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ALMOST ALL GRAPHS HAVE A SPANNING CYCLE 
BY 

J. W. MOONC) 

In memory of Leo Moser 
1. Introduction. A graph is a collection of nodes some pairs of which are joined 

by a single edge. A k-path, or a path of length k, is a sequence of nodes {pl9 p2,-->9 

Pk+i} such that Pi is joined to pi + 1 for 1 <i<k; we assume the nodes are distinct 
except that px and pk+1 may be the same in which case we call the path a k-cycle 
or a cycle of length k. (Notice that two nodes joined by an edge determine a 
2-cycle according to this definition; it will also be convenient to regard a single 
node as a 1-cycle.) A spanning path or cycle is one that involves every node of the 
graph. One of the unsolved problems of graph theory is to characterize those 
graphs that have a spanning path or cycle. 

If 0<p< 1, let G(n9p) denote a random graph with n nodes in which each of the 
\n{n — 1) possible edges is present with probability p. Erdôs and Rényi [1] have 
conjectured that most graphs with n nodes and n1+€ edges contain a spanning cycle. 
Our object here is to prove the following weaker result. 

THEOREM. If e is any positive constant and Jp
2 = (l-fe)(2/«)1/2log«, then the 

probability that the random graph G(n,p) has a spanning cycle tends to one as n 
tends to infinity. 

2. Proof of theorem. Suppose node x does not belong to a given fc-cycle C in a 
random graph G(n9 p). If x is joined to two consecutive nodes of C, then x can be 
inserted between these nodes to form a (k+ l)-cycle. In this case we shall say we 
have extended the &-cycle C. (Extending a 1-cycle means adjoining a new node 
that is joined to it.) 

If \<k<n— 1, let P(n,k) denote the probability that a given fc-cycle C in a 
random graph G(n,p) cannot be extended. The probability that a given node x, 
not in C, cannot be inserted between a given pair of consecutive nodes of C is 
1 —p2. If we only try to insert these n—k nodes x between every other pair of con
secutive nodes of C, then the outcomes of these attempts are independent of each 
other. It follows, therefore, that P(n, 1)=(1-/>)"-S Pfa 2)=(l-/?2)n-2, and 
P(n, fc)<(l-/?2)*<fc-1><»-*> for k>3. 

There are IA -%(k-\)\ ways to choose k nodes from a graph with n nodes and 

order them in a cycle if fc>3; the probability that any such ordering actually 
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determines a cycle is pk. (The corresponding expressions for 1 and 2-cycles are 
obvious.) If 11 denotes the expected number of cycles in G(n9 p) that cannot be ex
tended and whose length is at most n— L where L = [(2n)112], then 

P = nP(n9 l)+ffyPP{n,2)+i j f (fy(k-l)\pkP(n,k) 

< n(l-p2)n-3 + n2(l-p2)n-3 + n2 n\\-p2)^k-^n-k\ 
k = 3 

Since p2 = (14- 0(2/w)1/2 log w, it follows that 

l _ p 2 < w - ( l + €)(2/n)l/2^ 

If we split the sum into two parts, consisting of those terms for which k<L and 
k>L, it is not difficult to see that when n is large 

H < Ln\\-p2)n-*+nn{\--p2)*Un-L-» 

< (2n)ll2n"e(2n)1/2 + 0(n"1/2) + n~€n+0(nl/2>. 

This tends to zero as n tends to infinity. Since G(n,p) certainly has some 1-cycles, 
by definition, it follows that the probability that a random graph G(n,p) has at 
least one (n— L)-cycle tends to one as n tends to infinity. 

Now let C denote some («—L)-cycle in a random graph G(n,p). We split this 
cycle into L subpaths PUP2,...,PL each of length at least [(n -L)/L] > (l/2n)112 - 2 
in such a way that consecutive nodes of any path P t are also consecutive nodes of 
C and only the first and last nodes of any path Pt belong to any other path Pj. 
Let ql9 #2> • • • > <7L denote the nodes of G(n, p) that are not in C. We try to find two 
consecutive nodes of P t that are both joined to qi9 for 1 < i<L. If, as before, we only 
try to insert q{ between every other pair of consecutive nodes of Pt we find that the 
probability that q{ cannot be inserted in Pt is at most (1 —^2)*«1/2n>1/2-2). Thus the 
probability that at least one of the nodes qx cannot be inserted in its corresponding 
path is at most 

jm—p2)*((1/2n)1,2""2) < 21 / 2n~1 / 2 e + 0 ( n~1 / 2 ) . 

This also tends to zero as n tends to infinity. It follows, therefore, that the prob
ability that G(n,p) contains an (n—L)-cycle that can be successively extended to 
a spanning cycle tends to one as n tends to infinity. This suffices to complete the 
proof of the theorem. (This proof can easily be modified to establish analogous 
results for oriented and directed graphs; the result is undoubtedly valid for con
siderably smaller values of/?.) 
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