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             Introduction 
 European Union (EU) legislation on the restriction of hazard-
ous substances  1   as well as an article  2   in  Nature  about 15 years 
ago provided the triggers for a strong effort into the science 
and technology of lead-free piezoceramics, with many stake-
holders coming into play. While EU legislation restricts the 
use of lead in piezoelectric devices unless exempted under 
specifi c conditions,  1   the article in  Nature  suggests that lead-
free compositions may now be available to replace lead in 
certain piezoceramic applications.  2   With the goal to reduce 
the production and waste disposal of toxic lead, research on 
lead-free piezoceramics strives to make lead zirconate titanate 
(PZT) and similar perovskite materials redundant. Shrout and 
Zhang  3   have summarized the complexity of this task in a con-
cise manner. 

 The scope of this endeavor to develop lead-free piezo-
ceramics can be gleaned by considering the history of PZT,  4 , 5 

which highlights many years of development. The toxicity of 
lead, including risks to the environment during mining, pro-
cessing, and disposal, is the driving force for this research. 
The article by Bell and Deubzer  6   in this issue summarizes the 
current level of understanding. Legislation in Europe, and in 
many other parts of the world,  7   to restrict and reduce hazard-
ous substances such as lead has proven to be a strong driv-
ing force toward research into nontoxic replacements. Review 
processes and interactions with industry to address a variety 

of legislative directives have been developed for different 
applications. Exemption 7(c)-I, for example, has been recently 
reviewed and provides an exemption for lead in piezoelectronic 
devices until July 2021, with applications for further extension 
of this exemption due to the European commission by January 
2020. Bell and Deubzer  6   have outlined current legislation and 
future options. 

 Piezoelectricity describes the creation of an electric charge 
in response to a mechanical stress. The converse effect is the 
development of a strain as a function of an applied electric 
fi eld (  Figure 1  ). The proportionality constant is identical for 
both cases and is described as the piezoelectric coeffi cient,  d .  4 , 8 

Since polarization is a vector and stress a second rank tensor, 
the piezoelectric constant must be written as a third rank 
tensor, but can be transformed to a second rank matrix.  9   As 
we are considering the replacement of PZT and of related ma-
terials, which are ferroelectrics and are converted to piezo-
electrics by a poling process, ferroelectric crystal structures 
are becoming important.     

 Domains in ferroelectrics (  Figure 2  ) can be consid-
ered to be a form of twins that develop at the paraelectric/
ferroelectric phase transition in order to reduce the elastic and 
electrostatic energies.  10   Application of an electric fi eld may 
lead to lattice extension (intrinsic contribution to the piezo-
electric effect), domain-wall movement resulting in a strain 
contribution (extrinsic contribution to the piezoelectric effect), 
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and phase transitions.11 Consequently, the thermodynamics of 
the different crystal symmetries (Figure 3) is of paramount 
importance for understanding and designing piezoelectric 
materials. In particular, the anisotropic flattening of the free 
energy along nonpolar directions is key for good piezoelectric 
properties, as it facilitates easy rotation of the polariza-
tion vector.11,12 This important topic, contrasting piezoelectric 
mechanisms between PZT-related materials and new lead-free 
compositions, is covered in the article by Damjanovic and 
Rossetti in this issue.13

Note that domain wall movement, as well as phase trans-
formations, are strongly hysteretic processes, which may lead 
to energy dissipation in the material. A temperature increase 
may then prompt thermal runaway and limit material perfor-
mance. Hence, an important distinction in piezoceramics is 
between soft (high strain, high losses) and hard (low strain, 
low losses) piezoceramics.14 A further classification stems 
from the pertinent applied field. Piezoelectric properties under 

low driving field (small signal properties) and 
under high driving field (large signal proper-
ties) are relevant for different applications.

Lead-free material options
The endeavor to find new lead-free perovskites 
has mostly focused on mimicking PZT. In 
PZT, a so-called morphotropic phase bound-
ary (MPB) forms and provides properties 
mostly independent of temperature. This MPB 
features changes in phase structure with just 
composition and not temperature. Elements 
with high ionic polarizability, low cost,7 and 
low environmental impact15 are required. Due to 
the similar electronic structure of bismuth and 
lead with the lone 2s-electron pair facilitating 
hybridization with oxygen, sodium-bismuth- 
titanate-based (NBT) materials have been con-

templated since 1991.16 These materials are typically relaxors 
and offer complex phase diagrams.17 Consequently, dedicated 
studies of in situ phase transitions using scattering techniques 
such as neutron and synchrotron diffraction played an impor-
tant role in elaborating structure–property relationships.17,18 
The current understanding of lead-free relaxor-based piezo-
ceramics is discussed in the article by Paterson et al. in this 
issue.19

“Lead-free at last” was the title chosen by Cross20 to accom-
pany a paper by Saito et al.2 on the development of potassium 
sodium niobate (KNN)-based lead-free piezoceramics. These 
materials feature optimum properties at a polymorphic phase 
transition with attendant drawbacks of strong temperature  
dependence.21,22 More recent research has focused on chemical 
modifications to provide enhanced temperature stability of the 
piezoelectric properties.23 This approach and attendant materi-
als are discussed by Wang et al.24 in their article in this issue.

Liu and Ren25 proposed an alternative developmental path 
to mimicking PZT in 2009, using barium titanate as the base 
material, doping it with calcium and zirconium, and thus 
furnishing it with a tricritical point25 or convergence region 
where the cubic, orthorhombic, tetragonal, and rhombohedral 
phases coexist.26 This material again features a complex phase 
structure with good properties, albeit limited by a low Curie 
temperature. In their article in this issue, Gao et al.27 discuss 
structure–property relationships for different compositions in 
the pseudobinary phase diagram Ba(Zr,Ti)O3–(Ba,Ca)TiO3

. 
A new material class based on bismuth ferrite (BF) addresses 
the needs for high-temperature applications. While the first 
publications on bismuth ferrite-barium titanate (BF-BT) are 
already several years old,28 there has been recent progress 
by a number of researchers. Most appealing is the promise 
for use of BF-BT at high temperatures, not only replac-
ing PZT, but also considerably improving high-temperature 
capabilities.29 In a study by Lee et al.,29 excellent piezoelectric 
properties with a Curie temperature in excess of 400°C were 
reported when BF-BT with the addition of either Bi1.05GaO3 or 

Figure 1.  (a) The direct piezoelectric effect provides an electric charge upon application of 
a mechanical stress, whereas (b) the converse piezoelectric effect describes the situation 
where strain develops under an applied electric field.

Figure 2.  Scanning electron microscope micrograph of an 
etched surface of (K, Na)0.94Li0.6NbO3 that features a complex 
domain structure in the polycrystalline grain ensemble. 
Courtesy: J.L. Zhang, Shandong University.
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Bi1.05(Zn0.5Ti0.5)O3 was sintered and then quenched. Recently, 
a correlation of the phase diagram of BF-BT with electrical 
properties was achieved.30 Similarly, it was demonstrated that 
an air quenching treatment in BF-BT affords an improvement 
in piezoelectric properties through salient changes in atomic 
structure.31

Figure 4 summarizes the evolution in output of publica-
tions and patents in the field of lead-free piezoceramics. Work 
by many researchers has led to a secondary effect (i.e., devel-
opment of spin-off nonpiezoelectric applications). The new 
insight, notably of bismuth-based perovskites, has spawned 
new research fields into oxygen conductors,33 high-temperature 
dielectrics,34 and energy-storage materials.35 Similarly, a greater 
understanding of niobate-based materials has yielded the devel-
opment of new antiferroelectric niobates for energy storage36 
and for electrocalorics.37

Future directions
While legislation in Europe and other regions has provided 
a strong impetus for further research, intense subsequent 
efforts have brought our scientific understanding close to the 
level of knowledge on lead-containing piezoceramics. This 
is particularly true for structural investigations of lead-free 
piezoceramics, where complementary in situ (temperature-, 
stress- and electric-field-dependent) neutron and synchrotron 
scattering techniques have provided a highly advanced under-
standing.38 As a result, avenues have opened up for new mate-
rials with properties better than PZT for select applications.39 
For example, NBT-based materials have advantages over PZT 
in high-power applications,40 and KNN can be sintered with 
nickel for multilayer applications, with nickel providing high 
electromigration resistance and stability when subjected to 
high applied electric fields.41 In the area of thin films, KNN 
materials offer excellent properties.42 Additionally, KNN-
based ceramics are preferentially used for medical imaging 
transducers of 1–3 structured composites (fibrous inclusions in 
continuous matrix).43,44 Our current knowledge of some of the 
primary piezoelectric properties (e.g., temperature-dependent 

Figure 3.  The cubic high-temperature perovskite phase transforming into one or several of the low-temperature phases: rhombohedral, 
orthorhombic, and tetragonal.4 Lead (barium, calcium, bismuth, potassium, or sodium in the lead-free replacements) occupies the A-site, 
while titanium, zirconium, niobium, tantalum or iron are on the B-site.

Figure 4.  Evolution of lead-free piezoelectric research output 
in terms of (a) publications and (b) patents. This graph was 
compiled by searching for “lead-free” and “piezoceramics” in 
Web of Science32 and then checking each paper individually, 
whether it indeed discusses the replacement of lead zirconate 
titanate for piezoceramic applications. (a) The color bars 
represent the piezoelectric applications, while the black circles 
with the dashed line (lead-free perovskites, new applications) 
outline spin-off applications stemming from research into lead-
free piezoceramics. KNN, potassium sodium niobate; NBT, sodium 
bismuth titanate; BT, barium titanate.
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piezoelectric properties) has reached a level sufficient for use 
in applications (Figure 545–90). In Figure 5, we see that BT and 
KNN exhibit a piezoelectric coefficient competitive to PZT at 
room temperature,3 while BF-BT has a higher Curie tempera-
ture than PZT.3 NBT-BT has advantages with high power 
applications and mechanical reliability (not covered with this 
graph). However, at this point in time, we also need to dedicate 
research efforts into better understanding secondary properties, 
such as electrical and mechanical properties, electrical fatigue, 
and machinability.91 Based on the current level of product devel-
opment, the article by Shibata et al. in this issue discusses the 
status of product transfer into applications.92 At the same time, 
new materials (e.g., based on bismuth ferrite)29 and new physical 
mechanisms are being discovered. In terms of new mechanisms, 
the opportunities to enhance depolarization temperature by 
either quenching93 or using composites94,95 and by hardening 
through hard second phases96 seem particularly noteworthy.
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