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Abstract

It is proved that any surjective morphism f : Zκ → K onto a locally compact group K is open for every
cardinal κ. This answers a question posed by Hofmann and the second author.
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1. Introduction

In this paper we assume that all topological groups are Hausdorff and abelian. In
the literature it is common to ask whether a surjective continuous homomorphism
f : G→ K of a topological group G onto a topological group K is an open mapping.
Positive results in this direction are known as ‘open mapping theorems’ in the literature
in functional analysis and topological algebra (see, for example, [2, Theorem 2.25]
for Banach spaces, [8] for Polish groups and [5, Theorem 9.60] and [4] for pro-Lie
groups). Most results of this type impose a countability condition on G. Indeed, if
K is any countable nondiscrete group or an infinite compact one and G := Kd is the
group K endowed with the discrete topology, then the identity map i : G→ K is not
open. Noting that for every uncountable cardinal κ the totally disconnected abelian
group G = Zκ is neither a Polish group nor a locally compact group, Hofmann and the
second author posed the following question: Is a surjective morphism f : Zκ → K onto
a compact group open for every cardinal κ? (See [7, Question 5].) We answer this
question in the affirmative.

We will use the following notation and terminology. For a topological group K, we
denote by K0 the connected component of the identity. A topological group K is called
almost connected [5] if the quotient group K/K0 is compact. A topological group G is
called a pro-Lie group [5] if it is a closed subgroup of a product of finite-dimensional
Lie groups. So, the group Zκ is a non-almost-connected pro-Lie group. Every compact
group is an almost connected pro-Lie group.

We denote by CDA the class of all abelian groups G with a subgroup topology
such that for every open subgroup H of G, the quotient group G/H is countable. Note
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that the class CDA is closed under taking Hausdorff quotient groups and arbitrary
products (with the Tychonoff topology).

2. Results

The first lemma is an immediate consequence of [5, Proposition 5.43].

Lemma 2.1. Every nontotally disconnected abelian pro-Lie group K has the circle
group, T, as a quotient group.

Lemma 2.2. Let G ∈ CDA. If K is a pro-Lie group and there is a surjective continuous
homomorphism f : G→ K onto K, then K also belongs to the class CDA.

Proof. First we show that K is totally disconnected. Suppose, for a contradiction,
that K is not totally disconnected. Then, by Lemma 2.1, there is a continuous
homomorphism f̄ from G onto T. Let U be an arbitrary neighbourhood of the identity
of the circle group T not containing any nonsingleton subgroup. As f̄ −1(U) is an open
neighbourhood of zero of G, f̄ −1(U) contains an open subgroup H of G such that
G/H is countable. Since f̄ (H) ⊆ U and U does not contain nondegenerate subgroups,
we have f̄ (H) = {0} in T. Hence, T, being algebraically isomorphic to G/ker( f̄ ),
is an algebraic homomorphic image of G/H and therefore is countable, which is a
contradiction. This contradiction shows that the supposition is false, and therefore K
is totally disconnected.

Being totally disconnected, the pro-Lie group K is prodiscrete by [5, Corollary
4.23]. So, K has a subgroup topology. It remains to show that for every open subgroup
H of K the quotient group K/H is countable. This follows from the facts that G/ f −1(H)
is countable and f is surjective. �

Lemma 2.3. Let K be an almost connected abelian pro-Lie group which is either totally
disconnected or a torsion group. Then K is compact.

Proof. By [5, Theorem 5.20], a pro-Lie group is abelian almost connected if and only
if it is isomorphic to Rκ × C for some cardinal κ and a compact abelian group C. By
our assumption on K, we obtain κ = 0 and hence K is compact. �

For every m > 1 and cardinal number κ, the group Zκ/mZκ = Z(m)κ is compact.
Being motivated by this fact, we denote by CDAk the class of all groups G ∈ CDA
for which G/Gm is compact, for every natural number m > 1, where Gm := clG(mG),
the closure in G of mG. So, Zκ ∈ CDAk. Note that the group G/Gm has exponent ≤ m
for every m > 1. We note also that the class CDAk is closed under taking Hausdorff
quotient groups and arbitrary products.

Lemma 2.4. Let G ∈ CDAk. If f : G→ K is a surjective continuous homomorphism
onto an almost connected torsion pro-Lie group K, then f is an open mapping.

Proof. By Lemma 2.3, we shall assume that K is a compact abelian group.
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Since K is torsion, there is an m ∈ N such that mK = 0 by [3, Theorem 25.9]. Then
the closed subgroup Gm of G is contained in the kernel, ker( f ), of f . So, f induces
an injective continuous homomorphism f̃ from G/ker( f ), which is isomorphic to
(G/Gm)/(ker( f )/Gm), onto K. As G/Gm is a compact group, we obtain that G/ker( f )
is also compact. Hence, f̃ is a topological group isomorphism of the compact group
G/ker( f ) onto K. Since the projection π : G→ G/ker( f ) is an open mapping, we see
that f = f̃ ◦ π is also an open mapping, as required. �

Recall that an abelian group G is called algebraically compact if G is a direct
summand of an abelian group which admits a compact group topology (see [1,
Corollary]). To prove Theorem 2.6, we need the following lemma, which is an
immediate corollary of [9, Theorem 6.4].

Lemma 2.5. The group Z is not algebraically compact.

Now we prove our main result.

Theorem 2.6. Let K be a pro-Lie group which has an open almost connected subgroup
H. For every cardinal κ, any surjective continuous homomorphism f : Zκ → K is an
open mapping.

Proof. Without loss of generality, we shall assume that the group H is infinite and
hence the cardinal κ is also infinite. We split the proof into two steps.

Step 1. Assume that K is an almost connected pro-Lie group. By Lemmas 2.2 and 2.3,
we can assume also that K is compact. It is enough to prove that the image S := f (U)
of an open subgroup U = {0i} × Z

κ\{i} of Zκ is open in K for every i ∈ κ.
Set e := f (1i) ∈ K and let 〈e〉 be the cyclic subgroup of K generated by e. Note that,

by hypothesis, K = 〈e〉 + S . We have to show that S is open.
We claim that there is an m ∈ N such that me ∈ S . Suppose that this is not the case;

then we obtain that 〈e〉 ∩ S = {0} and hence the subgroup 〈e〉 � Z is a direct (algebraic)
summand of the compact group K. So, Z is an algebraically compact group, which is
false since it contradicts Lemma 2.5.

So, let m ∈ N be such that me ∈ S . Then mK ⊂ S . Let π : K→ K/mK be the quotient
map. Since K/mK is torsion, Lemma 2.4 implies that the map f̄ := π ◦ f is open. So,
f̄ (U) is open in K/mK. Hence, the subgroup f (U) = S = π−1( f̄ (U)

)
is open in K.

Thus, f is an open mapping.

Step 2. Assume that K contains an open almost connected subgroup H. Since the
subgroup X := f −1(H) of Zκ is open, we can find a finite subset F = {i1, . . . , in} of
κ such that X contains the open subgroup Y := Zκ\F . Since X/Y is a subgroup of
Zn = Zκ/Y , there is a k ∈ N such that X/Y = Zk by [3, Theorem A 26].

As the projection πY of X onto Y is continuous and πY (y) = y, for every y ∈ Y , we
obtain that X = X/Y × Y; see [3, Proposition 6.22]. So, X is topologically isomorphic
to Zk × Y . Hence, the restriction map p := f |X from X onto H is open by Step 1. As H
is open, we see that f is also an open mapping, as required. �
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The principal structure theorem for locally compact abelian groups [10,
Theorem 25] says that every locally compact abelian group K has an open subgroup
H which is topologically isomorphic to Rn × C, where C is a compact abelian group
and n is a nonnegative integer. So, H is an almost connected pro-Lie group. So, as
an immediate consequence of Theorem 2.6, we obtain Corollary 2.7, which provides
a positive answer to [7, Question 5].

Corollary 2.7. Let K be a locally compact abelian group. For every cardinal κ, any
surjective continuous homomorphism f : Zκ → K is an open mapping. In particular,
this is the case if K is compact.

Indeed, since a pro-Lie group K with the property that K/K0 is locally compact has
an open subgroup which is an almost connected pro-Lie group by [6, Corollary 8.12],
we obtain a stronger result, as follows.

Corollary 2.8. Let K be an abelian pro-Lie group K with the property that K/K0 is
locally compact. Then, for every cardinal κ, any surjective continuous homomorphism
f : Zκ → K is an open mapping.

We conclude with an open question.
Question 2.9. Is every surjective continuous homomorphism from Zκ onto a pro-Lie
group K open?
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