $\xi_{F}(s)=s^{m_{F}}(s-1)^{m_{F}} \phi_{F}(s)$. The function $\xi_{F}(s)$ satisfies the functional equation $\xi_{F}(s)=\omega \overline{\xi_{F}(1-\bar{s})}$. The function ξ_{F} is an entire function of order 1 . Therefore by the Hadamard product, it can be written as

$$
\xi_{F}(s)=\xi_{F}(0) \prod_{\rho}\left(1-\frac{s}{\rho}\right)
$$

where the product is over all zeros of $\xi_{F}(s)$ in the order given by $|\Im(\rho)|<T$ for $T \rightarrow \infty$. Let $\lambda_{F}(n), n \in \mathbb{Z}$, be a sequence of numbers defined by a sum over the non-trivial zeros of $F(s)$ as

$$
\lambda_{F}(n)=\sum_{\rho}\left[1-\left(1-\frac{1}{\rho}\right)^{n}\right]
$$

where the sum over ρ is

$$
\sum_{\rho}=\lim _{T \mapsto \infty} \sum_{|\Im \rho| \leq T}
$$

These coefficients are expressible in terms of power-series coefficients of functions constructed from the ξ_{F}-function. For $n \leq-1$, the Li coefficients $\lambda_{F}(n)$ correspond to the following Taylor expansion at the point $s=1$

$$
\frac{d}{d z} \log \xi_{F}\left(\frac{1}{1-z}\right)=\sum_{n=0}^{+\infty} \lambda_{F}(-n-1) z^{n}
$$

and for $n \geq 1$, they correspond to the Taylor expansion at $s=0$

$$
\frac{d}{d z} \log \xi_{F}\left(\frac{-z}{1-z}\right)=\sum_{n=0}^{+\infty} \lambda_{F}(n+1) z^{n}
$$

Let Z be the multi-set of zeros of $\xi_{F}(s)$ (counted with multiplicity). The multi-set Z is invariant under the map $\rho \longmapsto 1-\bar{\rho}$. We have

$$
1-\left(1-\frac{1}{\rho}\right)^{-n}=1-\left(\frac{\rho-1}{\rho}\right)^{-n}=1-\left(\frac{-\rho}{1-\rho}\right)^{n}=1-\overline{\left(1-\frac{1}{1-\bar{\rho}}\right)^{n}}
$$

and this gives the symmetry $\lambda_{F}(-n)=\overline{\lambda_{F}(n)}$. Using the corollary in [2, Theorem 1], we get the following generalization of the Li criterion for the Riemann hypothesis.

Theorem 2.1 Let $F(s)$ be a function in the Selberg class \mathcal{S} non-vanishing at $s=1$. All non-trivial zeros of $F(s)$ lie in the line $\Re e(s)=1 / 2$ if and only if $\Re\left(\lambda_{F}(n)\right)>0$ for $n=1,2, \ldots$

Next, we recall the following explicit formula for the coefficients $\lambda_{F}(n)$. Let consider the following hypothesis:
$\mathcal{H}:$ there exists a constant $c>0$ such that $F(s)$ is non-vanishing in the region:

$$
\left\{s=\sigma+i t ; \sigma \geq 1-\frac{c}{\log \left(Q_{F}+1+|t|\right)}\right\}
$$

Theorem 2.2 Let $F(s)$ be a function in the Selberg class \mathcal{S} satisfying \mathcal{H}. Then we have
(2.1) $\lambda_{F}(-n)=m_{F}+n\left(\log Q_{F}-\frac{d_{F}}{2} \gamma\right)$

$$
\begin{aligned}
& -\sum_{l=1}^{n}\left({ }_{l}^{n}\right) \frac{(-1)^{l-1}}{(l-1)!} \lim _{X \longrightarrow+\infty}\left\{\sum_{k \leq X} \frac{\Lambda_{F}(k)}{k}(\log k)^{l-1}-\frac{m_{F}}{l}(\log X)^{l}\right\} \\
& +n \sum_{j=1}^{r} \lambda_{j}\left(-\frac{1}{\lambda_{j}+\mu_{j}}+\sum_{l=1}^{+\infty} \frac{\lambda_{j}+\mu_{j}}{l\left(l+\lambda_{j}+\mu_{j}\right)}\right) \\
& -\sum_{j=1}^{r} \sum_{k=2}^{n}\binom{n}{k}\left(-\lambda_{j}\right)^{k} \sum_{l=0}^{+\infty}\left(\frac{1}{l+\lambda_{j}+\mu_{j}}\right)^{k}
\end{aligned}
$$

where γ is the Euler constant.

Examples

- In the case of the Riemann zeta function, $m_{\zeta}=1, Q_{\zeta}=\pi^{-1 / 2}, r=1, \lambda_{1}=\frac{1}{2}$, and $\mu_{1}=0$. With the equality

$$
(-1)^{k} \sum_{l=0}^{+\infty}\left(\frac{1}{2 l+1}\right)^{k}=(-1)^{k}\left(1-\frac{1}{2^{k}}\right) \zeta(k),
$$

we find λ_{ζ}, which was established by Bombieri and Lagarias [2, p. 281].

- For the Hecke L-functions, $Q_{F}=\frac{\sqrt{N}}{2 \pi}, m_{F}=0, \lambda_{1}=1$, and $\mu_{1}=\frac{1}{2}$, we find $\lambda_{E}(n)$, which was established by X.-J. Li [9, p. 496].

3 Saddle-Point Method and the Nörlund-Rice Integrals

Given a complex integral with a contour traversing simple saddle-point, the saddlepoint corresponds locally to a maximum of the integrand along the path. It is then natural to expect that a small neighborhood of the saddle-point might provide the dominant contribution to the integral. The saddle-point method is applicable precisely when this is the case and when this dominant contribution can be estimated by means of local expansions. The method then constitutes the complex-analytic counterpart of Laplace's method for evaluating real integrals depending on a large parameter, and we can regard it as being

$$
\text { Saddle-point method }=\text { Choice of contour }+ \text { Laplace's method. }
$$

To estimate $\int_{A}^{B} F(z) d z$, it is convenient to set $F(z)=e^{f(z)}$, where $f(z) \equiv f_{n}(z)$, involves some large parameter n. We chose a contour \mathcal{C} through a saddle-point η such
that $f^{\prime}(\eta)=0$. Next, we split the contour as $\mathcal{C}=\mathcal{C}^{(0)} \cup \mathcal{C}^{(1)}$, and the following conditions are to be verified.
(i) On the contour $\mathfrak{C}^{(1)}$ the tails integral $\int_{\mathfrak{C}^{(1)}}$ is negligible

$$
\int_{\mathcal{C}^{(1)}} F(z) d z=O\left(\int_{\mathcal{C}} F(z) d z\right)
$$

(ii) Along $\mathcal{C}^{(0)}$, a quadratic expansion,

$$
f(z)=f(\eta)+\frac{1}{2} f^{\prime \prime}(\eta)(z-\eta)^{2}+O\left(\phi_{n}\right)
$$

is valid, with $\phi_{n} \rightarrow 0$ as $n \rightarrow \infty$, uniformly with respect to $z \in \mathcal{C}^{(0)}$.
(iii) The incomplete Gaussian integral taken over the central range is asymptotically equivalent to a complete Gaussian integral with $(\epsilon= \pm 1)$:

$$
\int_{\mathbb{C}^{(0)}} e^{\frac{1}{2} f^{\prime \prime}(\eta)(z-\eta)^{2}} d z \sim \epsilon i \int_{-\infty}^{+\infty} e^{-\left|f^{\prime \prime}(\eta)\right| \frac{x^{2}}{2}} d x \equiv \epsilon i \sqrt{\frac{2 \pi}{\left|f^{\prime \prime}(\eta)\right|}}
$$

Assuming (i), (ii), and (iii), one has, with $\epsilon= \pm 1$

$$
\frac{1}{2 \pi} \int_{A}^{B} e^{f(z)} d z \sim \epsilon \frac{e^{f(\eta)}}{\sqrt{2 \pi f^{\prime \prime}(\eta)}}
$$

This method is the main tool to prove our result. We finish this section by reviewing the definition of the Nörlund-Rice integral.
Lemma 3.1 Let $f(s)$ be holomorphic in the half-plane $\Re(s) \geq \eta_{0}-\frac{1}{2}$. Then the finite differences of the sequence $(f(k))$ admit the integral representation

$$
\sum_{k=n_{0}}^{n}\binom{n}{k}(-1)^{k} f(k)=\frac{(-1)^{n}}{2 i \pi} \int_{\mathcal{C}} f(s) \frac{n!}{s(s-1) \cdots(s-n)} d s
$$

where the contour of integration \mathcal{C} encircles the integers $\left\{n_{0}, \ldots, n\right\}$ in a positive direction and is contained in $\Re(s) \geq \eta_{0}-\frac{1}{2}$.

Proof The integral on the right is the sum of its residues at $s=n_{0}, \ldots, n$, which precisely equals the sum on the left.

4 Asymptotic Formula for the Li Coefficients

A natural problem is to determine the asymptotic behavior of the numbers $\lambda_{F}(n)$. Our main result in this paper is stated in the following theorem.
Theorem 4.1 Let $F(s)$ be a function in the Selberg class \mathcal{S}. Then, under the Generalized Riemann Hypothesis, we have

$$
\lambda_{F}(n)=\frac{d_{F}}{2} n \log n+c_{F} n+O(\sqrt{n} \log n)
$$

where

$$
c_{F}=\frac{d_{F}}{2}(\gamma-1)+\frac{1}{2} \log \left(\lambda Q_{F}^{2}\right), \quad \lambda=\prod_{j=1}^{r} \lambda_{j}^{2 \lambda_{j}}
$$

and γ is the Euler constant.
Remark 4.2 We conjecture that the asymptotic formula for the numbers $\lambda_{F}(n)$ in Theorem4.1 holds for any function in the Selberg class without any assumption.

For our purpose, it is sufficient to study sums of the form

$$
\begin{equation*}
H_{n}(m, k)=\sum_{l=2}^{n}(-1)^{l}\binom{n}{l} \frac{\zeta\left(l, \frac{m}{k}\right)}{k^{l}} \tag{4.1}
\end{equation*}
$$

where $\zeta(s, q)$ is the Hurwitz zeta function given by

$$
\zeta(s, q)=\sum_{n=0}^{+\infty} \frac{1}{(n+q)^{s}}
$$

Proposition $4.3 \quad H_{n}(m, k)$, defined by (4.1), satisfy the estimate

$$
H_{n}(m, k)=\left(\frac{m}{k}-\frac{1}{2}\right)-\frac{n}{k}\left(\psi\left(\frac{m}{k}\right)+\log k+1-h_{n-1}\right)+a_{n}(m, k)
$$

where the $a_{n}(m, k)$ are exponentially small:

$$
\begin{aligned}
& a_{n}(m, k)= \\
& \frac{1}{k}\left(\frac{2 n}{\pi k}\right)^{1 / 4} \exp \left(-\sqrt{\frac{4 \pi n}{k}}\right) \cos \left(\sqrt{\frac{4 \pi n}{k}}-\frac{5 \pi}{8}-\frac{2 \pi m}{k}\right)+O\left(n^{-1 / 4} e^{-2 \sqrt{\frac{\pi n}{k}}}\right)
\end{aligned}
$$

Here, $h_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ is a harmonic number, and $\psi(x)$ is the logarithm derivative of the Gamma function.

Proof Convert the sum to the Nörlund-Rice integral, and extend the contour to the half-circle at positive infinity. The half-circle does not contribute to the integral. One obtains

$$
H_{n}(m, k)=\frac{(-1)^{n}}{2 i \pi} n!\int_{3 / 2-i \infty}^{3 / 2+i \infty} \frac{\zeta\left(s, \frac{m}{k}\right)}{k^{l} \mathcal{s}(s-1) \cdots(s-n)} d s
$$

Moving the integral to the left, one encounters a single pole at $s=0$ and a pole at $s=1$. The residue of the pole at $s=0$ is

$$
\operatorname{Res}(s=0)=\zeta\left(0, \frac{m}{k}\right)=-\frac{1}{k \pi} \sum_{l=1}^{k} \sin \left(\frac{2 \pi l m}{k}\right) \psi\left(\frac{l}{k}\right)=-B_{1}\left(\frac{l}{k}\right)=\frac{1}{2}-\frac{m}{k}
$$

where ψ is the digamma function, B_{1} is the Bernoulli polynomial of order 1 , and

$$
\operatorname{Res}(s=1)=\frac{n}{k}\left(\psi\left(\frac{m}{k}\right)+\log k+1-h_{n-1}\right) .
$$

Then we obtain

$$
H_{n}(m, k)=\left(\frac{m}{k}-\frac{1}{2}\right)-\frac{n}{k}\left(\psi\left(\frac{m}{k}\right)+\log k+1-h_{n-1}\right)+a_{n}(m, k)
$$

where

$$
a_{n}(m, k)=O\left(e^{-\sqrt{K n}}\right)
$$

for a constant K of order m / k. Indeed we have

$$
a_{n}(m, k)=\frac{(-1)^{n}}{2 i \pi} n!\int_{-1 / 2-i \infty}^{-1 / 2+i \infty} \frac{\zeta\left(s, \frac{m}{k}\right)}{k^{l} s(s-1) \cdots(s-n)}
$$

Recall that the Hurwitz zeta function satisfies the following functional equation

$$
\zeta\left(1-s, \frac{m}{k}\right)=\frac{2 \Gamma(s)}{(k \pi k)^{s}} \sum_{l=1}^{k} \cos \left(\frac{\pi s}{2}-\frac{2 \pi l m}{k}\right) \zeta\left(s, \frac{l}{k}\right)
$$

Therefore,

$$
\begin{align*}
a_{n}(m, k)= & -\frac{n!}{2 k i \pi} \sum_{l=1}^{k} \int_{3 / 2-i \infty}^{3 / 2+i \infty} \frac{1}{(2 \pi)^{s}} \frac{\Gamma(s) \Gamma(s-1)}{\Gamma(s+n)} \cos \left(\frac{\pi s}{2}-\frac{2 \pi l m}{k}\right) \zeta\left(s, \frac{l}{k}\right) d s \tag{4.2}\\
= & -\frac{n!}{2 k i \pi} \sum_{l=1}^{k} e^{i \frac{2 \pi l m}{k}} \int_{3 / 2-i \infty}^{3 / 2+i \infty} \frac{1}{(2 \pi)^{s}} \frac{\Gamma(s) \Gamma(s-1)}{\Gamma(s+n)} e^{-i \frac{\pi s}{2}} \zeta\left(s, \frac{l}{k}\right) d s \\
& -\frac{n!}{2 k i \pi} \sum_{l=1}^{k} e^{-i \frac{2 \pi l m}{k}} \int_{3 / 2-i \infty}^{3 / 2+i \infty} \frac{1}{(2 \pi)^{s}} \frac{\Gamma(s) \Gamma(s-1)}{\Gamma(s+n)} e^{i \frac{\pi s}{2}} \zeta\left(s, \frac{l}{k}\right) d s
\end{align*}
$$

For large values of n, those integrals will be evaluated by means of the saddle-point method. Note that the integrand in (4.2) has a minimum, on the real axis, near $s=\sigma_{0}=\sqrt{2 \ln / k}$, and so the appropriate parameter is $z=s / \sqrt{n}$. Change s by z, and take z constant and n large. Then

$$
\begin{equation*}
a_{n}(m, k)=-\frac{1}{2 i \pi} \sum_{l=1} k\left\{e^{i \frac{2 \pi l m}{k}} \int_{\sigma_{0}-i \infty}^{\sigma_{0}+i \infty} e^{f(z)} d z+e^{-i \frac{2 \pi m m}{k}} \int_{\sigma_{0}-i \infty}^{\sigma_{0}+i \infty} e^{\bar{f}(z)} d z\right\} \tag{4.3}
\end{equation*}
$$

We have

$$
f(z)=\log n!+\frac{1}{2} \log n+\phi(z \sqrt{n})
$$

with

$$
\phi(s)=-s \log \left(\frac{2 \pi l}{k}\right)-i \frac{\pi s}{2}+\log \left(\frac{\Gamma(s) \Gamma(s-1)}{\Gamma(s+n)}\right)+O\left(\left(\frac{l}{k+l}\right)^{s}\right)
$$

using the approximation

$$
\zeta(s, l / k)=(k / l)^{s}+O\left(\left(\frac{l}{k+l}\right)^{s}\right)
$$

for large s. Furthermore,

$$
\log \zeta(s)=\sum_{n=2}^{+\infty} \frac{\Lambda(n)}{n^{s} \log n},
$$

where $\Lambda(n)$ is the Von-Mangoldt function. The asymptotic expansion for the Gamma function is given by the Stirling expansion

$$
\log \Gamma(x)=\left(x-\frac{1}{2}\right) \log x-x+\frac{1}{2} \log (2 \pi)+\sum_{j=1}^{+\infty} \frac{B_{2 j}}{2 j(2 j-1) x^{2 j-1}},
$$

where B_{k} are the Bernoulli numbers. Expanding to $O(1 / n)$ and collecting terms, we deduce

$$
\begin{aligned}
f(z)= & \frac{1}{2} \log n-z \sqrt{n}\left(\log \left(\frac{2 \pi l}{k}\right)+i \frac{\pi}{2}+2-2 \log z\right) \\
& +\log (2 \pi)-2 \log z-\frac{z^{2}}{2}+\frac{1}{6 z \sqrt{n}}\left(10+z^{2}\right) \\
& +\frac{1}{2 n}\left(1-\frac{z^{2}}{2}-\frac{z^{4}}{6}+\frac{73}{72 z^{2}}\right)+O\left(n^{-3 / 2}\right) .
\end{aligned}
$$

The saddle-point is obtained by solving the equation $f^{\prime}(z)=0$, and we have

$$
z_{0}=(1+i) \sqrt{\frac{\pi l}{k}} .
$$

We need $f^{\prime \prime}(z)=2 \sqrt{n} / z+O(1)$ to use the saddle-point formula. Substituting, we obtain

$$
\begin{align*}
& \int_{\sigma_{0}-i \infty}^{\sigma_{0}+i \infty} e^{f(z)} d z= \tag{4.4}\\
& \quad\left(\frac{2 \pi^{3} \ln }{k}\right)^{1 / 4} e^{\frac{i \pi}{8}} \exp \left(-(1+i) \sqrt{\frac{4 \pi l n}{k}}\right)+O\left(n^{-1 / 4} e^{-2 \sqrt{\frac{\pi n}{k}}}\right)
\end{align*}
$$

The integral for \bar{f} is the complex conjugate of (4.4) (having a saddle-point at the complex conjugate $\overline{z_{0}}$). Finally, equations (4.3) and (4.4) together give

$$
\begin{array}{r}
a_{n}(m, k)=\frac{1}{k}\left(\frac{2 n}{\pi}\right)^{1 / 4} \sum_{l=1}^{k}\left(\frac{l}{k}\right)^{1 / 4} \exp \left(-\sqrt{\frac{4 \pi l n}{k}}\right) \cos \left(\sqrt{\frac{4 \pi l n}{k}}-\frac{5 \pi}{8}-\frac{2 \pi l m}{k}\right) \\
+O\left(n^{-1 / 4} e^{-2 \sqrt{\frac{\pi l n}{k}}}\right)
\end{array}
$$

For large n, only the $l=1$ term contributes significantly, and so

$$
\begin{aligned}
& a_{n}(m, k)= \\
& \frac{1}{k}\left(\frac{2 n}{\pi k}\right)^{1 / 4} \exp \left(-\sqrt{\frac{4 \pi n}{k}}\right) \cos \left(\sqrt{\frac{4 \pi n}{k}}-\frac{5 \pi}{8}-\frac{2 \pi m}{k}\right)+O\left(n^{-1 / 4} e^{-2 \sqrt{\frac{\pi n}{k}}}\right)
\end{aligned}
$$

which means that the terms a_{n} are exponentially small.
Proof of Theorem4.1 Without loss of generality, we assume that μ_{j} is a real number. First, write the arithmetic formula of $\lambda_{F}(-n)$ (equation (2.1)) as

$$
\begin{align*}
\lambda_{F}(-n)=m_{F}+n(& \left.\log Q_{F}-\frac{d_{F}}{2} \gamma\right)-\sum_{l=1}^{n}\binom{n}{l} \eta_{F}(l-1) \tag{4.5}\\
& +n \sum_{j=1}^{r} \lambda_{j}\left(-\frac{1}{\lambda_{j}+\mu_{j}}+\sum_{l=1}^{+\infty} \frac{\lambda_{j}+\mu_{j}}{l\left(l+\lambda_{j}+\mu_{j}\right)}\right)-\sum_{j=1}^{r} I_{j}
\end{align*}
$$

where

$$
\eta_{F}(l)=\frac{(-1)^{l}}{l!} \lim _{X \longrightarrow+\infty}\left\{\sum_{k \leq X} \frac{\Lambda_{F}(k)}{k}(\log k)^{l}-\frac{m_{F}}{l+1}(\log X)^{l+1}\right\}
$$

are the generalized Stieltjes constants and

$$
I_{j}=\sum_{k=2}^{n}\binom{n}{k}\left(-\lambda_{j}\right)^{k} \sum_{l=0}^{+\infty}\left(\frac{1}{l+\lambda_{j}+\mu_{j}}\right)^{k}
$$

Note that

$$
I_{j}^{(1)}=\sum_{k=2}^{n}\binom{n}{k}\left(-\lambda_{j}\right)^{k} \sum_{l=0}^{+\infty} \frac{1}{\left(l+\lambda_{j}+\mu_{j}\right)^{k}}=\sum_{k=2}^{n}\binom{n}{k}(-1)^{k} \frac{\zeta\left(k, \lambda_{j}+\mu_{j}\right)}{\left(\lambda_{j}^{-1}\right)^{k}},
$$

which, with the above notation of $H_{n}(m, k)$ (equation (4.1)), is equal to

$$
I_{j}^{(1)}=H_{n}\left(1+\frac{\mu_{j}}{\lambda_{j}}, \lambda_{j}^{-1}\right)
$$

Applying Proposition 4.3 with $m=1+\frac{\mu_{j}}{\lambda_{j}}$ and $k=\lambda_{j}^{-1}$, we deduce
$I_{j}=\left(\lambda_{j}+\mu_{j}-\frac{1}{2}\right)-n \lambda_{j}\left(\psi\left(\lambda_{j}+\mu_{j}\right)+\log \left(\lambda_{j}^{-1}\right)+1-h_{n-1}\right)+a_{n}\left(1+\frac{\mu_{j}}{\lambda_{j}}, \lambda_{j}^{-1}\right)$,
where

$$
\begin{aligned}
& a_{n}\left(1+\frac{\mu_{j}}{\lambda_{j}}, \lambda_{j}^{-1}\right)= \\
& \begin{aligned}
\lambda_{j}\left(\frac{2 n}{\pi} \lambda_{j}\right)^{1 / 4} \exp \left(-\sqrt{4 \pi n \lambda_{j}}\right) \cos \left(\sqrt{4 \pi n \lambda_{j}}-\right. & \left.\frac{5 \pi}{8}-2 \pi\left(\lambda_{j}+\mu_{j}\right)\right) \\
& +O\left(n^{-1 / 4} e^{-2 \sqrt{\pi n \lambda_{j}}}\right)
\end{aligned}
\end{aligned}
$$

The a_{n} are exponentially small, then

$$
\begin{equation*}
a_{n}\left(1+\frac{\mu_{j}}{\lambda_{j}}, \lambda_{j}^{-1}\right)=O(1) \tag{4.7}
\end{equation*}
$$

From (4.6) and (4.7), we obtain

$$
\begin{equation*}
I_{j}=\left(\lambda_{j}+\mu_{j}-\frac{1}{2}\right)-n \lambda_{j}\left\{\psi\left(\lambda_{j}+\mu_{j}\right)+\log \left(\lambda_{j}^{-1}\right)+1-h_{n-1}\right\}+O(n) \tag{4.8}
\end{equation*}
$$

Summing (4.8) over j, we get
(4.9) $\sum_{j=1}^{r} I_{j}=$

$$
\sum_{j=1}^{r}\left(\lambda_{j}+\mu_{j}-\frac{1}{2}\right)-n \sum_{j=1}^{r} \lambda_{j}\left\{\psi\left(\lambda_{j}+\mu_{j}\right)+\log \left(\lambda_{j}^{-1}\right)+1-h_{n-1}\right\}+O(n)
$$

Using the expression

$$
\psi(z)=-\gamma-\frac{1}{z}+\sum_{l=1}^{+\infty} \frac{z}{l(l+z)}
$$

where γ is the Euler constant, and the estimate

$$
h_{n}=\log n-\gamma+\frac{1}{2 n}+O\left(\frac{1}{2 n^{2}}\right)
$$

we deduce from (4.5) and (4.9) that

$$
\begin{aligned}
\lambda_{F}(-n)=\left(\sum_{j=1}^{r} \lambda_{j}\right) n \log n+\left\{\left(\sum_{j=1}^{r} \lambda_{j}\right)(\gamma-1)+\right. & \left.\log Q_{F}+\sum_{j=1}^{r} \lambda_{j} \log \lambda_{j}\right\} n \\
& -\sum_{l=1}^{n}\binom{n}{l} \eta_{F}(l-1)+O(n)
\end{aligned}
$$

Recalling that $d_{F}=\sum_{j=1}^{r} \lambda_{j}$ and noting that $\lambda=\prod_{j=1}^{r} \lambda_{j}^{2 \lambda_{j}}$, we have

$$
\begin{equation*}
\lambda_{F}(-n)=\frac{d_{F}}{2} n \log n+\left\{\frac{d_{F}}{2}(\gamma-1)+\frac{1}{2} \log \left(\lambda Q_{F}^{2}\right)\right\} n-\sum_{l=1}^{n}\binom{n}{l} \eta_{F}(l-1)+O(n) \tag{4.10}
\end{equation*}
$$

Now, we obtain a bound for $S_{F}(n)=-\sum_{l=1}^{n}\binom{n}{l} \eta_{F}(l-1)$ in terms of

$$
\lambda_{F}(-n, T):=\sum_{\rho ;|\Im \rho| \leq T} 1-\left(1-\frac{1}{\rho}\right)^{n}
$$

where T is a parameter.
Lemma 4.4 If the Generalized Riemann Hypothesis holds for $F \in \mathcal{S}$, then

$$
S_{F}(n)=O(\sqrt{n} \log n)
$$

Proof The proof is analogous to the argument used by Lagarias in [7]. We use a contour integral argument, and we introduce the kernel function

$$
k_{n}:=\left(1+\frac{1}{s}\right)^{n}-1=\sum_{l=1}^{n}\binom{n}{l}\left(\frac{1}{s}\right)^{l} .
$$

If C is a contour enclosing the point $s=0$ counterclockwise on a circle of small enough positive radius, the residue theorem gives

$$
I(n)=\frac{1}{2 i \pi} \int_{C} k_{n}(s)\left(-\frac{F^{\prime}}{F}(s+1)\right) d s=\sum_{l=1}^{n}\binom{n}{l} \eta_{l-1}=S_{F}(n)
$$

We deform the contour to the counterclockwise oriented rectangular contour C^{\prime} consisting of vertical lines with real part $\Re(s)=\sigma_{0}$ and $\Re(s)=\sigma_{1}$, where we will choose $-3<\sigma_{0}<-2, \sigma_{1}=2 \sqrt{n}$ and the horizontal lines at $\Im(s)= \pm T$, where we will choose $T=\sqrt{n}+\epsilon_{n}$ for some $0<\epsilon_{n}<1$. The residue theorem gives

$$
\begin{aligned}
I^{\prime}(n) & =\frac{1}{2 i \pi} \int_{C^{\prime}} k_{n}(s)\left(-\frac{F^{\prime}}{F}(s+1)\right) d s \\
& =S_{F}(n)+\sum_{\rho ;|\Im \rho| \leq T}\left(1+\frac{1}{\rho-1}\right)^{n}-1+O(1)
\end{aligned}
$$

The term $O(1)$ evaluates the residues coming from the trivial zeros of $F(s)$. Using the symmetry $\rho \mapsto 1-\bar{\rho}$, we can write

$$
\left(\frac{1-\bar{\rho}}{-\bar{\rho}}\right)^{n}-1=\left(\frac{\bar{\rho}-1}{\bar{\rho}}\right)^{n}-1
$$

Then

$$
I^{\prime}(n)=S_{F}(n)-\lambda_{F}(-n, T)+O(1) .
$$

We have

$$
\left|\lambda_{F}(-n, \sqrt{n})-\lambda_{F}(-n, T)\right|=O(\log n)
$$

This follows from the observation that $|T-\sqrt{n}|<1$, that there are $O(\log n)$ zeros in an interval of length one at this height, and that for each zero $\rho=\beta+i \gamma$ with $\sqrt{n} \leq|\Im(\rho)|<\sqrt{n}+1$ there holds

$$
\left|\left(\frac{\rho-1}{\rho}\right)\right| \leq\left|1+\frac{1}{n}\right|^{n / 2} \leq 2
$$

We now choose the parameters σ_{0} and T appropriately to avoid the poles of the integrand. We may choose σ_{0} so that the contour avoids any trivial zero and $T=\sqrt{n}+\epsilon_{n}$ with $0 \leq \epsilon_{n} \leq 1$ so that the horizontal lines do not approach closer than $O(\log n)$ to any zero of $F(s)$. Recall from [16] that for $-2<\Re(s)<2$ there holds

$$
\frac{F^{\prime}}{F}(s)=\sum_{\{\rho ;|\Im(\rho-s)|<1\}} \frac{1}{s-\rho}+O\left(\log \left(Q_{F}(1+|s|)\right)\right)
$$

Then on the horizontal line in the interval $-2 \leq \Re(s) \leq 2$, we have

$$
\left|\frac{F^{\prime}}{F}(s+1)\right|=O\left(\log ^{2} T\right)
$$

The Euler product for $F(s)$ converges absolutely for $\Re(s)>1$, hence the Dirichlet series for $\frac{F^{\prime}}{F}(s)$ converges absolutely for $\Re(s)>1$. More precisely, for $\sigma=\Re(s)>1$

$$
\left|\frac{F^{\prime}}{F}\right|(\sigma)<\infty
$$

For $\sigma=\Re(s)>2$, we obtain the bound

$$
\left|\frac{F^{\prime}}{F}(s)\right| \leq\left|\frac{F^{\prime}}{F}\right|(\sigma) \leq 2^{-(\sigma-2)}
$$

Consider the integral $I^{\prime}(n)$ on the vertical segment $\left(L_{1}\right)$ having $\sigma_{1}=2 \sqrt{n}$. We have

$$
\left|\left(1-\frac{1}{s}\right)^{n}-1\right| \leq\left(1+\frac{1}{\sigma_{1}}\right)^{n}+1 \leq\left(1+\frac{1}{2 \sqrt{n}}\right)^{n} \leq \exp (\sqrt{n} / 2)<2^{\sqrt{n}}
$$

Then

$$
\left|\frac{F^{\prime}}{F}(s)\right| \leq C_{0} 2^{-2(\sqrt{n}+2)}
$$

Furthermore, the length of the contour is $O\left(\frac{n}{\log n}\right)$, and we obtain $\left|I_{L_{1}}^{\prime}\right|=O(1)$. Let $s=\sigma+i t$ be a point on one of the two horizontal segments. We have $T \geq \sqrt{n}$, so that

$$
\left|1+\frac{1}{s}\right| \leq 1+\frac{\sigma+1}{\sigma^{2}+T^{2}}
$$

By hypothesis $T^{2} \geq n$, so for $-2 \leq \sigma \leq 2$, we have

$$
\left|k_{n}(s)\right| \leq\left(1+\frac{3}{4+n}\right)^{n}+1=O(1)
$$

and

$$
\left|\frac{F^{\prime}}{F}(s)\right|=O\left(\log ^{2} T\right)=O\left(\log ^{2} n\right)
$$

since we have chosen the ordinate T to stay away from zeros of $F(s)$. We step across the interval $\left(L_{2}\right)$ toward the right, in segments of length 1 , starting from $\sigma=2$. Furthermore,

$$
\left|\frac{k_{n}(s+1)+1}{k_{n}(s)+1}\right| \leq\left(1+\frac{1}{T^{2}}\right)^{n} \leq e,
$$

and we obtain an upper bound for $\left|k_{n}(s) \frac{F^{\prime}}{F}(s)\right|$ that decreases geometrically at each step. After $O(\log n)$ steps it becomes $O(1)$, and the upper bound is

$$
\left|I_{L_{2}, L_{4}}^{\prime}(n)\right|=O\left(\log ^{2} n+\sqrt{n}\right)=O(\sqrt{n})
$$

For the vertical segment $\left(L_{3}\right)$ with $\Re(s)=\sigma_{0}$, we have $\left|k_{n}(s)\right|=O(1)$ and $\left|\frac{F^{\prime}}{F}(s)\right|=$ $O\left[Q_{F}(\log (|s|+1))\right]$. Since the segment $\left(L_{3}\right)$ has length $O(\sqrt{n})$, we obtain

$$
\left|I_{L_{3}}^{\prime}\right|=O(\sqrt{n} \log n)
$$

Totalling the above bounds gives

$$
S_{F}(n)=\lambda_{F}(-n, T)+O(\sqrt{n} \log n)
$$

with $T=\sqrt{n}+\epsilon_{n}$. If the Generalized Riemann Hypothesis holds for $F(s)$, then we have $\left|1-\frac{1}{\rho-1}\right|=1$. Since each zero contributes a term of absolute value at most 2 to $\lambda_{F}(-n, T)$, we obtain using the zero density estimate $\left(N_{F}(T) \sim T \log T\right)$

$$
\lambda_{F}(-n, T)=O(T \log T+1)
$$

Therefore $\lambda_{F}(-n, \sqrt{n})=O(\sqrt{n} \log n)$, and Lemma 4.4 follows.
Using Lemma 4.4 and the expression (4.10) of $\lambda_{F}(-n)$ and $\lambda_{F}(-n)=\overline{\lambda_{F}(n)}$, we obtain

$$
\lambda_{F}(n)=\frac{d_{F}}{2} n \log n+\left\{\frac{d_{F}}{2}(\gamma-1)+\frac{1}{2} \log \left(\lambda Q_{F}^{2}\right)\right\} n+O(\sqrt{n} \log n)
$$

which concludes the proof of Theorem 4.1.

Examples

- In the case of the Riemann zeta function, we have $d_{\zeta}=1, Q_{\zeta}=\pi^{-1 / 2}$, and $\lambda=\frac{1}{2}$. This proves again under the Riemann Hypothesis the asymptotic formula established by A. Voros in [17, equation (17), p. 59].
- Also, in the case of the principal L-function $L(s, \pi)$ attached to an irreducible cuspidal unitary automorpohic representation of $G L(N)$, as in Rudnick and Sarnak [14, §2], we have $D_{L}=N, Q_{L}=Q(\pi) \pi^{-N / 2}$, and $\lambda=2^{-n}$. We find under the Generalized Riemann Hypothesis the asymptotic formula for $\lambda_{n}(\pi)$ established by Lagarias in [7, equations (1.12) and (1.13), p. 4].

Acknowledgments I am grateful to Prof. Sami Omar for posing this problem and for many helpful discussions. We also thank Prof. Muharem Avdispahić for his many valuable comments about the paper [12] and the referee for many valuable suggestions that increased the clarity of the presentation.

References

[1] E. Bombieri and D. A. Hejhal, On the distribution of zeros of linear combinations of Euler products. Duke. Math. J. 80(1995), no. 3, 821-862. doi:10.1215/S0012-7094-95-08028-4
[2] E. Bombieri and J. C. Lagarias, Complements to Li's criterion for the Riemann hypothesis. J. Number Theory 77(1999), no. 2, 274-287. doi:10.1006/jnth.1999.2392
[3] M. W. Coffey, Relations and positivity results for the derivatives of the Riemann ξ function. J. Comput. Appl. Math. 166(2004), no. 2, 525-534. doi:10.1016/j.cam.2003.09.003
[4] , Toward verification of the Riemann hypothesis. Math. Phys. Anal. Geom. 8(2005), no. 3, 211-255. doi:10.1007/s11040-005-7584-9
[5] P. Flajolet and L. Vepstas, On differences of zeta values. J. Comput. Appl. Math. 220(2008), no. 1-2, 58-73. doi:10.1016/j.cam.2007.07.040
[6] J. Kaczorowski and A. Perelli, The Selberg class: a survey. In: Number theory in progress, 2, de Gruyter, Berlin, 1999, pp. 953-992.
[7] J. C. Lagarias, Li coefficients for automorphic L-functions. Ann. Inst. Fourier 57(2007), no. 5, 1689-1740.
[8] X.-J. Li, The positivity of a sequence of number and the Riemann hypothesis. J. Number Theory 65(1997), no. 2, 325-333. doi:10.1006/jnth.1997.2137
[9] , Explicit formulas for Dirichlet and Hecke L-functions. Illinois J. Math. 48(2004), no. 2, 491-503.
[10] K. Maslanka, Effective method of computing Li's coefficients and their properties. Experimental Math., to appear.
[11] S. Omar and K. Mazhouda, Le critère de Li et l'hypothèse de Riemann pour la classe de Selberg. J. Number Theory 125(2007), no. 1, 50-58. doi:10.1016/j.jnt.2006.09.013
[12] \longrightarrow,Le critère de positivité de Li pour la classe de Selberg. C. R. Acad. Sci. Paris 345(2007), no. 5, 245-248.
[13] Corrigendum et addendum à Le critère de Li et l'hypothèse de Riemann pour la classe de Selberg [J. Number Theory 125(2007), no. 1, 50-58]. J. Number Theory 130(2010), no. 4, 1109-1114. doi:10.1016/j.jnt.2009.10.010
[14] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and radom matrix theory. Duke. Math. J. 81(1996), no. 2, 269-322. doi:10.1215/S0012-7094-96-08115-6
[15] A. Selberg, Old and new conjectures and results about a class of Dirichlet series. In: Proceedings of the Amalfi conference on analytic number theory (Maiori, 1989), Univ. Salermo, 1992, pp. 367-385.
[16] K. Srinivas, Distinct zeros of functions in the Selberg class. Acta. Arith. 103(2002), no. 3, 201-207. doi:10.4064/aa103-3-1
[17] A. Voros, A sharpening of Li's criterion for the Riemann hypothesis. Math. Phys. Anal. Geom. 9(2006), no. 1, 53-63. doi:10.1007/s11040-005-9002-8

Faculté des sciences de Monastir, Département de mathématiques, 5000 Monastir, Tunisia
e-mail: kamel.mazhouda@fsm.rnu.tn

[^0]: Received by the editors June 18, 2008; revised October 8, 2008.
 Published electronically February 10, 2011.
 AMS subject classification: 11M41, 11M06.
 Keywords: Selberg class, Saddle-point method, Riemann Hypothesis, Li's criterion.

