ALMOST ALL GRAPHS HAVE A SPANNING CYCLE

BY
J. W. MOON ${ }^{(1)}$
In memory of Leo Moser

1. Introduction. A graph is a collection of nodes some pairs of which are joined by a single edge. A k-path, or a path of length k, is a sequence of nodes $\left\{p_{1}, p_{2}, \ldots\right.$, $\left.p_{k+1}\right\}$ such that p_{i} is joined to p_{i+1} for $1 \leq i \leq k$; we assume the nodes are distinct except that p_{1} and p_{k+1} may be the same in which case we call the path a k-cycle or a cycle of length k. (Notice that two nodes joined by an edge determine a 2-cycle according to this definition; it will also be convenient to regard a single node as a 1-cycle.) A spanning path or cycle is one that involves every node of the graph. One of the unsolved problems of graph theory is to characterize those graphs that have a spanning path or cycle.
If $0<p<1$, let $G(n, p)$ denote a random graph with n nodes in which each of the $\frac{1}{2} n(n-1)$ possible edges is present with probability p. Erdös and Rényi [1] have conjectured that most graphs with n nodes and $n^{1+\epsilon}$ edges contain a spanning cycle. Our object here is to prove the following weaker result.

Theorem. If ϵ is any positive constant and $p^{2}=(1+\epsilon)(2 / n)^{1 / 2} \log n$, then the probability that the random graph $G(n, p)$ has a spanning cycle tends to one as n tends to infinity.
2. Proof of theorem. Suppose node x does not belong to a given k-cycle C in a random graph $G(n, p)$. If x is joined to two consecutive nodes of C, then x can be inserted between these nodes to form a $(k+1)$-cycle. In this case we shall say we have extended the k-cycle C. (Extending a 1 -cycle means adjoining a new node that is joined to it.)

If $1 \leq k \leq n-1$, let $P(n, k)$ denote the probability that a given k-cycle C in a random graph $G(n, p)$ cannot be extended. The probability that a given node x, not in C, cannot be inserted between a given pair of consecutive nodes of C is $1-p^{2}$. If we only try to insert these $n-k$ nodes x between every other pair of consecutive nodes of C, then the outcomes of these attempts are independent of each other. It follows, therefore, that $P(n, 1)=(1-p)^{n-1}, P(n, 2)=\left(1-p^{2}\right)^{n-2}$, and $P(n, k) \leq\left(1-p^{2}\right)^{\frac{1}{2}(k-1)(n-k)}$ for $k \geq 3$.
There are $\binom{n}{k} \cdot \frac{1}{2}(k-1)$! ways to choose k nodes from a graph with n nodes and order them in a cycle if $k \geq 3$; the probability that any such ordering actually

Received by the editors November 24, 1970 and, in revised form, March 23, 1971.
${ }^{(1)}$ On leave from the University of Alberta.
determines a cycle is p^{k}. (The corresponding expressions for 1 and 2-cycles are obvious.) If μ denotes the expected number of cycles in $G(n, p)$ that cannot be extended and whose length is at most $n-L$ where $L=\left[(2 n)^{1 / 2}\right]$, then

$$
\begin{aligned}
\mu & =n P(n, 1)+\binom{n}{2} p P(n, 2)+\frac{1}{2} \sum_{k=3}^{n-L}\binom{n}{k}(k-1)!p^{k} P(n, k) \\
& \leq n\left(1-p^{2}\right)^{n-3}+n^{2}\left(1-p^{2}\right)^{n-3}+\sum_{k=3}^{n-L} n^{k}\left(1-p^{2}\right)^{\frac{2}{2}(k-1)(n-k)} .
\end{aligned}
$$

Since $p^{2}=(1+\epsilon)(2 / n)^{1 / 2} \log n$, it follows that

$$
1-p^{2} \leq n^{-(1+\epsilon)(2 / n)^{1 / 2}} .
$$

If we split the sum into two parts, consisting of those terms for which $k \leq L$ and $k>L$, it is not difficult to see that when n is large

$$
\begin{aligned}
\mu & \leq L n^{L}\left(1-p^{2}\right)^{n-3}+n^{n}\left(1-p^{2}\right)^{\frac{1}{2} L(n-L-1)} \\
& \leq(2 n)^{1 / 2} n^{-\epsilon(2 n)^{1 / 2}+O\left(n^{-1 / 2}\right)}+n^{-\epsilon n+O\left(n^{1 / 2}\right)} .
\end{aligned}
$$

This tends to zero as n tends to infinity. Since $G(n, p)$ certainly has some 1 -cycles, by definition, it follows that the probability that a random graph $G(n, p)$ has at least one ($n-L$)-cycle tends to one as n tends to infinity.

Now let C denote some $(n-L)$-cycle in a random graph $G(n, p)$. We split this cycle into L subpaths $P_{1}, P_{2}, \ldots, P_{L}$ each of length at least $[(n-L) / L] \geq(1 / 2 n)^{1 / 2}-2$ in such a way that consecutive nodes of any path P_{i} are also consecutive nodes of C and only the first and last nodes of any path P_{i} belong to any other path P_{j}. Let $q_{1}, q_{2}, \ldots, q_{L}$ denote the nodes of $G(n, p)$ that are not in C. We try to find two consecutive nodes of P_{i} that are both joined to q_{i}, for $1 \leq i \leq L$. If, as before, we only try to insert q_{i} between every other pair of consecutive nodes of P_{i} we find that the probability that q_{i} cannot be inserted in P_{i} is at most $\left(1-p^{2}\right)^{\left.\frac{1}{2}(1 / 2 n)^{1 / 2}-2\right)}$. Thus the probability that at least one of the nodes q_{i} cannot be inserted in its corresponding path is at most

$$
L\left(1-p^{2}\right)^{\left.\frac{1}{2}(1 / 2 n)^{1 / 2}-2\right)} \leq 2^{1 / 2} n^{-1 / 2 \epsilon+O\left(n^{-1 / 2}\right)} .
$$

This also tends to zero as n tends to infinity. It follows, therefore, that the probability that $G(n, p)$ contains an $(n-L)$-cycle that can be successively extended to a spanning cycle tends to one as n tends to infinity. This suffices to complete the proof of the theorem. (This proof can easily be modified to establish analogous results for oriented and directed graphs; the result is undoubtedly valid for considerably smaller values of p.)

Acknowledgements. I should like to acknowledge that part of the preceding argument is due to the late Professor Leo Moser; he suggested that one should be able to extend most cycles in most graphs because, roughly speaking, when a cycle is short there are many nodes remaining to try to insert and when it is long there are many places in which to try to insert the remaining nodes. I am also indebted to Dr. Paul Erdös for some helpful remarks.

The preparation of this paper was assisted by a grant from the National Research Council of Canada.

Reference

1. P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1970), 17-61.

University of Cape Town, Cape Province, South Africa

