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ON THE NUMBER OF SEGREGATING SITES
FOR POPULATIONS WITH LARGE FAMILY SIZES
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Abstract

We present recursions for the total number, Sn, of mutations in a sample of n individuals,
when the underlying genealogical tree of the sample is modelled by a coalescent process
with mutation rate r > 0. The coalescent is allowed to have simultaneous multiple
collisions of ancestral lineages, which corresponds to the existence of large families in
the underlying population model. For the subclass of �-coalescent processes allowing
for multiple collisions, such that the measure �(dx)/x is finite, we prove that Sn/(nr)
converges in distribution to a limiting variable, S, characterized via an exponential integral
of a certain subordinator. When the measure �(dx)/x2 is finite, the distribution of S
coincides with the stationary distribution of an autoregressive process of order 1 and
is uniquely determined via a stochastic fixed-point equation of the form S

d= AS + B,
with specific independent random coefficients A and B. Examples are presented in
which explicit representations for (the density of) S are available. We conjecture that
Sn/E(Sn) → 1 in probability if the measure �(dx)/x is infinite.
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1. Introduction and main results

Kingman’s coalescent process has proved to be a powerful tool in ancestral population
genetics. This process describes the ancestry of a sample of n particles, individuals, genes, or
DNA sequences taken from a large population (see [12], [13], [14], and [15]). More precisely,
Kingman’s coalescent is a continuous-time Markov process (Rt )t≥0 whose state space is the
set of all equivalence relations on {1, . . . , n} such that i and j are in the same equivalence class
(block) ofRt if and only if the ith and the j th individuals in the sample have a common ancestor
at time t in the past. All transitions involve exactly two classes of Rt merging together, and
each such merging occurs at rate 1.

It is assumed that each individual is of a certain type. A mutation process is superimposed
on the genealogical tree as follows. Mutations appear independently of the genealogical tree at
the points of a Poisson process with rate r > 0 acting along each branch of the tree. Usually, the
infinitely-many-alleles model is assumed, i.e. each mutation leads to a brand new type, never
seen before.

In ancestral population genetics certain statistical functionals are of fundamental importance.
For example, given a sample of n strands of DNA, let�ij be the number of sites at which the ith
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Populations with large family sizes 751

and the j th segments differ. Then�n := (
n
2

)−1 ∑
i �=j �ij is the number of pairwise differences.

Another important statistic is the number, Sn, of segregating sites in the sample, i.e. the number
of sites at which at least one pair of segments differ. These statistics are important, for example,
to test the hypothesis of neutrality [25] or for the existence of selective sweeps [8]. It is well
known that, for the Kingman coalescent, Sn is asymptotically normal with mean E(Sn) ∼ θ log n
and variance var(Sn) ∼ θ log n, where θ := 2r .

Within the last decade, progress has been made in describing the genealogy of populations
which allow for large offspring sizes. Examples of such populations are known from the study
of marine organisms [11]. In the corresponding coalescent process, many equivalence classes
ofRt can merge at once into a single class. These coalescent processes with multiple collisions
were introduced by Pitman [18] and Sagitov [22]. Even more generally, if the population
is allowed occasionally to have many very large families, many such multiple mergers can
occur simultaneously. These coalescent processes with simultaneous multiple collisions were
introduced by Schweinsberg [24] and Möhle and Sagitov [16]. In this paper we study the
number, Sn, of segregating sites under the assumption that the underlying genealogical tree is
modelled by a coalescent process with simultaneous multiple collisions.

The paper is organized as follows. In Section 2 we present recursions for Sn, in particular
for the distribution, the probability generating function, and the mean of Sn.

From Section 3 on we focus on coalescent processes with multiple collisions. The most sim-
ple way to introduce these coalescent processes is via a finite measure,�, on [0, 1]. Coalescent
processes with multiple collisions are therefore also called �-coalescents. Transitions from a
given equivalence relation ξ to an equivalence relation η �= ξ with ξ ⊂ η occur (by definition)
with rate

qξη =
∫

[0,1]
xn−k−1(1 − x)k−1�(dx), (1.1)

where n := |ξ | and k := |η| denote the number of classes (blocks) of ξ and η, respectively. We
first restrict our consideration to measures � satisfying the conditions

�({0}) = 0 and µ−2 :=
∫
(0,1]

x−2�(dx) < ∞. (1.2)

In the spirit of Bertoin and Le Gall [3, Lemmas 3 and 4], we call measures � satisfying (1.2)
simple measures, and we speak of the simple case whenever (1.2) is satisfied. Conditions (1.2)
prevent � from having too much mass near 0. A typical simple measure is � = δu, the Dirac
measure at u ∈ (0, 1].

For simple measures �, our main result (Theorem 3.1) states that Sn/(nr) converges in
distribution to a limiting random variable S which is characterized by a stochastic functional
equation of the form S

d= AS + B, where the coefficients A and B are certain independent
random variables. Such functional equations are well known from the theory of autoregressive
processes and linear recursions. For more details we refer the reader to [6] or [26]. Basic
examples are presented in Section 4. In Section 5 the convergence in distribution Sn/(nr) → S

is extended (see Theorem 5.1) to the more general class of measures� satisfying the conditions

�({0}) = 0 and µ−1 :=
∫
(0,1]

x−1�(dx) < ∞. (1.3)

In this case the characteristic equation for Sn/(nr) degenerates in the limit and, hence, gives no
information about the distribution of the limiting variable S. We show that the distribution of S
can be characterized via an exponential integral of a subordinator with zero drift and Laplace
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exponent �(x) = ∫
[0,1](1 − (1 − y)x)y−2�(dy). Finally (in Section 6) we comment on the

open case in which the measure �(dx)/x is infinite.

2. Recursions for the total number of mutations

Let � be a finite measure on [0, 1] and let R = (Rt )t≥0 be a �-coalescent process, i.e. a
time-continuous Markovian process with state space E , i.e. the set of all equivalence relations
on N, and rates (1.1). LetDt := |Rt | denote the number of blocks (equivalence classes) of Rt .
It is well known that the block-counting process D = (Dt )t≥0 is a Markovian death process
with state space N, infinitesimal rates

gnk :=
(

n

k − 1

) ∫
[0,1]

xn−k−1(1 − x)k−1�(dx), 1 ≤ k < n, (2.1)

and total rates

gn =
n−1∑
k=1

gnk =
∫

[0,1]
1 − (1 − x)n − nx(1 − x)n−1

x2 �(dx), n ∈ N. (2.2)

For n ∈ N, let (D (n)
k )k∈N0 (where N0 = N ∪ {0}) denote the jump chain of the process

(|�nRt |)t≥0, where �n : E → En denotes the natural projection to the set En of all equivalence
relations on {1, . . . , n}. Note that the jump chain has initial state D (n)

0 = n. The first jump will
be to the state k, 1 ≤ k < n, with probability

rnk := P(D (n)
1 = k) = gnk

gn
, n, k ∈ N, 1 ≤ k < n.

The infinitely-many-alleles model is assumed, i.e. mutations appear on each branch of the tree
at the points of a Poisson process with rate r > 0 and each mutation leads to a brand new type.
Let Sn denote the total number of mutations along the genealogical tree back to the most recent
common ancestor of a sample of size n. Note that, in the infinitely-many-sites model, Sn is
equal to the number of segregating sites. Obviously, S1 = 0 and

Sn = Yn + S
D(n)

1
= Yn +

n−1∑
k=1

1{D(n)
1 =k} Sk, n ≥ 2, (2.3)

where Yn is the number of mutations that arise during the time, τn
d= Exp(gn), that the sample

has n ancestors. (By ‘
d=’ we denote equality in distribution.) Conditional on τn, Yn is Poisson-

distributed with parameter nrτn. Thus, Yn has probability generating function

E(sYn) = E(E(sYn | τn)) = E(e−nrτn(1−s)) = gn

gn + nr(1 − s)
, s ∈ [0, 1],

i.e. Yn is geometrically distributed with parameter gn/(gn + nr). The recursion (2.3) for Sn
is useful to derive recursions for functionals of Sn. For example, the probability generating
function of Sn satisfies the recursion

E(sSn) = E(sYn)
n−1∑
k=1

rnk E(sSk )

= 1

gn + nr(1 − s)

n−1∑
k=1

gnk E(sSk ), s ∈ [0, 1], n ≥ 2, (2.4)
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with initial condition E(sS1) = 1. Substituting the argument s of the probability generating
function by e−λ, λ ≥ 0, turns (2.4) into a recursion for the Laplace transform of Sn, which
we will use later in this article. The mean and the second mean of Sn respectively satisfy the
recursions

E(Sn) = E(Yn)+
n−1∑
k=1

rnk E(Sk) = nr

gn
+ 1

gn

n−1∑
k=2

gnk E(Sk)

and

E(S2
n) = E(Y 2

n )+ 2 E(Yn)E(S
D(n)

1
)+ E(S2

D(n)
1
)

= E(Y 2
n )− 2 E(Yn)

2 + 2 E(Yn)E(Sn)+ E(S2
D(n)

1
)

= nr

gn
+ 2

nr

gn
E(Sn)+ 1

gn

n−1∑
k=2

gnk E(S2
k ),

from which a recursion for the variance of Sn may be derived. Slightly more complicated is the
recursion for the distribution of Sn. We have P(S1 = j) = δj0 (the Kronecker symbol) and,
for n ≥ 2 and j ∈ N0,

P(Sn = j) =
n−1∑
k=1

rnk P(Yn + Sk = j)

=
n−1∑
k=1

rnk

j∑
i=0

P(Yn = i)P(Sk = j − i)

=
n−1∑
k=1

gnk

gn

j∑
i=0

gn

gn + nr

(
nr

gn + nr

)i
P(Sk = j − i)

=
n−1∑
k=1

gnk

gn + nr

j∑
i=0

(
nr

gn + nr

)i
P(Sk = j − i).

We will not use the recursion for the distribution of Sn in our further considerations, but we do
have to study the mean and the variance of Sn in more detail. For this purpose it is helpful to
consider the total length, Ln, of the tree (�nRt )t≥0, which satisfies a recursion similar to (2.3),
namely L1 = 0 and

Ln = nτn + L
D(n)

1
= nτn +

n−1∑
k=1

1{D(n)
1 =k} Lk, n ≥ 2, (2.5)

where τn
d= Exp(gn) is the time during which the sample has n ancestors. LetM = (M(t))t≥0

denote the mutation Poisson process with parameter r > 0. Then we have the distributional
relation

Sn
d= M(Ln) (2.6)

between Sn and Ln. In our model (genetic neutrality), the mutation process M is independent
of the underlying genealogical tree and, hence, in particular, independent of the tree length
Ln. As a consequence of (2.6), the mathematical analysis of Sn is essentially equivalent to
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that of Ln. Many functionals of Sn can be expressed in terms of Ln. For example, for k ∈ N,
P(Sn < k) = P(Ln < Tk), where Tk , the time of the kth jump of the Poisson process M , is
independent of Ln. Moreover, E(Sn) = r E(Ln),

var(Sn) = E(var(Sn | Ln))+ var(E(Sn | Ln))
= E(rLn)+ var(rLn)

= r E(Ln)+ r2 var(Ln),

and, hence, E(S2
n) = r E(Ln)+ r2 E(L2

n). From (2.5) it follows that the Laplace transform of
Ln satisfies the recursion

E(e−λLn) = E(e−λnτn)
n−1∑
k=1

rnk E(e−λLk ) = 1

gn + nλ

n−1∑
k=1

gnk E(e−λLk ), λ ≥ 0, n ≥ 2,

with initial condition E(e−λL1) = 1. The first and second raw moments, an := E(Ln) and
bn := E(L2

n), satisfy the recursions a1 := b1 := 0 and

an := n

gn
+ 1

gn

n−1∑
k=2

gnkak and bn := 2n

gn
an + 1

gn

n−1∑
k=2

gnkbk, n ≥ 2. (2.7)

Note that neither sequence (an)n∈N nor sequence (bn)n∈N depends on the mutation rate r . Let

r∗nk :=
∑
l∈N0

r
(l)
nk =

∑
l∈N0

P(D (n)
l = k) =

∑
l∈N0

E(1{D(n)
l =k}) = E

(∑
l∈N0

1{D(n)
l =k}

)

denote the expected number of visits of the jump chain (D (n)
l )l∈N0 to the state k. Straightforward

induction on n shows that an is given by an = ∑n
k=2(k/gk)r

∗
nk .This formula can be found in [8,

Equation (4.2)]. Unfortunately, closed expressions for r∗nk are rarely available. However, under
additional assumptions, upper bounds for r∗nk are available and lead to asymptotic results for
Sn for large n. Explicit solutions for the distribution of Sn are only known for special cases;
in particular for the Kingman coalescent, for which the measure � = δ0 is the Dirac measure
at 0, and for the star-shaped coalescent with � = δ1, the point measure at 1.

Example 2.1. (Kingman coalescent.) For the Kingman coalescent (� = δ0, i.e. gn = gn,n−1
= n(n− 1)/2) the recursion (2.5) reduces to Ln = nτn +Ln−1, n ≥ 2. Thus, Ln = ∑n

i=2 iτi ,
where the τi , i ≥ 2, are independent, exponentially distributed random variables with parameter
gi = i(i − 1)/2, and, hence,

E(Ln) =
n∑
i=2

i E(τi) =
n∑
i=2

2

i − 1
= 2

n−1∑
k=1

1

k
∼ 2 log n

and

var(Ln) =
n∑
i=2

i2 var(τi) =
n∑
i=2

4

(i − 1)2
= 4

n−1∑
k=1

1

k2 ∼ 2π2

3
.

In particular, E(Sn) = r E(Ln) ∼ θ log n and var(Sn) = r E(Ln)+ r2 var(Ln) ∼ θ log n, with
θ := 2r . The probability generating function of Sn is given by

E(sSn) =
n∏
k=2

E(sYk ) =
n∏
k=2

k − 1

k − 1 + θ(1 − s)
. (2.8)
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Further properties of Sn, in particular its asymptotic normality, follow easily from (2.8). The
exact formula

P(Sn = k) = n− 1

θ

n−1∑
j=1

(−1)j−1
(
n− 2

j − 1

)(
θ

j + θ

)k+1

, n ≥ 2, k ≥ 0,

for the distribution of Sn goes back to Watterson [27].

Example 2.2. (Star-shaped coalescent.) For the star-shaped coalescent (� = δ1, i.e. gn =
gn1 = 1 for n ≥ 2), we have Ln = nτn, E(Ln) = n, and var(Ln) = n2, for n ≥ 2. In
particular, E(Sn) = nr and var(Sn) = nr(1 + nr) for n ≥ 2, which follows also from the fact
that, for n ≥ 2, Sn = Yn is geometrically distributed with parameter 1/(1 + nr).

We mention that all the recursions derived in this section are also valid for the general
class of exchangeable coalescent processes with simultaneous multiple collisions studied by
Schweinsberg [24] and Möhle and Sagitov [16]. We simply need to replace the rates gnk and
the total rates gn by those of the more general block-counting process, D = (Dt )t≥0, of the
coalescent with simultaneous multiple collisions.

3. Asymptotics for the number of mutations

Our aim is to study the asymptotic behaviour of Sn for large n in the situation in which
the underlying genealogical tree is given by a �-coalescent, i.e. a coalescent with multiple
collisions. In this section we restrict our considerations to so-called simple measures �, i.e.
to measures � satisfying conditions (1.2). From (2.2) it follows that (1.2) is equivalent to
limn→∞ gn < ∞. As already mentioned in the introduction, conditions (1.2) prevent � from
having too much mass near 0. The �-coalescent is a Markov process of jump-hold type with
bounded transition rates and step function paths if and only if (1.2) is satisfied (see [18, p. 1874]).
Typical examples satisfying conditions (1.2) are � = δu, the Dirac measure at u ∈ (0, 1], or
� = β(p, q), the beta distribution with parameters p > 2 and q > 0. Typical measures which
do not satisfy conditions (1.2) are beta distributions β(p, q) with 0 < p ≤ 2. A treatment of
more general measures requires extended, or other, methods. We discuss these extensions in
more detail in Sections 5 and 6. Conditions (1.2) imply that

ν(dx) := x−2�(dx) (3.1)

is a finite measure on [0, 1] with ν({0}) = 0. For k ∈ N0, let mk := ∫
xkν(dx) denote the kth

moment of ν. We furthermore exclude the trivial case in which � ≡ 0, i.e. we assume that
ν((0, 1]) > 0 and, hence, thatmk > 0 for all k ∈ N0 andm0 > m1 > m2 > · · · . For the proof
of the convergence result (Theorem 3.1) we need the following two lemmas.

Lemma 3.1. If the measure � �= 0 satisfies conditions (1.2), then the following assertions
hold.

(i) 1 − D (n)
1 /n converges in distribution to the probability measure ν0 := ν/m0, where

m0 := ν([0, 1]) is the total mass of the measure, ν, defined in (3.1).

(ii) There exists a constant, c > 0 (depending on� but not on n and r), such that E(Sn) ≤ cnr
for all n ∈ N and all r ≥ 0.

(iii) The Laplace transform, ψn, of Sn/(nr) satisfies −c ≤ ψ ′
n(λ) ≤ 0 for all n ∈ N and all

λ ≥ 0, where c is the constant in (ii).
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Proof. (i) By assumption, ν is a finite measure with ν({0}) = 0. Thus,
∫
(1−x)nν(dx) → 0

by dominated convergence. Therefore,

gn =
∫

1 − (1 − x)n − nx(1 − x)n−1

x2 �(dx)

=
∫
(1 − (1 − x)n − nx(1 − x)n−1)ν(dx)

= m0 −
∫
(1 − x)nν(dx)−

∫
nx(1 − x)n−1ν(dx)

→ m0.

For n ∈ N and 0 ≤ x ≤ 1, let Zn ≡ Zn(x) be a random variable binomially distributed with
parameters n and x. For l ∈ N, we have

gn E

((
1 − D (n)

1 − 1

n

)l)
= gn

n−1∑
k=1

(
1 − k − 1

n

)l
rnk

=
n−1∑
k=1

(
1 − k − 1

n

)l
gnk

=
∫ n−1∑

k=1

(
n− k + 1

n

)l
P(Zn(x) = n− k + 1)ν(dx)

=
∫ n∑

i=2

(
i

n

)l
P(Zn(x) = i)ν(dx) (where i = n− k + 1)

=
∫

[E((Zn(x)/n)l)− (1/n)l P(Zn(x) = 1)]ν(dx)

→
∫
xlν(dx)

= ml

by dominated convergence. Thus, the moments of 1 − (D (n)
1 − 1)/n converge to those of

ν0 := ν/m0. As 1 − (D (n)
1 − 1)/n (which satisfies 0 ≤ 1 − (D (n)

1 − 1)/n ≤ 1) is uniformly
bounded, this convergence of moments implies the convergence in distribution.

(ii) Obviously,
∑n−1
k=2 krnk ≤ ∑n−1

k=2(n− 1)rnk ≤ n− 1 for all n ∈ N. Furthermore,

n−1∑
k=2

krnk ≤
n−1∑
k=1

krnk = E(D (n)
1 ) ∼ n(1 −m1/m0),

where 1 − m1/m0 < 1. Thus, there exists a constant p, 0 < p < 1 (which might depend on
� but not on n), such that

n−1∑
k=2

krnk ≤ np for all n ∈ N.

By induction on l ∈ N, it follows that

n−1∑
k=2

kr(l)nk ≤ npl for all n, l ∈ N.
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The sequence, (gn)n∈N, of total rates is monotone increasing. In particular, 1/gk ≤ 1/g2 = 1
for k ≥ 2. Thus,

E(Sn)

nr
= 1

n

n∑
k=2

k

gk
r∗nk ≤ 1

n

n∑
k=2

kr∗
nk = 1

n

n∑
k=2

k
∑
l∈N0

r
(l)
nk

= 1

n

∑
l∈N0

n∑
k=2

kr(l)nk = 1

n

(
n+

∑
l∈N

n−1∑
k=2

kr(l)nk

)

≤ 1

n

∑
l∈N0

npl = 1

1 − p

=: c.

(iii) Obviously, ψn(λ) = fn(s(λ)), where fn is the probability generating function of Sn and
s(λ) := exp(−λ/(nr)), λ ≥ 0. Therefore, ψ ′

n(λ) = s′(λ)f ′
n(s(λ)) ≤ 0 and

ψ ′′
n (λ) = s′′(λ)f ′

n(λ)+ (s′(λ))2f ′′
n (s(λ)) ≥ 0,

i.e. ψ ′
n is monotone increasing on [0,∞). It is hence sufficient to verify that ψ ′

n(0) ≥ −c for
all n ∈ N or, equivalently, that E(Sn) ≤ cnr for all n ∈ N, which is true by (ii).

Let A and B be independent random variables. The following lemma goes back to
Vervaat [26].

Lemma 3.2. Assume that −∞ ≤ µ := E(log |A|) < 0. If the stochastic functional equation

X
d= AX + B (3.2)

has a solution, then the solution is unique in distribution.

Proof. Let ((An, Bn))n∈N0 be a sequence of independent and identically distributed random
variables with (An, Bn)

d= (A,B). By iterating (3.2), we obtain

X
d= A0 · · ·AnX +

n−1∑
i=0

Bi

i−1∏
j=0

Aj . (3.3)

By the strong law of large numbers,

1

n

n∑
k=0

log |Ak| a.s.−−→ E(log |A|) = µ ∈ [−∞, 0),

where ‘
a.s.−−→’denotes almost-sure convergence. Therefore, log |A0 · · ·An| a.s.−−→ −∞ and, hence,

A0 · · ·An a.s.−−→ 0. From (3.3) it follows thatX is the weak limit of
∑n−1
i=0 Bi

∏i−1
j=0 Aj asn → ∞.

In particular, the distribution of X is uniquely determined by A and B.

We are now able to present the convergence theorem, which clarifies the asymptotic
behaviour of the number, Sn, of segregating sites.
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Theorem 3.1. If the measure � �= 0 satisfies conditions (1.2), then Sn/(nr) converges in
distribution to a nonnegative limiting random variable S. The distribution of S is uniquely
determined by the stochastic functional equation

S
d= AS + B, (3.4)

where A and B are independent random variables (independent of S) distributed as follows:
1 − A

d= ν0 := ν/m0 and B
d= Exp(m0). The Laplace transform, ψ , of S is uniquely deter-

mined by the functional equation

ψ(λ) = m0

m0 + λ
E(ψ(Aλ)) = 1

m0 + λ

∫
[0,1]

ψ((1 − x)λ)ν(dx), λ ≥ 0. (3.5)

Before the proof of Theorem 3.1 is presented, let us make the following remark.

Remark 3.1. Stochastic functional equations of the form (3.4) or, equivalently, (3.5) are well
known from the theory of autoregressive processes and stochastic affine recursions. The
distribution of S (see, for example, [26] or [6]) coincides with the stationary distribution of
a generalized autoregressive process (Xn)n∈N0 defined by X0 := 0 and Xn+1 := AnXn + Bn,
where (An, Bn)n∈N0 is a sequence of independent, identically distributed random variables with
(An, Bn)

d= (A,B). Note that

Xn =
n−1∑
i=0

Bn−i−1

n−1∏
j=n−i

Aj
d=
n−1∑
i=0

Bi

i−1∏
j=0

Aj , n ∈ N0,

and, hence, that S
d= ∑∞

i=0 Bi
∏i−1
j=0 Aj .

Proof of Theorem 3.1. Fix the mutation rate r > 0 and let ψn denote the Laplace transform
of Sn/(nr).

Step 1. We verify the existence of a subsequence (nl)l∈N of integers such that the limits
liml→∞ ψnl (λ), λ ≥ 0, all exist.

Let Q+ = {q1, q2, . . . } be a countable representation of the set of all nonnegative rational
numbers. As the sequence (ψn(q1))n∈N is bounded, there exists a subsequence, (n1l )l∈N, such
that the limit ψ(q1) := liml→∞ ψn1l (q1) exists. As the sequence (ψn(q2))n∈N is bounded,
there exists a subsequence, (n2l )l∈N, of (n1l )l∈N such that the limit ψ(q2) := liml→∞ ψn2l (q2)

exists. Iteratively we find, for each k, a subsequence (nkl)l∈N of (nk−1,l)l∈N such that the
limit ψ(qk) := liml→∞ ψnkl (qk) exists. Thus, for the diagonal sequence nl := nll we have
ψ(qk) = liml→∞ ψnl (qk) for all k. In other words, for the subsequence (nl)l∈N, the limits
ψ(q) = liml→∞ ψnl (q), q ∈ Q+, all exist.

Lemma 3.1(iii) ensures that |ψ ′
n(λ)| ≤ c for all λ ≥ 0 and n ∈ N. Thus (by the mean value

theorem), for p, q ∈ Q+ there exists a ξ ≡ ξ(nl, p, q) between p and q such that

|ψ(p)− ψ(q)| = lim
l→∞ |ψnl (p)− ψnl (q)| = lim

l→∞ |ψ ′
nl
(ξ)(p − q)| ≤ c|p − q|.

Thus, ψ is Lipschitz continuous on Q+. For an arbitrary λ ≥ 0, take two sequences, (ak)k∈N

and (bk)k∈N, of rational numbers such that ak ↗ λ and bk ↘ λ. As Laplace transforms are
monotone decreasing on R+, we have

ψnl (ak) ≥ ψnl (λ) ≥ ψnl (bk).
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Taking the limit as l → ∞ yields

ψ(ak) ≥ lim sup
l→∞

ψnl (λ) ≥ lim inf
l→∞ ψnl (λ) ≥ ψ(bk).

Asψ is continuous on Q+, the differenceψ(ak)−ψ(bk) converges to 0 as k → ∞. Thus, the
limit ψ(λ) := liml→∞ ψnl (λ) exists, and ψ is continuous on R+.

Step 2. Assume that (nl)l∈N is a subsequence such that the limits ψ(λ) := liml→∞ ψnl (λ),

λ ≥ 0, all exist. Again from Lemma 3.1(iii), it follows that ψ is Lipschitz continuous. The
continuity theorem for Laplace transforms ensures that ψ is the Laplace transform of some
random variable S and that (Snl )l∈N converges in distribution to S. It remains to verify that the
distribution of S does not depend on the subsequence (nl)l∈N. In order to see this we proceed
as follows. From (2.4) we conclude that ψn satisfies the recursion

ψn(λ) = E(e−λSn/(nr))

= gn

gn + nr(1 − e−λ/(nr))

n−1∑
k=1

rnk E(e−λSk/(nr))

= gn

gn + nr(1 − e−λ/(nr))

n−1∑
k=1

rnkψk

(
k

n
λ

)
. (3.6)

Since limn→∞ gn = m0, it follows that

lim
n→∞

gn

gn + nr(1 − e−λ/(nr))
= m0

m0 + λ
,

which is the Laplace transform of an exponentially distributed random variable B, say, with
parameter m0. Now,

n−1∑
k=1

ψk

(
k

n
λ

)
rnk =

∑
x∈{1/n,...,(n−1)/n}

ψn(1−x)((1 − x)λ)P(1 − D (n)
1 /n = x)

=
∫

[0,1]
ψ[n(1−x)]((1 − x)λ)P

1−D(n)
1 /n

(dx),

where P
1−D(n)

1 /n
denotes the distribution of 1 − D (n)

1 /n, [x] := sup{z ∈ Z : z ≤ x} for x ∈ R,

and we adopt the convention that ψ0(λ) := 1. As ψ is continuous, monotone, and bounded,
the convergence

lim
l→∞ψ[nl(1−x)]((1 − x)λ) = ψ((1 − x)λ)

holds uniformly in x ∈ [0, 1]. By setting n := nl in (3.6) and letting l → ∞, we obtain

ψ(λ) = m0

m0 + λ

∫
[0,1]

ψ((1 − x)λ)
ν(dx)

m0
,

which is the functional equation (3.5). In the language of random variables this functional
equation is equivalent to S

d= AS + B, where A and B are mutually independent and inde-
pendent of S with 1 − A

d= ν0 and B
d= Exp(m0). The random variable A takes values in

[0, 1] almost surely. By assumption, ν0 is not the zero measure, i.e. P(A = 1) < 1. Thus,
−∞ ≤ E(logA) < 0. Lemma 3.2 ensures the uniqueness of S in distribution. In particular,
the distribution of S does not depend on the subsequence (nl)l∈N.
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Corollary 3.1. Assume that the measure � �= 0 satisfies conditions (1.2). Then, at least for
0 ≤ λ < m0, the Laplace transform ψ of S has the Taylor expansion ψ(λ) = ∑∞

k=0 ckλ
k , with

c0 := 1 and

ck :=
k∏
i=1

1∫
((1 − x)i − 1)ν(dx)

, k ∈ N. (3.7)

In particular, S has moments

E(Sk) =
k∏
i=1

i

�(i)
= k!
�(1) · · ·�(k) , k ∈ N, (3.8)

where �(i) := ∫
[0,1](1 − (1 − x)i)ν(dx), i ∈ N.

Proof. Define ck as in (3.7). It is straightforward to verify that, for 0 ≤ λ < m0 := ν([0, 1]),
ψ(λ) := ∑∞

k=0 ckλ
k is a convergent series which solves the functional equation (3.5) on [0,m0).

The formula for the moments follows from E(Sk) = (−1)kψ(k)(0+) = (−1)kk! ck .

4. Examples

We present two basic but important examples. In both examples, explicit expressions for
the density of the limiting random variable S are derived.

Example 4.1. Fix a β > 0. Suppose that� has density x �→ βx2(1−x)β−1 with respect to the
Lebesgue measure on [0, 1]. Obviously, conditions (1.2) are satisfied and, hence, Theorem 3.1 is
applicable. The measure ν has density x �→ β(1−x)β−1 with respect to the Lebesgue measure,
i.e. ν is the beta distribution with parameters 1 and β. Therefore, the Laplace transform, ψ , of
the limiting random variable S satisfies the functional equation

(1 + λ)ψ(λ) =
∫

[0,1]
ψ((1 − x)λ)ν(dx) = β

∫ 1

0
ψ((1 − x)λ)(1 − x)β−1dx

with unique solution ψ(λ) = 1/(1 + λ)β+1, λ ≥ 0. Thus, S is gamma distributed with
parameters β + 1 and 1, i.e. S has density t �→ tβe−t / �(β + 1), t ≥ 0.

Note that for the special case β = 1, ν is the uniform distribution on [0, 1]. The block-
counting process D = (Dt )t≥0 has rates gnk = 1/(n + 1), 1 ≤ k < n, and total rates
gn = (n − 1)/(n + 1), n ∈ N. Hence, the corresponding jump chain moves from n to any
state k, 1 ≤ k < n, with equal probability rnk = gnk/gn = 1/(n− 1).

Example 4.2. Let � = δu be the Dirac measure at u ∈ (0, 1]. The measure ν is then
concentrated at u with total mass m0 = ν([0, 1]) = u−2. Thus, by Theorem 3.1, Sn/(nr)
converges in distribution to a nonnegative limiting random variable S. The distribution of
S is uniquely determined by the stochastic functional equation S

d= (1 − u)S + B, where
B

d= Exp(u−2) is independent of S. The functional equation, (3.5), for the Laplace transform,
ψ , of S reduces to

(1 + u2λ)ψ(λ) = ψ((1 − u)λ), λ ≥ 0,

and S has moments

E(Sk) =
k∏
i=1

iu2

1 − (1 − u)i
= k! u2k

k∏
i=1

1

1 − (1 − u)i
, k ∈ N0.
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In particular, E(S) = u and var(S) = u3/(2 − u). The distribution of S coincides with the
stationary distribution of an autoregressive process (Xn)n∈N0 of order 1 defined by X0 := 0
and Xn+1 := (1 − u)Xn + Bn, n ∈ N0, where (Bn)n∈N0 is a sequence of independent,
identically distributed random variables, each exponentially distributed with parameter u−2.
From Remark 3.1 it follows that S

d= ∑∞
i=0(1 − u)iBi . For the star-shaped coalescent (u = 1)

it follows immediately that S
d= B0 is exponentially distributed with parameter 1. Assume now

that 0 < u < 1. As (1 − u)iBi
d= Exp(λi) with λi := 1/(u2(1 − u)i), it follows that S has

Laplace transform ψ(λ) = ∏∞
i=0 λi/(λi + λ), density

t �→
∞∑
i=0

λie
−λi t

∞∏
j=0
j �=i

λj

λj − λi
, t ≥ 0,

and distribution function

t �→ 1 −
∞∑
i=0

e−λi t
∞∏
j=0
j �=i

λj

λj − λi
, t ≥ 0.

5. Extensions and further examples

In this section it is assumed that the measure � satisfies (1.3), which are obviously weaker
conditions than (1.2). Note that in this case the measure ν defined via (3.1) is no longer
necessarily finite. From (2.1) it follows that (1.3) is equivalent to limn→∞ γn/n < ∞, where
(see [23, Lemma 3])

γn :=
n−1∑
k=1

(n− k)gnk =
∫

[0,1]
(nx − 1 + (1 − x)n)ν(dx).

Note that it follows from Lemma 25 of [18] that the�-coalescent remains infinite if (1.3) holds.
Obviously, the right-hand sides of (3.7) and (3.8) are still defined for the wider class of measures
satisfying (1.3). Thus, it is tempting to generalize the convergence result (Theorem 3.1) to
measures satisfying (1.3), as follows.

Theorem 5.1. If the measure � �= 0 satisfies conditions (1.3), then Sn/(nr) converges in
distribution to a nonnegative limiting random variable S uniquely determined by its moments
(see (3.8)). The Laplace transform, ψ , of S solves the integral equation

λψ(λ) =
∫

[0,1]
[ψ((1 − x)λ)− ψ(λ)]ν(dx), (5.1)

where ν is defined via (3.1).

Remark 5.1. If the measure ν is finite, then (5.1) and (3.5) are equivalent, and Theorem 5.1
essentially coincides with Theorem 3.1.

Proof of Theorem 5.1. Without loss of generality (see Theorem 3.1), assume that m0 :=
ν([0, 1]) = ∞. Define νm(dx) := 1{x>1/m} ν(dx) and �m(dx) := x2νm(dx). Let Sn(m)
denote the number of segregating sites in a sample of size n for the situation in which the
underlying genealogical tree is modelled by a �m-coalescent. Applying Theorem 3.1 to the
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measure �m yields the weak convergence of Sn(m)/(nr) to a limiting random variable S(m)
whose distribution is uniquely determined by its moments,

E(S(m)k) =
k∏
i=1

i∫
(1 − (1 − x)i)νm(dx)

=
k∏
i=1

i∫
(1/m,1](1 − (1 − x)i)ν(dx)

, k ∈ N0. (5.2)

The right-hand side of (5.2) converges to (3.8) as m tends to infinity. This convergence of
moments implies the convergence of S(m) in distribution to some limiting random variable S
with moments (3.8). Note that, on the one hand, from limk→∞�(k) = ν([0, 1]) = ∞ it follows
that

∑∞
k=1 t

k/(�(1) · · ·�(k)) is a convergent series for all t . Thus, the moment generating
function t �→ E(etS) = 1 + ∑∞

k=1 t
k/(�(1) · · ·�(k)) exists and, hence, the distribution of S

is uniquely determined by the sequence of moments (3.8). For more details on such moment
problems we refer the reader to [10]. On the other hand,�m converges weakly to� asm tends
to infinity and, hence, S is the weak limit of the sequence (Sn/(nr))n∈N.

It remains to verify (5.1). Define ck as in (3.7). Using the Taylor expansion ψ(λ) =∑∞
k=0 ckλ

k, 0 ≤ λ < m0 = ∞, for the Laplace transform of S, it is straightforward to verify
that ψ solves the integral equation (5.1).

In the following it is helpful to introduce the transformation T : [0, 1] → [0,∞] via

T (y) := −log (1 − y), (5.3)

with the convention that T (1) := ∞. Note that T −1(y) = 1 − e−y . The author would like to
express his thanks to Aleksander Iksanov for pointing out the following characterization of the
distribution of S in terms of an exponential integral of a subordinator.

Proposition 5.1. Assume that the measure� �= 0 satisfies conditions (1.3). Then the distribu-
tion of the limiting variable S has the representation

S
d=

∫ ∞

0
e−Xt dt,

where (Xt )t≥0 is a subordinator (i.e. a Lévy process with nondecreasing paths) with zero drift
and Lévy measure � := νT , i.e. �(A) = ν(T −1(A)) for all Borel sets A ⊆ [0,∞], where ν is
the measure defined in (3.1) and T is the transformation defined in (5.3).

Proof. The function

�(x) :=
∫

[0,∞]
(1 − e−xy)�(dy) =

∫
[0,1]

(1 − (1 − y)x)ν(dy)

is a Laplace exponent (Bernstein function) of a subordinator (Xt )t≥0 with Lévy measure � and
zero drift. Setting Z := ∫ ∞

0 e−Xt dt , by Proposition 3.3 of [7] (specialized to subordinators)
we have

E(Zk) = k!
�(1) · · ·�(k) , k ∈ N,

the right-hand side of which is a moment sequence that uniquely determines the distribution.
By comparing the latter equality with (3.8) we deduce that E(Zk) = E(Sk) for all k and, hence,
that Z

d= S.
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Remark 5.2. When 0 < m0 := ν([0, 1]) < ∞, the Lévy measure � is finite (�([0,∞]) =
m0 < ∞), which means that (Xt )t≥0 is a compound Poisson process Xt = ∑N(t)

i=1 ηi, where
N := (N(t))t≥0 is a homogeneous Poisson process with parameter m0 and ηi, i ∈ N, are
random variables, independent of each other and of N , with common distribution function
y �→ P(ηi ≤ y) := m−1

0 �([0, y]). Let T1, T2, T3, . . . , T1 < T2 < T3 < · · · , denote the jump
times of the Poisson process N . Then

Z =
∫ ∞

0
e−Xt dt =

∞∑
i=0

∫ Ti+1

Ti

e−Xt dt

= T1 + (T2 − T1)e
−η1 + (T3 − T2)e

−η1−η2 + · · ·
= T1 + e−η1Z1,

where Z1
d= Z. Therefore, we have S

d= e−η1S + T1, which is equivalent to (3.4).

Example 5.1. Assume that � has density x �→ x (i.e. the identity mapping) with respect to
the Lebesgue measure on [0, 1]. In this case the block-counting process D has rates gnk =
1/(n − k + 1), 1 ≤ k < n, and total rates gn = ∑n

i=2 1/i, n ≥ 2. Note that gn ∼ log n as
n → ∞. By Theorem 5.1, Sn/(nr) converges in distribution to a nonnegative random variable
S uniquely determined by its moments, E(Sk) = k!/(h1 · · ·hk), k ∈ N0, where

hi =
∫

[0,1]
(1 − (1 − x)i)ν(dx) =

∫ 1

0

1 − (1 − x)i

x
dx

=
∫ 1

0

i∑
j=1

(
i

j

)
(−x)j−1 dx =

i∑
j=1

(
i

j

)
(−1)j−1

j

=
i∑

j=1

1

j

is the ith harmonic number, i ∈ N. In particular, E(S) = 1, var(S) = 1
3 , and S has Laplace

transform

ψ(λ) := E(e−λS) =
∞∑
k=0

(−λ)k
k! E(Sk) =

∞∑
k=0

(−λ)k
h1 · · ·hk , λ ≥ 0.

The Lévy measure, �, of the corresponding subordinator satisfies

�([a, b]) = ν([1 − e−a, 1 − e−b]) =
∫ 1−e−b

1−e−a
x−1 dx = log

(
1 − e−b

1 − e−a

)

for 0 < a < b < ∞. Note that � has density x �→ e−x/(1 − e−x)with respect to the Lebesgue
measure on (0,∞).

The following example is taken from [4, p. 102].

Example 5.2. Fix an α, 0 < α < 1, and assume that � has density

x �→ (1 − α)2

α�(α + 1)

x2(1 − x)1/α−2

(1 − (1 − x)1/α)2−α
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with respect to the Lebesgue measure on (0, 1). It is straightforward to check that∫
[0,1]

x−1�(dx) = 1 − α

�(α + 1)
< ∞.

Note that the Lévy measure � has density

x �→ (1 − α)2

α�(α + 1)

ex/α

(ex/α − 1)2−α , 0 < x < ∞,

with respect to the Lebesgue measure on (0,∞). From the results of [4, p. 102] we conclude
that S

d= Xα , where X is an exponential variable with unit mean.

Remark 5.3. Clearly, when S satisfies (3.4), the corresponding distribution is absolutely con-
tinuous. More generally, from Proposition 2.1 of [7] it follows that S always admits a density,
f , which is infinitely differentiable on (0,∞) and solves the integral equation

f (x) =
∫ ∞

x

�((log(u/x),∞])f (u) du, 0 < x < ∞.

6. Final remarks and open problems

Assume that the measure � does not satisfy (1.3) or, equivalently, that the measure �
(dx)/x is infinite. In this case the asymptotic behaviour of Sn for large n seems to be of a
different nature. Fix an ε > 0. Chebyshev’s inequality shows that

P

(∣∣∣∣ Sn

E(Sn)
− 1

∣∣∣∣ ≥ ε

)
= P(|Sn − E(Sn)| ≥ ε E(Sn))

≤ var(Sn)

ε2 E(Sn)2
= r E(Ln)+ r2 var(Ln)

ε2r2 E(Ln)2

= ran + r2(bn − a2
n)

ε2r2a2
n

= 1

ε2

(
1

ran
+ bn

a2
n

− 1

)
,

where (an)n∈N and (bn)n∈N are the sequences defined in (2.7). Therefore, Sn/E(Sn) → 1 in
probability if

an → ∞ and bn ∼ a2
n. (6.1)

The first example in the literature of a �-coalescent with multiple collisions was probably the
so-called Bolthausen–Sznitman coalescent [5], which is (by definition) the �-coalescent with
� the uniform distribution on [0, 1]. We refer the reader to [9] for some more recent results
on this particular �-coalescent. Obviously, (1.3) does not hold for the Bolthausen–Sznitman
coalescent. It is shown in Appendix A that an ≥ n/ log n for all n ≥ 3. In particular, an → ∞
for the Bolthausen–Sznitman coalescent. We conjecture that an ∼ n/ log n and that bn ∼ a2

n,
i.e. that (6.1) holds and, therefore, that Sn/E(Sn) → 1 in probability for the Bolthausen–
Sznitman coalescent. For the�-coalescent with beta distribution� = β(2−α, α), 1 < α < 2,
Berestycki et al. [1, Theorem 1.9] verified thatSn/n2−α → c in probability. They also presented
an expression for the limiting constant, c, in terms of gamma functions. In this context we also
refer the reader to [2], where closely related exact asymptotic results for the site frequency
spectrum were derived for such beta coalescents. We conjecture that (6.1) and, hence, the
convergence in probability Sn/E(Sn) → 1 hold for all �-coalescent processes which do not
satisfy (1.3).
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The next step would be to analyse the limiting behaviour of the standardized variable

S∗
n := Sn − E(Sn)√

var(Sn)
.

The convergence of S∗
n in distribution to some limiting variable S is well known in the Kingman

case (� = δ0), where S is standard normal distributed. It does not seem straightforward to
modify the proofs presented in this article so as to hold for S∗

n . Therefore, methods other
than those presented here seem to be necessary to analyse the asymptotic behaviour of S∗

n

for measures � which do not satisfy (1.3). Contraction methods (see [19], [20], and [21])
are often helpful in the asymptotic analysis of random recursive sequences. Neininger and
Rüschendorf [17] presented asymptotic results for a class of such sequences in which the
characteristic equation for the scaled sequence degenerates in the limit to a trivial equation and,
thus, gives no information about the limiting distribution. They explained how the normal
distribution arises although the degenerate limit equation does not give any indication of
asymptotic normality. When the measure �(dx)/x is infinite, the asymptotic behaviour of
the recursion (2.3) might be tractable with similar methods.

Appendix A.

We show that, for the Bolthausen–Sznitman coalescent, the total tree length, Ln, of a sample
of size n ≥ 3 is on average no smaller than n/ log n.

Lemma A.1. For the Bolthausen–Sznitman coalescent, an := E(Ln) ≥ n/ log n for all n ≥ 3.
In particular, limn→∞ an = ∞.

Proof. We use induction on n. For the Bolthausen–Sznitman coalescent, the block-counting
process has rates gnk = n/((n− k)(n− k+ 1)), 1 ≤ k < n, and total rates gn = n− 1, n ∈ N.
The recursion for the sequence (an)n∈N yields a1 = 0, a2 = 2, and a3 = 3. In particular,
a3 ≥ 3/ log(3) ≈ 2.73. Assume now that ak ≥ k/ log k holds for all k, 3 ≤ k < n, for some
fixed n ≥ 4. Then ak ≥ k/ log n for all k, 2 ≤ k < n, and, hence,

an = n

gn
+
n−1∑
k=2

rnkak ≥ n

gn
+ 1

log n

n−1∑
k=2

krnk .

The substitution l = n− k yields

n−1∑
k=2

krnk =
n−2∑
l=1

(n− l)rn,n−l = n

n− 1

n−2∑
l=1

n− l

l(l + 1)

= n

n− 1

(
n

n−2∑
l=1

1

l(l + 1)
−
n−2∑
l=1

1

l + 1

)

= n

n− 1

(
n

(
1 − 1

n− 1

)
− hn−1 + 1

)

= n

n− 1

(
n− 1 − 1

n− 1
− hn−1 + 1

)

= n+ n

n− 1

(
− 1

n− 1
− hn−1 + 1

)
,
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where hn := ∑n
i=1 1/i denotes the nth harmonic number. Thus, we have

an ≥ n

gn
+ n

log n
+ n

(n− 1) log n

(
− 1

n− 1
− hn−1 + 1

)

= n

log n
+ n(log n− 1/(n− 1)− hn−1 + 1)

(n− 1) log n

≥ n

log n
,

since

log n− 1

n− 1
− hn−1 + 1 ≥ −γ − 1

n− 1
+ 1 ≥ 0

for n ≥ 4, where γ ≈ 0.577 216 denotes the Euler constant.
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