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Abstract. The construction of all age indicators consists of certain basic steps which lead to
the identification of the properties desirable for stellar age indicators. Prior age indicators for
main sequence field stars possess only some of these properties. The measured rotation periods
of cool stars are particularly useful in this respect because they have well-defined dependencies
that allow stellar ages to be determined with ∼20% errors. This method, called gyrochronology,
is explained informally in this talk, shown to have the desired properties, compared to prior
methods, and used to derive ages for samples of main sequence field stars.
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1. Motivations
Things in our world come into being, exist in time, and eventually cease to be. The

properties of these things usually change over time, so that specifying the age of some-
thing, whether it be a tree, a human being, or a star, immediately gives us a good idea of
what some of its other properties might be. In galactic astronomy, the ages of individual
stars assume a particular importance, because they constitute the ticks of the abstract
cosmic clock that tells us how various astronomical phenomena change over time.

Sandage (1962, and earlier) first noted that the morphology of a cluster of stars in the
Hertzsprung-Russell diagram might be used to derive its age. Demarque & Larson (1964)
improved it substantially, and named it the isochrone method. Although venerable, this
method is not very effective for main sequence stars because its principal variable, a star’s
luminosity, changes only slowly on the main sequence. Furthermore, for a field star, it
also requires an excellent distance measurement, not easily accomplished. Consequently,
isochrone ages for main sequence field stars have errors approaching ∼100%.

Of the prior distance-independent methods, the most consistent relies on the declining
chromospheric activity of a cool star (Wilson, 1963; Skumanich 1972; Noyes et al. 1984;
Soderblom et al. 1991; Donahue 1998). However, chromospheric emission varies with
a star’s rotation phase, activity cycle phase, and possibly other variables, limiting the
precision of such ages to ∼50%.

All activity-related age indicators are ultimately related to the rotation rate of a star.
However, attempts to harness rotation to derive ages were hindered by the ambiguity
of v sin i measurements, and what we now know to be a dynamo-related bimodality,
and associated transition, in very young stars. The v sin i ambiguity can be entirely
circumvented by (precisely) measuring a star’s (mass-dependent) rotation period instead,
and the early bimodality can be identified, and related stars excised.

This method, named gyrochronology (and parsed gyros-chronos-logos) allows the deriva-
tion of a significantly more precise age than previously available, of a cool main sequence
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field star, from its measured color and rotation period. The period is typically determined
from time-series measurements of the spot-related photometric modulation of starlight.
This talk is an informal summary of this method, as detailed in Barnes (2007). Some
results and terminology derive from the ‘CgI scenario’ for stellar rotation presented in
Barnes (2003).

2. Background for the construction of all age indicators
Many of the issues in constructing age indicators are so obvious that they are routinely

ignored! Let us therefore proceed by first stepping back, and considering the main steps
in the construction of any age indicator. One needs to:

(a) Find an observable, v, that changes ‘well’ with age; (‘Well’ means that it
works for single objects rather than for an ensemble, and also has the properties listed
in Table 1.)

(b) Determine the ages of suitable calibrators independently; (This means
measuring both the variable, v, for the calibrating objects, and the most trustworthy
prior variables so that v can be related to earth rotations, pendulum swings, etc.)

(c) Measure the functional form of the variable: v = v(t, w, x, ....); (t represents
the age, and w, x, ... additional dependencies. Variables with the fewest dependencies
are the most desirable.)

(d) Invert that functional form to find t = t(v, w, x, ...); (Analytic inversions
provide insight, but numerical inversions are usually necessary.)

(e) Calculate the error: δt = δt(t, v, w, x, ....); (Although necessary, non-linearities
and other complexities often make this final step difficult.)

Table 1. Characteristics of the three major age indicators for field stars

Property⇓ Method⇒ Isochrone Age Chromospheric Age Gyrochronology

Measurable easily? ? (Distance reqd.) ? (Repetition reqd.) ? (Repetition reqd.)

Sensitive to age? No (on MS) Yes Yes

Insensitive to other parameters? No Yes Yes

Technique calibrable? Yes (Sun) ? (Sun?) Yes (Sun)

Invertible easily? No Yes Yes

Errors calculable/provided? ? (Difficult) Yes? Yes

Coeval stars yield the same age? No (Field binaries) ? Yes

The foregoing, and other practical considerations, suggest that the following properties
are desirable for stellar age indicators.

(a) Measurability for single stars: The indicator should be properly defined,
measurable easily itself, and preferably should not require many additional quantities to
be measured, otherwise it cannot be used routinely.

(b) Sensitivity to age: The indicator should change substantially (and preferably
regularly) with age, otherwise the errors will be inherently large.

(c) Insensitivity to other parameters: The indicator should have insensitive (or
separable) dependencies on other parameters that affect the measured quantity, otherwise
there is the potential for ambiguity. In particular, distance-independent methods are
preferred.

(d) Calibration: The technique should be calibrable using an object (or set of ob-
jects) whose age(s) we know very well, otherwise systematic errors will be introduced.
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(e) Invertibility: The functional dependence determined above should be properly
invertible to yield the age as a function of the measured variables.

(f) Error analysis: The errors on the age derived using the technique ought to be
calculable, otherwise no confidence can be attached to the ages.

(g) Test of coeval stars: The technique should yield the same ages for stars expected
to be coeval, otherwise the validity of the technique itself must be questioned.

Table 1 summarizes the extent to which these properties are satisfied for the three
major field star age indicators now available.

3. Introduction to rotational ages
Skumanich (1972) seems to have been the first to identify a relationship between the

rotation rate of a star and its age. He used the averaged v sin i values of stars in selected
open clusters, and that of the Sun, all of whose ages are known independently. It was not
clear then that such a relationship could be used in any more than a statistical sense,
partly due to the inherent ambiguity in v sin i measurements. Observations of v sin i
values, and later, rotation periods in young open clusters revealed a wide dispersion in
the rotation rates of coeval stars that discouraged the use of rotation as an age indicator.

A prescient attempt was made by Kawaler (1989) to use rotation to derive ages based on
the Hyades rotation period sequence, but its reliance on various theoretically motivated
assumptions, the poor fit to the warm Hyades stars and the rotational dispersion in
young open clusters cast doubts on its viability.

However, the availability of large numbers of rotation periods in open clusters allowed
the resolution of this ‘dispersion’ into distinct rotational sequences, C & I, in color-period
diagrams, each with its own set of dependencies (Barnes 2003). This resolution shows that
the (largely slower-rotating) I sequence does indeed spin down similar to Skumanich’s
initial suggestion, but the (largely faster-rotating) C sequence does not. However, C
sequence stars change into I sequence stars within a couple of 100 Myr, so that all older
cool stars must be of the I type, and spin down predictably. Furthermore, the spindown
is convergent, in the sense that initial variations become increasingly unimportant with
the passage of time.

These facts allow one to identify the principal dependencies of stellar rotation, which
turn out to be stellar color/mass and age, and to identify empirically the tight relationship
between them. This relationship must be true for all cool stars on the main sequence.
Therefore, measuring a field star’s color/mass and rotation period at once allow the age
to be determined.

Furthermore, this method of determining the age is such that most of the properties
considered desirable for an age indicator, as listed above, can be shown to be satisfied.
Therefore, it seems appropriate to name the method ‘gyrochronology.’

4. Color-period diagrams
Gyrochronology is ultimately based on color-period diagrams of open clusters, such as

those shown in Fig. 1. (More such diagrams can be found in the papers by Meibom and
Irwin in these proceedings.) The older (∼600 Myr-old) Hyades cluster shows a distinct
diagonal sequence, called I, of faster-rotating warmer stars and slower-rotating cooler
stars, marked with circles. The way to understand the color-period diagram of the younger
(∼300 Myr-old) cluster NGC 3532 is to realize that not only is this I sequence also present
in this cluster, but another sequence, C, of faster-rotating stars, marked with asterisks.
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Figure 1. Color-period diagrams of the 300 Myr-old NGC3532 (Barnes, 1998) and the
600 Myr-old Hyades open clusters (primarily Radick et al. 1987). We see that the C-type stars
in NGC 3532 (asterisks) have changed into I-type stars (circles) by Hyades age.

[The sequences are striking in the richer M 35 cluster (Meibom et al. 2008).] Comparing
the two color-period diagrams tells us that almost all the C-type stars change into I-type
stars by Hyades age. The stars in the rotational gap, g, between the two sequences can
now be interpreted as stars in transition from the C- to the I-sequence.

These color-period diagrams also suggest that the color/mass dependence of the I se-
quence is the same for both clusters. This implies that the rotation period, P , of a star
on this I sequence is expressible as the separable product of this mass dependence and of
other variables, of which we might guess that the most important is the age, t, because
stars spin down over time. Thus, we write P = f(B − V ).g(t).

5. The dependencies of I sequence stars
What might the age dependence, g(t), be? A very good guess would simply be g(t) =√
t, in agreement with the original suggestion by Skumanich (1972). Indeed, when the

rotation periods, P , of stars in all measured open clusters are divided by g(t) =
√

t,
the I sequences are brought into coincidence, as shown in Fig. 2, from Barnes (2007).
(These early data include binaries, possibly aliased periods and other pathologies, hence
the scatter.)

Fig. 3 shows a similar coincidence for field stars, the single unevolved set of Mt. Wilson
stars from Baliunas et al. (1996). We have used individual chromospheric ages calculated
using the prescription of Donahue (1998). It is obvious that the C sequence stars in the
younger open clusters have all changed into I sequence stars in the older Mt. Wilson
sample. Furthermore, by guessing the age dependence, g(t), using Skumanich (1972), the
mass dependence of the I sequence has been made manifest.

Indeed, one can fit this dependence using a function of the form

f(B − V ) = a(B − V − c)b giving a = 0.773 ± 0.011, b = 0.601 ± 0.024. (5.1)

The translational term, c, was simply equated to 0.4 in Barnes (2007) and to 0.5 in
Barnes (2003). A subsequent fit by Meibom et al. (2008), using both a large sample of
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Figure 2. Rotation periods of cluster stars di-
vided by the square roots of the cluster ages.
Note the presence of both I sequence stars
near the solid line, and C sequence stars be-
low. (Figure from Barnes, 2007)

Figure 3. Rotation periods of single, main se-
quence Mt. Wilson stars, divided by the square
roots of their chromospheric ages. Note that
only I sequence stars are present. (Figure from
Barnes, 2007)

rotation periods in the open cluster M 35, and spectroscopic membership information,
gives

a = 0.770 ± 0.014, b = 0.553 ± 0.052, c = 0.472 ± 0.027. (5.2)

The point is that regardless of the exact functional form chosen, a 2-3 parameter fit will
suffice, and those parameters will be determined with small errors.

One final step of the construction remains. Having specified f(B − V ), we now return
to g(t). It is reasonable to seek a power law dependence: g(t) = tn . This allows us to
calibrate the method using the Sun by ensuring that the above mass dependence gives
the Solar rotation period at Solar age. This calibration gives n = 0.519 ± 0.007.

Thus, the age of a star (in Myr) is simply given by inverting P = f(B −V ).g(t) to get

log(tgyro) =
1
n
{log P − log a − b × log (B − V − c)} (5.3)

where the constants a, b, c, n are as specified above, and base 10 logarithms are
used.

6. Age error analysis
A virtue of the above formulation is that the age error can be simply calculated, and

the various contributing error terms seen in perspective. The expression for the fractional
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age error, as calculated in Barnes (2007), is:

δt

t
= 2% ×

√
3 +

1
2
(ln t)2 + 2P 0.6 +

(
0.6
x

)2

+ (2.4ln x)2 (6.1)

where x = B − V − 0.4. For 1 Gyr-old stars of spectral types late F, early G, mid K and
early M respectively, we get

δt

t
= 2% ×

⎧⎪⎪⎨
⎪⎪⎩

√
26.9 + 6.4 + 66.5 when B − V = 0.5 (P = 7d);√
26.9 + 8.9 + 16.9 when B − V = 0.65 (P = 12d);√
26.9 + 12.1 + 2.5 when B − V = 1.0 (P = 20d);√
26.9 + 15.4 + 0.35 when B − V = 1.5 (P = 30d).

(6.2)

which shows the relative contributions of the period and color errors (second and third
terms, respectively). Color errors and differential rotation are the significant contributors
for bluer and redder stars respectively.

The expression above evaluates to fractional age errors of 13-20% for 1 Gyr-old early M-
late F stars, suggesting that relatively precise ages may indeed be derived for field stars,
provided that the observable inputs, color and rotation period, are measured well.

7. Application to field star samples
Expressions (5.3) above and (6.1), for the gyro age and its error, respectively, are true

for all I-type main sequence late F-early M stars, whether in clusters or in the field. We
can therefore apply them to field star samples with measured rotation periods to derive
ages where none were available before. The field star sample of Strassmeier et al. (2000)
is an example.

Figure 4. Color-period diagram for the
Strassmeier et al. (2000) stars, showing the
100 Myr-old (gyro) isochrone used to discard
possible C/g-type stars. Only the I-type stars
above are retained for gyrochronology. (Figure
from Barnes, 2007)

Figure 5. Rotational isochrones are shown for
ages ranging from 100 Myr to 4.5 Gyr for the
I-type stars in the Strassmeier et al. (2000)
sample. Note the relative youth of the sam-
ple, in keeping with its active pedigree. (Fig-
ure from Barnes, 2007)

Fig. 4 displays the color-period diagram for this sample, and the 100 Myr (gyro) iso-
chrone used to choose only the I-type stars for age analysis. Fig. 5 displays isochrones
spanning the age range of the sample, showing its relative youth. Indeed, the median age
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is only 365 Myr, in agreement with the selection of the original sample by activity. The
stars are individually tabulated in Barnes (2007), where the technique is also applied to
the older sample of stars (median age of 1.2 Gyr) assembled by Pizzolato et al. (2003). For
both samples, activity indicators like RH K and LX /Lbol are found to decline as expected
with increasing gyro age.

8. Comparison with chromospheric ages
The best age indicator for nearby field stars over the past couple of decades has been

the decline of chromospheric emission with age. The calibrations regularly used are those
of Soderblom et al. (1991) and Donahue (1998), but see Mamajek & Hillenbrand (2008)
and Mamajek’s article in these proceeding for a recalibration including gyrochronology.
It would therefore be appropriate to compare the new gyro ages with these older chromo-
spheric ages. The best sample for this comparison is the Mt. Wilson sample of cool stars,
one studied intensively for decades for chromospheric activity, and for which measured
rotation periods are also available.

Fig. 6 shows this comparison, the cross indicating representative errors. The basic result
to note is that there is reasonable agreement between the two ages because the upper left
and lower right corners are unoccupied. A closer inspection shows that the chromospheric
ages used here (Donahue 1998) are somewhat longer than the gyro ages, as the dashed
median line shows. Dividing the stars into blue (B−V < 0.6), green (0.6 > B−V > 0.8),
and red (B − V > 0.8), shows that the discrepancy relates mostly to the blue F stars,
whose lifetime of 5 Gyr is indicated in the figure, as is the age of the universe.

Figure 6. Comparison between gyro- and chromospheric ages for the Mt. Wilson star sample.
Two conclusions can be drawn: (1) The two types of ages are in rough agreement, but the
chromospheric ages are somewhat larger, and (2) The discrepancy relates mostly to the blue F
stars (crosses) whose 5 Gyr lifetime is marked, rather than the green G stars (squares) or the
red K stars (asterisks). (Figure from Barnes, 2007)
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9. Comparison with isochrone ages
An equivalent comparison of gyro- and isochrone ages demonstrates the difficulty of

deriving isochrone ages for field stars.
The most modern and homogeneous field star isochrone ages available are those for

the SPOCS star sample of Takeda et al. (2007), who have undertaken a Bayesian age
analysis, based on the method of Pont & Eyer (1994), and a prior uniform spectroscopic
study of these stars by Valenti & Fischer (2005). The stars in common with those in
Barnes (2007) are displayed in Fig. 7.

Despite the Bayesian technique’s admirable attempt to account for the asymmetric
error distribution in color-magnitude diagrams, the isochrone ages are still on average a
factor of ∼2.7 larger than the gyro ages. Some upper and lower limits are included when
they represent wide binary stars with measured rotation periods. Related components
are connected with dashed lines. These only serve to underscore the difficulty of deriving
isochrone ages for non-cluster main sequence stars.

Figure 7. Comparison between gyro- and Bayesian isochrone ages for stars in common with
the Takeda et al. (2007) SPOCS sample. The isochrone ages are on average ∼2.7 times the gyro
ages. Upper- and lower limits are included if they concern wide binaries with rotation periods.
The components are connected by dashed lines. (Figure from Barnes, 2007)

10. Ages for wide binaries
Finally, we arrive at that very desirable property that an age determination method

yield the same age for stars that we believe to be coeval. Indeed, there are a handful of
wide binaries where rotation periods for both components have been measured. Thus,
their ages may be determined independently. (We use wide binaries to be sure that there
has been no tidal or magnetic hanky-panky between the components.)

The color-period diagram for the three available systems is shown in Fig. 8, along with
the mean gyro isochrones and their errors for each pair, with details in Table 2 (from
Barnes 2007). The ages for the components appear to be in agreement within the errors.

https://doi.org/10.1017/S1743921309032001 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921309032001


Gyrochronology for main sequence field stars 353

Figure 8. The components of the wide binaries ξ Boo, 61 Cyg, and α Cen appear to give the
same gyro ages. (Figure from Barnes, 2007)

The age of the 36 Oph triple system is taken to be that of the presumably non-interacting
tertiary component.

11. Conclusions
In summary, we have constructed an improved method of determining the age of a

main sequence star from its measured rotation period, calibrated it using the Sun, and
shown that the associated errors are smaller than those from prior methods.

The key steps of the construction are:
• All late F-earlyM stars become I-type rotators within a couple of 100 Myr,
• Their rotation periods, P , are describable as a product of two separable functions,

f , and g, of the B − V color and age, t, respectively: P (B − V, t) = f(B − V ).g(t),

Table 2. Ages for wide binary systems

System Star B − V P̄r o t Agec h r o m o Agei s o Ageg y r o

HD131156A 0.76 6.31(0.05) 232 Myr <760 Myr 187±21 Myr
ξ Boo HD131156B 1.17 11.94(0.22) 508 Myr >12600 Myr 265±28 Myr

Mean 226±18 Myr

HD201091 1.18 35.37(1.3) 2.36 Gyr <0.44 Gyr 2.12±0.3 Gyr
61 Cyg HD201092 1.37 37.84(1.1) 3.75 Gyr <0.68 Gyr 1.87±0.3 Gyr

Mean 2.0±0.2 Gyr

HD128620 0.67 28(3) 5.62 Gyr 7.84 Gyr 4.6±0.8 Gyr
α Cen HD128621 0.87 36.9(1.8) 4.24 Gyr >11.36 Gyr 4.1±0.7 Gyr

Mean 4.4±0.5 Gyr

HD155886 0.85 20.69(0.4) 1.1 Gyr ...... 1.42±0.19 Gyr
36 Oph HD155885 0.86 21.11(0.4) 1.2 Gyr ...... 1.44±0.20 Gyr

HD156026 1.16 18.0(1.0) 1.4 Gyr <0.48 Gyr 0.59±0.07 Gyr
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• f(B − V ) and g(t) can be determined empirically with small errors,
• g(t) is such that initial variations become increasingly irrelevant with time,
• The functional dependence is easily inverted to get t = t(P,B − V ), and
• The age error, δt = δt(t, P,B − V ), is calculated.
The technique compares favorably with prior methods, which it complements, and

passes some important tests. Precise time-series photometry is increasingly available
from the ground and from space, making stellar rotation periods routinely measurable.
Consequently, we recommend measuring rotation periods for appropriate main sequence
cool stars where precise ages are desired, and using gyrochronology to derive them.
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Discussion

P. Goudfrooij: Interesting method. However, it seems to me that for this method to
work for any given star, one needs to know its foreground reddening very well, especially
for the earlier- type stars where the “curvature” in the period-color relation is largest.
I was wondering whether this issue could play a role in the apparent disagreement with
ages from chromospheric lines.

S. Barnes: The disagreement with chromospheric ages is probably of a different origin.
This is because reddening is not an issue for the (very close) Mount Wilson field stars.
That said, there could be a residual effect in the calibration of gyrochronology if the
cluster reddenings used are not quite correct.

E. Mamajek: How long does it take for a C-sequence star to “jump the gap” to the
I-sequence? Is there a way to flag a star in the field as “gap” vs. “interface”?
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S. Barnes: It varies from zero (late-F stars in the youngest clusters are already on the
I sequence) to a few 100 Myr for early M stars. This includes a phase on the C-sequence.
The transition from C to I is shorter because fewer stars are in the gap region in color-
period diagrams, reminiscent of the Hertzsprung gap. Because of this timescale, any star
above the 100 Myr isochrone in the color-period diagram is basically guaranteed to be an
I-sequence star. Eventually we may have other ways of distinguishing the two, perhaps
from magnetic field considerations.

M. Pinsonneault: There is a theoretical context here: One expects a tight relationship
between rotation and age to exist only after stars lose memory of their initial conditions.
I also find it very worrying that the models disagree with the data where the isochrone
ages can be tested. Your thoughts?

S. Barnes: It is correct that the relationship will be tight after stars lose memory of
their initial conditions. This happens as 1/t. The data are what they are. The method
is empirical. For the clusters, it does not really matter if their ages are slightly modified
since they are all young. Any age error in there will simply show up as an increased
spread in f(B − V ), which shows up as an increased error in the gyro age. The index
n depends on the solar calibration. As for the models, I do not think that they get the
rotational evolution correct, or even that the physics included is completely correct.
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