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RELATIVELY CONGRUENCE DISTRIBUTIVE
SUBQUASIVARIETIES OF A CONGRUENCE MODULAR VARIETY

KEITH A. KEARNES

We characterise the relatively congruence distributive subquasivarieties of a mod-
ular variety using the modular commutator. Our characterisation allows us to
extend the results of Dziobiak concerning relatively congruence distributive quasi-
varieties of nonassociative R-algebras.

1. INTRODUCTION

Don Pigozzi recently extended Baker's finite basis theorem by showing that every
finitely generated relatively congruence distributive (RCD) quasivariety is finitely based.
Another version of his theorem concerns RCD quasivarieties that need not be finitely
generated. However, it is usually very difficult to tell if a class of algebras generates
an RCD quasivariety or if a set of quasi-identities define such a quasivariety. Partial
results on the characterisation of RCD quasivarieties were obtained by Czelakowski
and Dziobiak in [2]. In particular, they characterised the RCD subquasivarieties of a
congruence distributive variety. Later, in [3], Dziobiak obtained a (fairly complicated)
characterisation of the RCD subquasivarieties of a congruence permutable variety. The
purpose of our paper is to provide a characterisation of all RCD subquasivarieties of a
modular variety.

Our choice of terminology and notation for commutator theory and congruences
follows [4] and for universal algebra follows [1].

2. RCD QUASIVARIETIES

We begin with some definitions.

DEFINITION 2.1: A quasi-identity is a universally quantified first-order sentence of
the form:

/ \ ( P i ( * i i - - - , x k ) m q i ( x u . . . ,xk)) = > p ( x ! , . . . , x k ) f n q ( x l t . . . , x k ) .
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88 K.A. Kearnes [2]

A quasivariety is a class of algebras defined by quasi-identities. Alternately, a quasi-
variety is a class of algebras closed under isomorphisms (I), subalgebras (S), products
(P) and ultraproducts (P[/)- (The only other class operator that we will mention is
the operator P , that closes a class under the formation of subdirect products.)

If A" is a quasivariety, A is of the type of K and 9 is a congruence on A satisfying
A / 0 £ K, then we call 6 a K-congruence. The collection of if-congruences on A,
ordered by inclusion, is a complete lattice which we call the K-congruence lattice of A.
We denote it by K-Con A. We say that A 6 K is relatively congruence distributive
(abbreviated RCD) if K-Con A is a distributive lattice. K is RCD if every member is.

We will use a subscript notation to denote certain classes of algebras contained in
a quasivariety. The next definition explains what these subscripts mean.

DEFINITION 2.2: An algebra A in a quasivariety K is relatively subdirectly ir-
reducible (RSI) if A has a smallest nonzero .fif-congruence. KRSI denotes the class
of RSI members of K. Ksi denotes the class of (absolutely) subdirectly irreducible
members of K.

A is finitely subdirectly irreducible (FSI) if no two nonzero congruences of A
intersect in the zero congruence. Kpsi denotes the class of FSI members of K. KRFSI

denotes the class of relatively finitely subdirectly irreducible algebras, that is, the class
of algebras in K for which no two nonzero if-congruences intersect the zero congruence.

If A belongs to a modular variety, then we call A prime if [a,/?] = 0 holds for no
pair of nonzero congruences a and (3. Similarly, A is semiprime if [a, a] = 0 holds
for no nonzero a . -K̂ primc denotes the class of prime members of K and ifsemiprime
denotes the class of semiprime members of K. We only use these when K generates a
modular variety.

It is quite easy to see that -K"prime — Kpsi H -K"8emiprime •

Now we are ready for our first theorem.

THEOREM 2 . 3 . Let K be a subquasivariety of a congruence modular variety.

The following conditions are equivalent:

(a) K is RCD;

(b) KRSI Q KFSI and K |=con ([a, a] « 0 => a w 0);

(c) KRSI Q Kptimt..

PROOF: The class of algebras in K satisfying the congruence condition
([a, a] « 0 =>• a w 0) is closed under I P , so K |=con ( [ a ) a ] « 0 => a « 0) if and only
if KRSI \=Con ( [ a i a ] ~0 => a m 0). This shows that condition (6) merely states that
KRSI S Kpsi^Ksemiprime. From the observation preceding the statement of the theo-
rem, it follows that (6) and (c) are equivalent. We will now show that (a) and (fc) are
equivalent.
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[3] Distributive subquasivarieties 89

Assume that K is RCD. Theorem 2 of [3] proves that KRFSI — KFSI so we

have KRSI Q KRFSI = Kpsi- NOW suppose that A £ K has a congruence a such

that [a, a] = 0. Then let B be the subalgebra of A x A x A consisting of the triples

(x,y,z) where x/a = y/a = z/a. Since we are in a modular variety we have a ternary

difference term d and it defines a mapping d : B —• A : (x,y,z) >-> d(x,y,z). By

Proposition 5.7 of [4], this mapping is a homomorphism. A is in K, so 6 = ker d is

a JiT-congruence. Denote by 770 , T71 and 772 the kernels of the coordinate projections

from B to A. These three congruences are if-congruences since they are kernels of

homomorphisms from B to A GiC.

The congruence 8 • TJ0 • •q1 consists of pairs ((r,s, t), (r,s,u)) such that d(r,s,t) =

d(r,s,u). Using the a- term condition we see that d(t,t,t) = d(t,t,u) or I = u. Thus,

ST/O-VI = 0 = 5-771-772 = 5-770-772. On the other hand, d~1(a) = 7]0-TJ1+TJI -772 +770 -772,

so d~1(0) — 6 C 770 • Tfi + t)x • 772 + 770 • 772. Since K is RCD we have:

0 = 6 • (770 • 771 +K -qi • 772 +K 770 • 772) 2 * • (vo • ?7i + T71 • 772 + 770 • 772) = 6.

(We are using + to denote the join in congruence lattices and +#• to denote the join

in the /(f-congruence lattice.) This forces the conclusion that 5 = 0 . If there exists

(c,d) G a \ 0 , then ((c, c, c),(c,d, d)) £ 6 \ 0 = <f>, which is impossible. It follows that

a = 0 .

The only thing that remains is to show that (6) implies (a ) . Let K be a subqua-

sivariety of a modular variety. Assume that KRSI Q KFSI a n d that K is not RCD.

We will argue that K |£ c o n {[a,a] as 0 => a « 0) .

Since K is not RCD, there is an algebra A £ K and congruences p,<r,r £ K-

Con A such that 0 = p -(a +K T ) > P • <r +K p • r = 6. Choose a ij) £ K-Con A ,

completely meet-irreducible in K-Con A, such that 6 < ip but 6 ^ ip. From 6 ^ V

it follows that p jt ijj and also that either a £ ip or r t̂ ip (since a +K T jt ^ . ) We

assume that a £ ip.

A/V> £ KRSI Q Kpsi, so ip is meet-irreducible in Con A. We have p + xl>, cr+tl>

> Vs so a' — (p + ip) • (a- + ij)) > ip . Notice also that

(1) [a',a'] + ip < [p + ij>,* + il>}+il> = [p,<r]+i> < p • a + ip = i/>.

That is, a! > rj) but [a1, a'] < ij>. Since tj> is a A"-congruence, B = A/-0 is a member

of K. Setting a = a'ftp, we see that a is a nonzero congruence on B satisfying [a,a]

= 0. Hence, K ^ c o n ([a, a] a 0 => a ss 0). This finishes the proof of this theorem. D

COROLLARY 2 . 4 . Let K be a subquasivariety of a congruence distributive va-

riety. K is RCD if and only if KRSi C KFsi •

Compare this corollary to the characterisation of RCD subquasivarieties of CD

varieties given by Czelakowski and Dziobiak. Their version states that K is RCD if
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and only if KRFSI Q Kpsi • Our version, which requires only that KRSI Q Kpsi > is a
slightly stronger statement since KRSI Q KRFSI •

For the next corollary we will denote the monolith of a subdirectly irreducible
algebra A by y,p^.

COROLLARY 2 . 5 . Let K = ISPP[/(M) = ISP(M) where M is a finite set of
finite algebras contained in some congruence modular variety. K is RCD if and only if
KRSI — Ksi and for each A € Ksi we have [y-j^,y-j^\ = (J-j^-

Note that in this situation one always has Ksi Q KRSI Q S(M).

The condition [MA'^A]
 = I1 A ^or -^ ^ ^si says precisely that Ksi Hcon

([a,a] a 0 = > a « 0 ) . Kpsi = Ksi since both classes contain only finite algebras.
Thus, the conditions of the corollary hold if and only if KRSI = Ksi — -Kprime •
Therefore, this corollary follows from part (c) of the theorem.

The corollary shows that it is not hard to apply Theorem 2.3 in the case that
K is generated by a finite set M of finite algebras. One only has to examine the
homomorphisms between the algebras in S(M) to determine the members of KRSI-

At this point, checking the conditions in the theorem is a routine investigation of the
congruences of the algebras in KRSI • On the other hand, it is usually not easy to verify
the condition 2.3(b) for an arbitrary quasivariety. Indeed, it is not even clear where to
start looking for quasivarieties for which 2.3(b) or (c) holds. For this reason, we devote
the next section to describing a way of constructing certain RCD subquasivarieties of
modular varieties.

3. SOME RCD QUASIVARIETIES

3.1 THE GENERAL CASE.

Suppose that P is a property of algebras that is preserved by isomorphisms and by
the formation of subdirect products and that W is a variety or quasivariety. Say that
a quasivariety has P if all its members do. Now, if L is a subquasivariety of W that
has P, then any quasivariety L ' C I also has P. If L and K are subquasivarieties of
W that have P, then K V L = IP,(if Ui) has P. Thus, the subquasivarieties of W
that have P form a lattice ideal in the lattice of subquasivarieties of W. If W is locally
finite, then W contains a largest subquasivariety that has P.

Let us examine the congruence condition Va([a,a] w 0 => a « 0) which defines the
class of semiprime algebras. The class of semiprime algebras in a congruence modular
variety is closed under IP , . By our general arguments, every locally finite, congruence
modular variety has a largest semiprime subquasivariety. In fact, we will show that a
congruence modular variety satisfying a much weaker finiteness hypothesis always has
a largest semiprime subquasivariety, and that this quasivariety can be axiomatised by a
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single quasi-identity (which we show how to construct). This will give us a good place
to start looking for RCD quasi varieties, since any RCD subquasivariety of a congruence
modular variety consists of semiprime algebras.

THEOREM 3 . 1 . Let V be a congruence modular variety and assume that K is

a subquasivariety of V. Suppose that on F V ( U , D ) the congruence [Q(u,v),Q(u,v)\ is

finitely generated, say that [Q(u,v),Q(u,v)} = Q{(po{u,v)><lo(u,v))i >
(pn_i(tt,v),gn_i( 'u,v))). Tien the following conditions are equivalent:

(a) JrKoB([a,a]«0=>a«0).

(b) K h (Ai<n (*(*,») « *(*,»)) => x « y) .
(Here and elsewhere we abuse notation by using the symbols pi and qi to denote

elements of FV(K,V) and also to denote some choice of binary terms that represent

these elements.)

PROOF: Suppose that (6) fails. Then there is an A 6 K containing elements
c ^ d such that for all i < n , pi(c,d) = qi(c,d). Now let A' £ K be the subal-
gebra of A that is generated by c and d. Since A' is 2-generated, [0(c, d), Q[c, d)]
= e{{Po(c,d),qo{c,d)),... , (pn-i(c,d),9»-i(c,d))) = 0 on A' , yet Q{c,d) £ 0. This
witnesses a failure of (a).

Conversely, assume that (a) fails. Then there is a B in K with a non- zero congru-
ence /? such that [£,/?] = 0. Choose (e , / ) e /3\0andlet B ' 6 K be the subalgebra of
B generated by e and / . Of course, 0((po(e, / ) ,go(e , / ) ) , -•• , (Pn- i (e , / ) ,g n _ i (e , / ) ) )
C [0 (e , / ) , 0 (e , / ) ] C [/?,/?] | B = 0, so for all t < n , Pi(e,f) = qi{e,f). Since e^f,
(6) fails. D

We should remark that to make this theorem work we only needed to assume that
[0(ti,w),0(-u,t>)] generates a finitely generated X-congruence of Fv(u,i>). Even if this
does not hold, the assumption that [Q(u,v), Q(u,v)] is finitely generated is only needed
to prove that (a) implies (b). If [Q(u,v), Q(u,v)] is not finitely generated, then we can
still choose {(pi,<fr)|i < n} to be any finite subset of [0(u,v),Q(u,v)} and construct
a quasi-identity as in part (6) which defines a quasivariety of semiprime algebras. Of
course, it need not be the largest quasivariety of semiprime algebras, but it does give
us a place to start looking for RCD quasivarieties.

We eventually want to apply this result to quasivarieties of nonassociative R-
algebras over a commutative ring R. For this application we prefer a slightly different
statement of the theorem.

We say that a variety V is 0-regular, or consists of 0-regular algebras, if V has an
equationally definable constant denoted 0 and V has the property that any congruence
6 on an algebra A £ V is determined by the 0-class 0/0. For example, the varieties of
groups, rings or modules are 0-regular. Hagemann has shown in [5] that 0-regular vari-
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eties are congruence modular and n-permutable for some n. The variety of implication
algebras is an example of a 0-regular variety that is 3-permutable but not permutable.
We leave the proof of the following version of Theorem 3.1 to the reader.

THEOREM 3 . 2 . Let V be 0-regular and K be a subquasivariety of V. Sup-
pose that on Fy(u) the congruence [0(u,O),0(u,O)] is finitely generated, say that
[O(u,0),Q(u,0)} = 0((<o(u),O),... ,(tn_!(u),0)). Then the following conditions are
equivalent:

(a) /f heo» ([«,«] « 0 = > o « 0);

(b) * h (Ai<» (<*(*) «0 )=» a « 0 ) .

Recalling Theorem 2.3(b), we see that it would be desirable to have some conditions
on a quasivariety K that ensure that KRSI Q Kpsi o rj better yet, conditions insuring
that KRSI ^ -Kprime • For this we need more notation.

Let F = Fv(f,i ,u,») (or Fv(«,v) if V is 0-regular). Let S be a finite subset of
pairs

S = {(pi(r,s,u,v),qi(r,s,u,v)) £ [0F(r,s), QF(u,v)] \ i < n}

or 5 = {(ti(tt,t»),0) G [0F(u,O),0F(i;,O)]|i<n}

if V is 0-regular). Define <ps to be the universal sentence

Vx,y,z,wi / \ (pi(x,y,z,w) w qi(x,y, z,w))
\i<n

Vz.yf (\ (ti(x,y)xO) => x « 0 or y « 0 ]
\«<n /

if V is 0-regular). Let MV denote the class of algebras in V satisfying the sentence tp.

THEOREM 3 . 3 . Let V be congruence modular and let S and Mv be defined as

in the previous paragraph where <p = <ps- The following are true:

(a) Mv consists of prime algebras;
(b) K = I S P P u ( ^ ) is RCD;
(c) KRSI C MV = Kpiimc;

(d) L is an RCD subquasivariety of K if and only if L — ISPP[/(7V) for
some class N satisfying <p.

PROOF: We argue the general version and leave to the reader the proof of the
refined version of this theorem that holds when V is 0-regular.
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Suppose that (a) is false. Then Mv contains an algebra A which has nonzero

congruences a and /3 such that [a,(3) = 0. Choose ( e , / ) 6 a \ 0 and {g,h) e /? \ 0 .

Let A ' be the subalgebra of A that is generated by e,f,g and h. Since Mv is defined

by a universal sentence, A' € Mv. Also, [®{e,f),Q(g, h)] C [a,/3]|A; = 0 . Therefore,

by the way that S was chosen, for all i < n we have Pi{e,f,g,h) = qi(e,f,g,h). But

e ^ / and g ^ h. Thus, A ' ^ <p, which is a contradiction to the fact that A ' £ Mv.

For part (6), K = YSPPu{Mv) = I P , S P U ( M ¥ , ) . Since M^.is a universal class,

ISPt / (M¥,) = Mv. Hence, K - IP,(MV). It follows that KRSi C Mv and so, by

part (a) of this theorem, KRSI Q -Kprime • This is condition (c) of Theorem 2.3. It

follows that K is RCD.

To prove part (c), we need to show that Kpx\mK C Mv. The other inclusions

C Mv C itTprime follow from part (a) and part (6). We assume that A € Kpl\mt

and will argue to a contradiction. Since K = TP,(MV), we may assume that A is

subdirectly embedded into the product II;gjAj where A; 6 M^. Recall that <p is the

sentence

Vx,j/, z,w\ y\ (pj(x,y,z,w)

Since A fails tp (A 0 M v ) , we can find elements of A, a ^ b and c ̂  d, such that
for all j we have Pj(a, 6, c, d) = qj(a,b,c,d). Of course, in the ith coordinate we have
Pj(a.i,bi,Ci,di) = qj(a,i,bi,Ci,di) for all j <n so, since Aj |= <p, it must be that a; =
6; or Ci — di holds for each i £ I. Let us introduce the notation [x = j/J for elements
x and y of Ilig/Aj . Jz = i/| denotes the subset of those i G / for which z,- = i/i.
Our observation that for each i £ / either a; = 6,- or c; = di can be expressed
as [a = 6| U \c = <f] = / . Let a be the congruence on A that is the kernel of the
natural projection of A into nj6jo=(,jA,- and let /3 be the kernel of the projection into
IIi6[c=(1]A,. Since [o = 6]) U Jc = d} - I, we get a •/3 = 0 . However, a D 0(a,6) >
0 and /3 D Q(c,d) > 0. Thus A is not FSI. This contradicts our assumption that A

G ^prime Q KpSI-
For (d), suppose that L is RCD. L = ISPPu(LRSi), so let JV = LRSj. We

will be done with the "only if" statement if we show that N \= tp; equivalently, that
N C Mv. Using Theorem 2.3(c), the fact that L is RCD and part (c) of this theorem,
we see that

N = LRSI Q iprime Q KpIlme — Mv

which finishes this direction. For the other direction, assume that N satisfies <p and
that L = ISPPu(N). Then N C Mv so L C K. Further, L = IP,SPu(N), so
LRSI C ISPU(N) CMvnL C Lpllmc. This implies that L is RCD by part (c) of 2.3.

D
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This theorem gives us a concrete way of producing an RCD subquasivariety of a
congruence modular variety. Further, it gives a simple characterisation of all the RCD
quasivarieties contained in that first one. Our next subsection contains applications of
this result.

3.2 QUASIVARIETIES OF R-ALGEBRAS

In [3], Dziobiak uses his characterisation of RCD subquasivarieties of permutable
varieties to investigate quasivarieties of nearly-associative algebras over a commutative
ring R. We use our results to show how to extend his.

Everything in this subsection takes place within the variety "R. of (not necessarily
associative) R-algebras. This variety is, of course, congruence permutable and 0-regular.
Every congruence on an R-algebra corresponds naturally with an ideal: the ideal as-
sociated with a congruence is just the congruence class containing 0. The commutator
in this variety, expressed in terms of ideals, is computed the following way: if / and J
are ideals, then [/, J] = I • J + J • I. We leave it to the reader to verify this claim; we
suggest mimicing the arguments in Chapter 1 of [4].

Theorem 3.2 applies to the variety of R-algebras. In FJI(U) the congruence Q(u,0)
corresponds to the ideal (u). We have [(U),(M)] = (u) -(u). It is not true that (a) -(6)
= (a • 6) for an arbitrary pair of principal ideals in an arbitrary nonassociative algebra,
but it is true (and easy to see) that (u) • (u) = (u • u) in F-R(U) . Hence, let S =
{(t(u),0)} where t(x) = x • x. The conclusion of Theorem 3.2 is that the quasivariety
axiomatised by ( i • i w 0 ^ x « 0) is the largest quasivariety of semiprime R-algebras.
Call this quasivariety N. Every RCD subquasivariety of TZ is contained in N. N is
not RCD itself as the following example shows.

EXAMPLE 3.4. Let V be the 3-dimensional vector space over the 2-element field F2
that is spanned by the vectors u,v and w. Define a multiplication on the basis vectors
as follows:

u

V

w

u

V

V

TV

V

0

V

0

w

w

0
VJ

Extend this multiplication to V by linearity and call the resulting F2-algebra A.
If x = ru + sv + tw, where r, s, t £ F2 , and (ru + sv + tw) = (r + s + rs)v + tw — 0,
then r — s = t = 0. Hence, A |= (x2 w 0 => x w 0) and so A £ N. A £ NFSI since
(v) D (w) — (0). However, A 6 NRSi- This is because any ideal / C A with w $
/ has v G / . Further, the N-ideal generated by v contains w. Thus, any nonzero
iV-ideal contains w, implying that A is subdirectly irreducible relative to N. Since A
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e NRSI \ NFSi, N is not RCD.

Although N is not RCD, it seems to be close to being RCD. For example, the
associative algebras in N do constitute an RCD subquasivariety, as we shall see.

Let's apply Theorem 3.3 to locate some RCD subquasivarieties of 72.. First, let S

= {(utt,0)} C [(«),(«)] = (u)(v) + (v)(u). Then ips is the sentence

(2) Vx,y(xy « 0 => x « 0 or y « 0 ) .

Mv is precisely the class of R-algebras without nonzero zero-divisors. From 3.3 we get:

COROLLARY 3 . 4 . Let K be the quasivariety of R-algebras generated by all R-
algebras without nonzero zero-divisors. K is RCD and a subquasivariety L C K is
RCD if and only if L = IS'PPy(N) where N consists of R-aigebras without nonzero
zero-divisors.

This result was first proved by Dziobiak in [3]. A result of Rjabuhin in [6] is
that the quasivariety generated by all R-algebras without nonzero zero-divisors can be
axiomatised by (x2 « 0 =>• x « 0) and (x(yz) « 0 o (zy)z a O ) . It follows that the
quasivariety of associative R-algebras satisfying (x2 « 0 =>• x w 0) is RCD and that
this is the largest RCD quasivariety of associative R-algebras.

We have the machinery to extend Dziobiak's result. We merely have to go back to
Theorem 3.3 and choose a larger subset S. Say 5 = {(ui;,0),(vti,0)} C (u)(v)+(v)(u).
Then tp-g is:

(3) Vx,y((iy « 0)&(T/X « 0) => x w 0 or y a O ) .

COROLLARY 3 . 5 . Let K be the quasivariety ofR-algebras generated by all R-
algebras satisfying (3). K is RCD and a subquasivariety L C K is RCD if and only if
L = ISPP[/(iV) where N consists of R-a/gebras satisfying (3).

We give an example to show that the quasivariety K from the last corollary prop-
erly contains the quasivariety K from the corollary preceding it.

EXAMPLE 3.5. Of course, K C K. Now let W be the 2-dimensional vector space over
F 2 spanned by u and v. Define a bilinear multiplication on W determined by the
values:

u

V

u

V

V

V

0

V

Call the resulting F 2 -algebra B. In B, the only nontrivial products that equal 0 are uv,

(u + v)u and v{u + v). Hence, B \= ((xy ss 0)&(yx w 0) => x a 0 or y « 0). However,
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B y= (xy « 0 => x w 0 or y « 0). Thus, B € A"prime \ #prime, and it follows that B
G IC\K.

If we alter the multiplication in B so that on the basis vectors multiplication is
given by:

u

V

u

V

0

V

0
u

we get an algebra which we call C. C ^ K, but C satisfies

(4) Vx,y((xy « 0)&(ya: « 0)&((zz)y « 0) =» z a 0 or y « 0).

This sentence is just y3= for 5 = {(uv, 0), (im,0),((tiu)»,0)} C («)(«) + (*>)(«)•
The quasivariety generated by the R-algebras satisfying (4) is RCD and it properly
contains K. This leaves us with questions.

PROBLEM 1. Is there a largest RCD quasivariety of R-algebras? Does the answer
depend on R?

We guess that the answer to both of our questions is probably "no". It is not too
hard to show that if R = ZL = the ring of integers, then no choice of S in Theorem
3.3 yields a largest RCD quasivariety of Z-algebras. That is, for any finite subset
S Q [(u)> («)] there is a Z-algebra X and a finite subset 5 ' such that 5 C 5 ' C [(u), (v)]
and X (= ips' but X =̂ PS • Of course, this does not solve the problem even for R
— Z, since Theorem 3.3 always produces RCD quasivarieties K in which Kpl-lme is a
universal class and there may be other RCD quasivarieties.
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