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Abstract

In this article, we extend the Barendregt Cube with Il-conversion (which is the analogue
of ^-conversion, on product type level) and study its properties. We use this extension to
separate the problem of whether a term is typable from the problem of what is the type of a
term.

Capsule Review

Beginning with the observation that the usual treatment of conversion of lambda terms
relies primarily on ^-conversion, but conversion of type terms relies primarily on explicit
substitution, the authors describe a class of type systems that use the equivalent of /?-
conversion - called Fl-conversion - at the type level. Although in some sense this is mostly
a cosmetic change, it is certainly elegant to be able to use the same machinery at both
levels, and the resulting systems have certain attractive features, manifested most neatly in
a generalization of the Barendregt Cube and the ability to concisely separate questions of
typability and type inference.

1 Introduction

At the end of the nineteenth century, types did not play a role in mathematics or logic,
unless at the meta-level, in order to distinguish between different 'classes' of objects.
Frege's formalization of logical reasoning, as explained in the Begriffsschrift (Frege,
1879), was untyped. Only after the discovery of Russell's paradox, undermining
Frege's work, one may observe various formulations of typed theories. Types could
explain away the paradoxical instances. The first theory which aimed at doing so,
was that of Russell and Whitehead (1910), as exposed in their famous Principia
Mathematica. Their 'ramified theory of types' was later adapted and simplified by
Hilbert and Ackermann (1928).

Church was the first to define a type theory 'as such', almost a decade after
he developed a theory of functionals which is nowadays called X-ca\cu\us (Church,
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1932). This calculus was used for defining a notion of computability that turned out
to be of the same power as Turing-computability or general recursiveness. However,
the original, untyped version did not work as a foundation for mathematics. To
come round the inconsistencies in his proposal for logic, Church developed the
'simple theory of types' (Church, 1940).

From then until the present day, research on the area has grown, and one can find
various reformulations of type theories. A taxonomy of type systems has recently
been given by Barendregt (1992). A version of Church's simple theory of types is
found in this taxonomy under the name A_. This A_ has, apart from type variables,
so-called arrow-types of the form A -» B. In higher type theories, arrow-types are
replaced by dependent products Ylx:A.B, where B may contain x as a free variable,
and thus may depend on x. This means that abstraction can be over types, similarly
to the abstraction over terms: lx:A.b.

But, once we allow abstraction over types, it would be nice to discuss the reduction
rules which govern these types. We propose reduction rules which treat alike types
and terms. That is, not only we have (Xx:A.b)C ->p b[x := C], but also (Tlx:A.B)C —>$
B[x:=C].

This strategy of permitting Tl-application (YlxA.B)C in term construction is not
commonly used, yet is desirable for the following reasons:

1. Il-reduction behaves like /?-reduction. One may say that ^-reduction has been
invented as an expedient to forebode a possible substitution. So why does one
use a direct substitution as in equation 1 (which is used almost everywhere) if
^-reduction can be used to do the job, as shown in equation 2? (we omit the
contexts, for the sake of simplicity):

If / : YlxA.B and a : A, then fa : B[x := a] (1)

Uf:Ylx:A.B and a: A, then fa: (Tlx:A.B)a (which /?-reducesto/a: B[x:=a]).

(2)
In fact, it is more elegant and uniform to use the second notation instead of
the first one.

2. Compatibility. With It-reduction, one introduces a compatibility property for
the typing of applications:

M :N => MP :NP.

This is in line with the compatibility property for the typing of abstractions,
which does hold in general:

M :N => Xy.pM -.Yly.pN.

As an example, we give a simple derivation with the above-described compatible
application rule and with conversion on Il-application:

A :*,b :A,a :A h a : A (start)
A:*,b:A h (?,a:A.a) : (Ua:A.A) (abstraction)
A:*,b:A h {laA.a)b : (Yla:A.A)b (application)
A:*,b:A \- (/.a:A.a)b : A (conversion)
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3. Unified treatment of terms and types. It is our belief that with Il-reduction it is
simpler to treat terms and types in a unified manner. Such a treatment provides
a step towards the generalisation of type systems which is an important topic
of research at the present time. For example, Barendregt's (1992) taxonomy
of type systems, but also Pure Type Systems (PTS) introduced by Terlouw
and Berardi (see Terlouw, 1989), and our generalised system (Kamareddine
and Nederpelt, 1994b) are attempts at combining all the important results of
type systems in a compact and elegant way. As a step towards this goal, we
believe that conversion should apply to both types and terms. In fact, II is
indeed a kind of X, hence eligible for an application. This is a quite natural
approach and one may interpret (YlxA.B)a as the wish to select the 'axis' B(a)
in the Cartesian product Tlx:A.B. One might argue that implicit Fl-reduction
(as is the case of the ordinary Cube) is closer to the intuition in the most
usual applications. However, experiences with the Automath-languages (de
Bruijn, 1974), containing explicit Il-reduction, demonstrated that there exists
no formal or informal objection against the use of this explicit Il-reduction in
natural applications of type systems.

4. The ability to divide two important questions of typing. Introducing explicit
Il-reduction gives an elegant way to divide two important questions which are
usually answered together via the judgement F \- A : B. These questions are:

• Is A typable in F? (Below we use the simplified judgement F \- A for this
question.)

• Is B the type of A in F? (Below we use a canonical type T(T,A) for A and
compare this canonical type with B, for this question.)

Fl-reduction is needed to split elegantly these two questions. In particular, we
require for an applcation T(F, Fa) = T(F, F)a on the condition that r(F, F) =
YlxA.B, hence we obtain (Tlx:A.B)a, a Fl-redex.

There are reasons why separating the questions 'What is the type of a term' (via
T) and 'Is the term typable' (via h), is advantageous. Here are some:

1. The canonical type of A is easy to calculate. The canonical type of A, x(T,A)
is defined by just scanning through A, removing all so-called main Fl-items
nx :B, replacing all main A-items Xx-B by FIx:B and replacing the heart of A by
its obvious type in A. For example: if A = Ylz-..(?.y-..(Xx-..x°)y)(nw-..{XX:..x)y),
then Flz:. is the main Fl-item of A, Xr. and Xx:. are the main A-items and x°
is the heart of A. Hence, %{V,A) = (ny:..(n,c:..*).y)(nw:..(Ax;..x)}').
A consequence is that the mapping algorithm (to find a type for a term) is
very simple. This contrasts with the mapping algorithm in the usual setting,
which needs intermediate applications of the conversion rule. This is caused
by the fact that Fa is only typable if F has an appropriate Fl-type. If F has not
(yet) a Fl-type, then the conversion rule must be used to find one. Of course,
we will need a conversion rule to check whether A has type B in context F
(by establishing that T (F , /1 ) = B). Note, however, that we use only typing for
the calculation of the canonical type, and only conversion for the second part
('T(T,A) = £?'). This is clearly a separation of concerns.
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2. T(A) plays the role of a preference type for A. To define the type of a term, in
the traditional cube, one starts with the types of variables, and subsequently
deduces other statements of the form T \- A : B, by regarding more complex
terms and their types. Finally, a conversion rule expresses that the types of
terms are given modulo conversion, i.e. if A : B and B =p C, then A : C. The
typing relation is the smallest relation satisfying these rules.
In our opinion, the approach in the traditional frameworks is, in a sense,
ambiguous. Note that with each variable x and pseudo-context F, there is
associated a preference type, which is B for x : B € F. For terms in general
no preference type has been given, but a whole collection of types, which are
typeable by themselves and linked by means of ^-reduction.
We define, however, the canonical type of A, t(A), which plays the role of
a preference type. For example, the preference type of A == Xx-..(Xy-..y)x is
T(O,A) = n.v:..(ny:..*)x. This type indeed reduces with the relation —^fi to
Tly,.*, the type traditionally given to A.

3. The conversion rule is no longer needed as a separate rule in the definition of k
In our approach, /^-conversion finds its place in the application condition of
the rules of h, where it naturally belongs. The conversion rule of the cube is
redundant in our system. It is accommodated in our application rule:

r h " r h ^ r h g ifT{r'A) =pn UxcD andT{T'B) =m c

It will be the case that x(T,AB) = x(r,A)B =m {UxCD)B -*pn D[x := B]
and so indeed T(T,AB) =pn D[x := C].

4. Higher degrees If we use X1 for n and X2 for X then we can aim for a
possible generalisation. In fact, we can extend our system by incorporating
more different X's. For example, with an infinity of X's, viz. X°, X1, X2, A3 ..., we
replace x{T,XxA.B) = nx.A.x{T2xA,B) and x{Y,UxA.B) = x{T.XxA,B) by the
following:

T(F,4t|B) = 4:/,.T(F./lx;/,,£),for i = 0,1,2,... where XxA.B = B

There is no reason why one cannot use as many X' as possible in a type system.
In fact, even though in the Cube there are only two, there are other systems
with more. There may be circumstances in which one desires to have more
'layers' of X's. As an example we refer to de Bruijn (1974).

Following the above observations, we introduce and study three typing relations
0~p, I~j3n and h) and a canonical typing operator T. \-p is the typing relation of
Barendregt (1992), and h^n is what we propose as its extension with Fl-conversion.
h- and T are what we use to divide the two important questions of typing as mentioned
above. We divide the paper as follows:

• In section 2, we introduce the formal machinery needed for h^, K^n, l~ and T.
• In section 3, we introduce the usual properties of the Cube for \-p and —*+p

which will be studied for our extensions.
• In section 4, we study in detail the properties of the Barendregt Cube extended

with Fl-conversion and show that h^n satisfies all the essential properties of \-p
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except for Subject Reduction. That is, F h^n A : B A A —»pn A' j> T h^n A' :
B. Subject Reduction however holds for the case B = • or F h^n B : S. This
Weak Subject Reduction is sufficient to obtain the desirable typing properties
such as unicity of typing. The explanation for this is that, this B which is not
• or of type S, reduces via —*+pn to B' which is itself either D or of type
S, and hence F h^n A : B implies F (-̂  B' where B —*+pn B' and B' has no
Fl-redexes.

• In sections 5 and 6 we study the properties of the two separate typing questions
regarding T and h.

2 The formal machinery of the cube

The systems of the Cube (see Berendregt, 1992), are based on a set of pseudo-
expressions or terms 3~ defined by the following abstract syntax (let n range over
both II and X):

P = * | • | V | 9T | nv.sr.2T

where V is an infinite collection of variables over which x, y, z,... range. • and •
are called sorts over which S,Si,S2,... are used to range. We take A,B,C,a,b... to
range over 9~.

Bound and free variables and substitution are defined as usual. We write BV(A)
and FV(A) to represent the bound and free variables of A, respectively. We write
A[x := B] to denote the term where all the free occurrences of x in A have been
replaced by B. Furthermore, we take terms to be equivalent up to variable renaming.
For example, we take Xx-A.x — Xy:A.y where = is used to denote syntactical equality
of terms. We assume moreover, the Barendregt variable convention which is formally
stated as follows:

Convention 2.1
(BC: Barendregt's Convention)
Names of bound variables will always be chosen such that they differ from the free
ones in a term. Moreover, different A's have different variables as subscript. Hence,
we will not have (Xx-A.x)x, but (Xy:A.y)x instead.

Terms can be related via a reduction relation. An example is ^-reduction (see
section 3). We say that a reduction relation —• on terms is compatible iff the following
holds:

AXB -» A2B ABX -» AB2

Ax -» A 2 Bi -> B2

—* nx:A2-B ^x:A-B\ —* nx:A.B2

A statement is of the form A : B with A, B e 9~. A is the subject and B is the predicate
of A : B. A declaration is of the form kxA with A £ &~ and x G V. A pseudo-context
is a finite ordered sequence of declarations, all with distinct subjects. The empty
context is denoted by < > . If F = lM-.M kXn-An then TlxB = XXx.M XXnAn.XxS

and dom(T) = {xi, . . . ,xn}. We use F,A,F' ,Fi ,F2, . . . to range over pseudo-contexts.
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A typability relation h is a relation between pseudo-contexts and pseudo-
expressions written as F h A. The rules of typability establish which judgements
T \- A can be derived. A judgement F \- A states that A is typable in the pseudo-
context r .

A type assignment relation is a relation between a pseudo-context and two pseudo-
expressions written as F \- A : B. The rules of type assignment establish which
judgements F \- A : B can be derived. A judgement F h A : B states that A : B can
be derived from the pseudo-context F.

When F \- A or F \- A : B then A and B are called (legal) expressions and F is a
(legal) context.

We write F \- A : B : C for F \- A : B A F \- B : C. If A = Ax, :Al kXn-An with
n > 0 is a pseudo-context, then F \- A, for F a type assignment, means F I- x, : AK

for 1 < i < n. If A —*• B then we also say Fi.Xx^.Fj —> F\.XxB.F2 and define -»• on
pseudo-contexts to be the reflexive transitive closure of —*.

Remark 2.2
Note that we differ from Berendregt (1992) in that we take a declaration to be Xx:A

rather than x : A. The reason for this is that we want pseudo-contexts to be as
close as possible to terms. In fact, the context F can be mapped to the term P.*
for example, and definitions of boundness/freeness of variables in a term and the
Barendregt convention are thus easily extended to pseudo-contexts.

Definition 2.3
(Type of bound variables, ^?)

• If x occurs free in B, then all its occurrences are bound with type A in nxA.B.
• If an occurrence of x is bound with type A in B, then it is also bound with

type A in ny:c-B for y ^ x, in BC, and in CB.
• Define <V(x) = x, <Z>(nx:A.B) = V(B) and V(AB) =

In this paper (section 6) we introduce a system where the type information B of
a judgement F \- A : B is no longer needed. Hence, judgements obtain the form
F I- A (a simple judgement). In the following definition, we include these simple
judgements.

Definition 2.4
Let r be a pseudo-context, A be a pseudo-expression and I- be a typability or a type
assignment relation.

1. T is called legal if 3P, Q e 9~ such that F\- P(: Q).
2. A € ST is called a T-term if F h A(3B e 2T[F h A : B V F h B : A]).

We take T-terms = {A e ST \ F h A (3B e jT[r \-A : BvF \-B : A])}.
3. A e &~ is called legal if 3F[A e T-terms].
4. We say that A is strongly normalising with respect to a reduction relation —**

(written SN_(/1)) iff every —^-reduction path starting at A terminates.

Definition 2.5

Let F = lXi-.Ai ?-xn-.An and A = /.,,|:B| XVm-sm be pseudo-contexts.
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1. We write Xx-A e F if x = x, and A = Ai for some i.

2. T is part of A, notation F s A, if every Xx:A in F is also in A.

3. Let AT be a set of variables. Then F \X is F where XXj-Al is removed for every
Xi $ X.

3 The ordinary typing relation \-p and its properties

Definition 3.1

(^-reduction —*p for the Cube)
/^-reduction —*p, is the least compatible relation generated out of the following

axiom:

0?) {kxB.A)C -i, A[x := C]

We take —»p to be the reflexive transitive closure of —>p and we take =p to be the
least equivalence relation generated by —>*p.

Definition 3.2

(\-p) The type assignement relation \-p is denned by the following inference rules:

(axiom) < > \-p * : •

r \-R A : S i T,7^ ^ r
< s t a r t

(weakening rule)

(application rule)

(abstraction rule)

(conversion rule)

1'h

F h

r.A.

Fl -

pA :S
r.Ax

p F : FI;

X-A \-p b

r
pA:B

•A r-^

8 Fa :

:B

D

b

I

i

F

\-p D
E

r\
: :=a\

F h
: UX.A

: i i

7 (

:S

j : / 4

x.A-B :S

B =R B'

A : ts

a- • i \ r h« A \ S] Y.XXA \~R B '. S7 -r- ,n n •, • i
(formation rule) 2 J, •_ n R-T^—2 if (SUS2) is a rule

1 <~f) Llx;A-B • ^2

Each of the eight systems of the Cube is obtained by taking its set of (S\,S2) rules
allowed in the formation rule out of {(*, *), (*, • ) , (• , •), (• , • ) } . The basic system
is the one where (S\,S2) = (*,*) is the only possible choice. All other systems have
this version of the formation rules, plus one or more other combinations of (*, • ) ,
(•,*) and ( • , • ) for (Si,S2). Here is the table which presents the eight systems of
the Cube (see also Figure 1):
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System Allowed (Si,S2) rules

/U
X2
XP
XP2
Xco
X(o
XPw
XPco =

(*,*)
(*,*)
(*,*)
(*,*)
(*,*)
(*,*)
(*,*)

XC (*,*)

(a,*)
(*,

(a,*) (*,

(a,*)
(•,

(a,*) (•,

D)

n)
(D,D)

(D, D)

D) (D, D)

D) (D,D)

AC

/

/

Xco

/IP

XPa

Fig. 1. The Cube.

Now, we list the properties of the Cube without proofs (see Berendregt, 1992).
These properties will be studied in section 4 for the Cube extended with IT-conversion
and will be discussed for the two different subjects of canonical typing and typability
in sections 5 and 6, respectively.

Theorem 3.3

(The Church Rosser Theorem CR, for -»p)
If A -++p B and A -^*p C then there exists D such that B D and C D D

Lemma 3.4

(Free variable lemma for 1-̂ )
Let F = XXlAl ^xn-.An be a h^-legal context such that F \-p B : C. Then we have:

1. The x\ ...xn are all distinct.
2. FV(B),FV(C)s{xu...,xn}.
3. FV(Ai) £ {xi,...x,_i} for 1 < i < n. •
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Lemma 3.5

(Start Lemma for \-p)
Let T be a h^-legal context. Then T h^ * : D and V/lx:C € T[r \-p x : C]. •

Lemma 3.6

(Transitivity Lemma for \-p)
Let T and A be h^-legal contexts. Then: [ r \-p A A A \-p A : B] => T \-p A : B. D

Lemma 3.7

(Substitution Lemma for \-p)
Assume r.Ax:/,.A l-p B : C and T \-p D : A then T.(A[x := D]) h^ B[x := D] :
C[x:=D]. a

Lemma 3.8

(Thinning Lemma for h^)
Let F and A be h^-legal contexts such that T £ A. Then T \-p A : B => Ahp A : B
•

Lemma 3.9
(Generation Lemma for \-p)

1. r h/; 5 : C => S = *, C =p a, and if C # • then r h^ C : S' for some sort S'.
2. r h^ x : C => 3B =p C[Ax:B G T A if C # B then T h^ C : S for some sort S].
3. T 1-̂  IIx:/1.J5 : C => 3(Si,S2)[r h^ ^l : Si A r.Ax:A \-p B : S2 A (Si,S2) is a rule A

C = , S2 A [C # S2 => 3S[r \-p C : S]]]
4. r h^ Ax:X.fc : C => 3(S,B)[r h^ UX.A.B : S A r.Ax;y4 h^ b : B A C =p TlxA.B A

5. T \-p Fa : C => 3/l,B,x[r h^ F : nx:A.B AT \-p a : A A C =p B[x :=
a] A (B[x :=a]±C^ 3S[r \-p C : S])]. D

Corollary 3.10

(Correctness of types for \-p)
If T \-p A :B then {B = a or T h^ B : S for some sort S). D

Lemma 3.11

(Legal terms and contexts for \-p and -**p)
h^-legal terms and contexts contain no Fl-redexes. •

Theorem 3.12

(Subject Reduction SR, for h^ and —**p)
T\-pA:BAA -**p A' => T \-p A' : B •

Corollary 3.13

(SR Corollary for \-p and —y*p)

1. If T \-p A : B and B -»p B' then TY-pA: B'.
2. If A is a rh"-term and A -+*p A' then A' is a T^-term. •
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Lemma 3.14
(Unicity of Types for \-p and —•*/»)

1. r \-p A : B, A r \-p A : B2 => Bx =p B2

2. F \-p A : B A T \-p A' : B' A A =p A' => B =p B'
3. T\-pB :S,B=e B',T\-p A' : B ' then T\-p B' :S. D

Theorem 3.15
(Strong Normalisation with respect to h^ and -*•/?)
For all \-p -legal terms M, SN_»/)(M), i.e. M is strongly normalising with respect to

4 The extended typing relation h^n and its properties

Definition 4.1
()Sri-reduction —•pn for the Cube)
/?n-reduction -*Pn, is the least compatible relation generated out of the following

axiom:

(/HI) (nx:B.A)C -+m A[x := C]

We take —**Pn to be the reflexive transitive closure of —>/jn and we take =^n to be
the least equivalence relation generated by —^FI-

Definition 4.2
{\-pn) We define h^n as \-p of section 3 with the difference that the application and
conversion rules change as follows:

/ ,• • , , T h«n F : TIXA-B T h n a : A
(new application rule) P r ^ ^ P

(new conversion rule) ^ r I- A • B' —

The following lemmas hold for l-^n and —*+pn and have the same formulation (only
change /? to pll everywhere) and proofs as for the case of \-p and —**p:

• The Church Rosser Theorem for -**Pn
• Free variable lemma for t-^n
• Start lemma for h^n
• Transitivity lemma for \-pn
• Thinning lemma for h^n
• Substitution lemma for h^n
• Generation lemma for h^ n where in clause 5, we replace B[x := a] by (Ylx:A.B)a

Remark 4.3
(Correctness of types does not hold for
The new legal terms of the form {Ux:B.C)A imply the failure of Corollary 3.10 for
I-^IT That is, even in ;._, r h^n A : B j> {B = D or T \-pn B : S for some sort S).
For example, if F = Az:..Ax:z then F h ^ n (A-y.z-y)x : (Tly:z.z)x, but F \fpw (Yly:z.z)x : S
from Lemma 4.5.
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Failure of correctness of types implies failure of Subject Reduction even in A_:

Example 4.4

In A_», lz-..Xx:z tfpn x : (IIj,:z.z)x. Otherwise, by generation: lz-..Xx:z ̂ ~pn (ny:z.z)x : S,
which is absurd by Lemma 4.5. Yet in A-*, Xz-,.Xx:z \-pn (Xy:z.y)x : (Yly:z.z)x.

We do have however, a weak subject reduction which we will prove after we show
the relationship between h^n and h^.

Lemma 4.5

For any A,B,C,S, T \fm (Ux:A.B)C : S.

Proof

If F h^n (RX:AB)C : S then by generation, F h^n HxA.B : nx:A.B' and again by

generation, r.Xx:A l~pn B : S' A S' =^n FIx:/i<.B' which is absurd. •

We do have the following lemma which is a sort of weak generation corollary:

Lemma 4.6
T h^n A : B A B is not a IT-redex => (B = D or F h^n B : S for some sort S).

By a trivial induction on the derivation of F h^n A. : B noting that the application
rule does not apply as (Ylx:AB)a is not a Fl-redex. D

Lemma 4.7

(Legal terms and contexts for h^n and —>*pn)

1. If F l-pn A : B then A and F are free of Il-redexes, and either B contains no
n-redexes or B is the only Fl-redex in B.

2. If A = (nxj).E)B is h^n-legal, then E[x := B] contains no Il-redexes.

Proof

1. is by induction on the derivation of F h^n A : B. 2. By 1, we only need to
show that if B s Tly c-H, then E does not contain a subterm xF. Now, suppose
B = Hy.G-H and E = C[xF], then it is easy to see that D = n z ; / .J for some I,J, and
F \-pn B : D for some context F. But F h^n ny : G .H : n z : / .J is impossible. •

To relate (-̂  and h^n, we introduce a notation which removes the unique Pl-redex
in a l-pn-legal term (if it exists):

Definition 4.8

For A h/m-legal, let A be C[x := D] if A = (Ylx:B.C)D and A otherwise.

Lemma 4.9

1. If F l-^n ^ : B then F h^ /4 : B.
2. If F \-fi A : B then
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Proof
1. By a trivial induction on the derivations F \-pn A : B. 2. By induction on
the derivation F \-p A : B. The only interesting cases come from conversion and
application. The conversion case is easy as if B =p B' then B =pn B'. The application
case is shown as follows: If F \-p Fa : B[x := a] comes from F \-p F : TixA.B and
F \-p a : A, then by IH, F h^n F : TlxA.B and F hyjn a '• A. Hence, by application,
F h/jn Fa : (nx[A.B)a. But {Tlx,A.B)a =m B[x := a]. If F \-pn B[x := a] : S for some
S, then by conversion F \-pn Fa : B[x := a]. But F h^n B[x := a] : S is shown as
follows:
F \-fin F : YlxAB then UxA.B is l-^-legal and F h^n TIX-.A.B : S' for some S' by
Lemma 4.6. Now, by the generation lemma r.Xx:A \-pn B : S for some S. But
F \-pn a : A. Hence by the substitution lemma: F h^n B[x := a] : S. •

Remark 4.10
Note that we may have F h^ A : B without having F h^n A : B, even if B is
l~/sn-legal. Take for example F = Xx-».kr., A = x and B = (FIy:..*)x. We have
F \~pn (Xr..y)x : B hence B is h^n-legal. We also have F hp x : B. Yet F tfpn x : B.

Lemma 4.11
If F \-pn A : B and A —»/jn A' then A' has no Il-redexes.

Proof
We only show this for A —>pn A'. Note that A has no Il-redexes and so A -*p A'.
Now, from F h^n A : B we get by Lemma 4.9, 1, F \-p A : B and so by Subject
Reduction for —**p we get T \-p A' : B. Hence A' has no Il-redexes by Lemma 4.7.

•
Lemma 4.12
(Weak Subject Reduction for h^n and —»pn)

1. F h/jn A : B A A -+>pn A' => F h^n A' : B
2. F \-pn A : B A A - » ^ n A' A £ is h^-legal => F h^n ^ ' : B

Proof
1. From F h^n -4 : B, and Lemma 4.9, 1, F h^ A : B. also, from A -+*pn A', and >1
and A' have no Fl-redexes (Lemmas 4.7 and 4.11), A —**p A'. Now, from SR for -**p
we get F 1-0 A' : B. Hence, by Lemma 4.9, 2, we get F f-̂ n A' : B. 2. is a corollary
of 1. •

Corollary 4.13
(WSR Corollary for h^n and —*+pn)

1. If F h^n A : B and F -»^n F then F h^n ^ : B.
2. If F \-pu A : Bi and B\ —>*pn B2 then F h^n A : B2.
3. If F h^n A : B and B =^n S then F h^n ^ : S.
4. If/I is F^i-term and A -**pn A' then A' is a F^n-term.
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Proof
1. By an easy induction on F \-pn A : B using Lemma 4.12. 2. Use F \-p A : B,
B -»,? B' and SR for -»/>. 3. is a corollary of 2. 4. Case r h/jri 4 : B and A - ^ n A'
then it is easy to show A' is h^n-legal using Lemma 4.12. Here we show that if
F \-pn B : A and A -»/?n A' then A' is h^n-legal. We will only consider the case
where A —>pn A' as the reflexivity and transitivity of -**pn are easy. There are only
three cases to consider:

• Case A = A then A - ^ A' and by Lemma 4.9,1, F \-p B : A. Hence, r\-p B :A'
by SR for —**p and so F h^n B : A' by Lemma 4.9, 2.

• Case /I = (Tlx:D.E)A, A ' = E[x : = C] then by L e m m a 4.9, \,T\-p B :A = A ' .
hence, F h^n B : A' by Lemma 4.9, 2.

• Case A = (UxD.E)C, A' = (nx:Di.E')C, then C,D,E are h/j-legal, B = FC,
F h^n F : nx:Z).£, T h^n C : £> and hence T \-p F : T\x:D.E, T \-p C : D. So
T\-p F : I W . F , r I-, C : D'. Therefore, r h ^ F : r W £ ' , T h^n C : D'
and so T h^n FC : (nx;D-.£')C

n
Remark 4.14
We cannot replace 2 of Corollary 4.13 by: If F hy?n ^ : B and B - ^ p n B' then F h^n

^ : B'. For example, take F = Xor.lr.II, A = (Az:a.z)((/lx:a.x)y), B = (nz:a.a)((Ax:a.x)y)
and B' = (nzM.a)>'. Then, F h^n A : B but F tfpn A : B' because if otherwise, we get
by generation, F \-pn (nz:ct.a)y : S, absurd by Lemma 4.5.

The result concerning WSR might look a bit disappointing. It is however discussed
in detail in section 7 which explains how the legal terms for l-^n are not rich enough
even though they are richer than the legal terms for 1-̂ . Furthermore, in Section 7,
we also explain how WSR can be pushed back to full SR if the system is extended
further.

Lemma 4.15
(Unicity of Types for h^n and -»^n)

1. F h/jn A : B{ A F \-pn A : B2 => Bi =pn B2

2. r\-pnA :BAr\-pnA' : B' A A =pn A' => B =pn B'
3. F h^n B : S,B =fi B',r\-pn A' : B' then F h^n B' : S.

Proof
1. by induction on the structure of A using the generation lemma. 2. by Church
Rosser, Weak Subject Reduction, 1, and Lemma 4.7. 3. This is the same as F \-p B :
S,B =p B',T\-p A' : B' then F \-p B' : S which is 3 of lemma 3.14 and hence has the
same proof. It is to be noted here that 3 fails for the case B =pn B'. Take for example
r \-pn * • a,* =/m (np:..*)u,Aa.. \-pn (V./ tyx : (n^ ;..*)a,F f/pn {nfi:.*)a : D D

Lemma 4.16
If SN^n(B[x := C]), Sti^A), SN^n(B) and SN^n(C) then SN^n((nx:/4.B)C).

Proof
This is standard. D
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Theorem 4.17
(Strong Normalisation with respect to h^n and —**pn)
For all h^n-legal terms A, SN—^/l); i.e. A is strongly normalising with respect to

Proof
Note that if A is Fi-redex free and SN_,,04) then SN_>,,n(/l). We show that if
r\-pn A : B then SN_?n(>4) and SN-^n(B). By Lemma 4.9, l,r\-pA:B. Hence,
by Theorem 3.15, SN_,(/4) and SN_,(B). Hence, S N - ^ / l ) and we only have to
show that SN^ n (B) .

• Case B = B then S R ^ B ) .
• Case B = (nx:BrB2)B3 then B = B2[x := B3], BUB2,B3 are h^-legal.

By Lemma 4.16, SN_,n(Bf) for 1 < i < 3 and SN^n(B), we get

•
5 The canonical typing operator x and its properties

Definition 5.1
(Canonical Type Operator) For any pseudo-context F and pseudo-expression A, we
define the canonical type of A in F, x(T,A) as follows:

T ( I » = •
T(F, X) = A if XxA e F
T(F, Fa) = x(r,F)a
x(T,XxA.B) = IlxA.x(r.Xx:A,B) \{ x $ dom{T)
x{T,Ux.A.B) = x(T.Xx:A,B) ifx

Example 5.2
In usual type theory, the type of Xx:.2y:x.y is Hx..TIyx.x and the type of Ylx:..Tlrx.x
is *. Now, with our T, we get the same result:

,Ax;.Ay.x.y) = Tlx ;. .X{XX;. , Xy :X.J/) = X\X ;. .11^ ;X.X(XX ;. Jy:x, >») = rix;..riy:x.X

Remark 5.3
Note that T ( F , D ) is undefined. We write j T(F,X) for T ( F , ^ ) denned. Note also
that FV(x(T,A)) + FV(T.A). For example, if F = Xx-.Xr.x.XZ:P, then x{T,y) = x,
x G FK(T(r,30) \ F^(r.y), and p e FK(F.y) \ FF(r(r,y)).

In what follows, we study the properties of x.

Lemma 5.4
(r-weakening)
Let F ,F ' be pseudo-contexts. F s F'A | T(F, /1) => [| x{r',A) and T(F, /1) = T(F', /1)].

Proof
By induction on ^ , noting that bound variables in A can always be renamed so that
they don't occur in dom(V). •
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Lemma 5.5

(Context-reduction for T)
For T , r be pseudo-contexts, T - ^ T'A | t:(r,A) => [| T(V,A) Ar(r,A) -+*p

Proof

By induction on i{Y,A). D

Lemma 5.6

(r-restriction)
If | z(T,A) then r(r | FK(^)M) = r(r,^).

Proof
By induction on A. D

Lemma 5.7

(r-Substitution Lemma) Let ~ be -**pn,=pn or =.
If T(r.Ax^.A,B) = C and t ( r ,D) ~ A then r(r.(A[x := D]),B[x := Z>]) ~ C[x := £>].

Proo/

By induction on the structure of A D

Note that when T,A contain no IT-redexes, T(T,A) is exactly as A except that:

1. An occurrence of TZX:B in A which is not an occurrence in some C where ny-c-D
or DC is a subterm of /I, disappears in the case n = II and becomes nx:B in
the case n = A.

2. <?(/!) is replaced by T(r',<?(/1)) where V = TlXi-A{...lXn-An and x, : At are
those of ity-B which have either disappeared or been replaced by n y : B , taken
in the same order in which they appeared in A.

Example 5.8

T ( o , n z ; . . (Xy:.. (Ax:.. x )y)(Uw...(Xx...x)y) =

( (A X : . . (Ay:.. A2:.. z )x)C)Z) =

((nx:.. (n,:.. nz:.. • )X)C)D

This can be made clearer by using the item notation via a translation function
S where - / ( T T ^ . B ) = (J{A)nx)J{B) and ^(/1B) = (J:(B)S)Jr(A). Note that for
each X, ^( / l ) = hh-InX where each main item /, is of the form (Aico) for
a) G {3} U {fty; j> G K} and x = %>{A). Moreover, any re-redex (nyB.C)D in A will be
{J(D)5){J{B)ny)J(C). Hence, n-redexes start by a <5-item just before a rr-item.

With this item notation, it is clearer to evaluate T. In fact, we go through J{A)
from left to right and for every /, we reach, we keep it unchanged if it is a (5-item,
we remove it if it is a Fl-item and we change the X to n if it is a /-item. Finally,
we replace V(A) which is x by T ( F , X ) where V = J{T).l'h I'k and l\ are all the

https://doi.org/10.1017/S0956796800001672 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001672


260 F. Kamareddine and R. Nederpelt

7r-items of A where Fi is changed to L Of course J(x{T,A)) = x(J(T), J(A)). For
example, for A = nz;..(Ay:..(Ax:..x)y)(nw:..(/x:..x)y),

J(A) = (*UZ) ((*Uw)(y8)(*lx)x8) (*Xy) (yd) (*XX) x
x(o,J(A)) = ((*Ylw)(yd)(*lx)x5) (*ny) (y5) (*Ylx) x((*Xz)(*ly)(*lx),x)

((*Tlw)(y5)(*Xx)xd) (*Yly) (yd) (*Ylx) *

Note that /) has disappeared, 12 and 14 remained unchanged whereas the X in IT,
and /5 changed to II. Note also that J(x(o,A)) = x(o,J'(A)). In item notation,
every term is of the form Sx or S where S is a segment, i.e. a sequence of items. For
a segment 5, we define S" as S where all the main ?r-items are written as A-items
and where all the main 3 -items are removed. We define 5 as S where all the main
A-items are replaced by FI-items, all the main 5 -items remain unchanged and all the
main Fl-items are removed. For example, if S = (xd)(yXz)(zUr) then S ' = (ykz)(zlr)
and S n = (xS)(ynz). With these notations, T(F,SX) = S T(FS\X) .

This item notation has been used to study, extend and clarify many notions of
the A-calculus (see Kamareddine and Nederpelt, 1995, 1996).

Remark 5.9
Note that typability of subterms fails for T. That is, T can be defined for some A
without being defined for all its subterms. For example, T(<> , (kx-..x)y) = (Tlx]..*)y,
but r(o,y) is not defined. Note also that unicity of types fails for x. That
is, we can have A —>*/jn A' without having x(T,A) =pn x(Y,A'). For exam-
ple, A = (Ax...x)(Xy:..y) - ^ n Xr..y = A' yet x(o,A) = (nx:..*)(Ay:..y) ^ n

x(o,Xy..y) = Uy:..*. Moreover, SN^nC/l) j> SN_/in(r(r,4)). For example, take
F = Xx:{nx:..xx)(nx...xx) and A = x. In Lemmas 6.7 and 6.17, we show that typability of
subterms and unicity of types hold for x when T \- A. We conjecture moreover, that
if F h A then x(F,A) is strongly normalising.

6 The typability relation I- and its properties

Definition 6.1
(h) The Typability relation h is defined by the following rules:

(h-axiom) <> h *

(h-start rule) r
r i ~ L if vc

(h-weakening rule) r A u n ^ v c

1 -Ax:A ' u

(h-application rule) r I- F— if ap

(h-abstraction rule) T1^ h b , .—[" h n ^ B jf a b

(h-formation) r h X
 r , n

 r ^ ^ h B if fc
1 l~ i l A i >

vc (variable condition): x ^ F and x(T,A) —»pn S for some S
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ap (application condition): T(F,F) =^ n RXAB and x(T,a) =pn A. for some A,B.
ab (abstraction condition): x{r.Xx-A,b) =^n B and T(F,nx : / ( .B) —*»/?n S for some S.
fc (formation condition): x(F,A) —**pn Si and x{T.Xx-A,B) —**pn Si for some (S\,S2)
rule.

When F I- A, we say that .4 is typable in F.

Lemma 6.2
(Free variable lemma and type-definability for I- and T)
Let F = XXi:Al XXn-An. If r I- A. Then we have:

1. The xi ...xn are all distinct.
2. FV(A)<={xu...,xn}.
3. FV(Aj) s {xi,...xf_i} for 1 < i < n.
4. I x{T,A) and FV(x(T,A)) s {x, , . . . ,x n}.

By induction on F h 4̂. •

Lemma 6.3
(Start Lemma for (- and T)
If F is h-legal, then F h * and V/lx:C e F[F h x A T(F,X) = C].

Proof
By induction on the derivation F I- A. •

Lemma 6.4
(Substitution Lemma for h and T)
If r . / W A h B and T h D and T ( F , D ) =pn A, then F.(A[x := £»]) h B[x := D] and
T(F.(A[X := D]),B[x := D]) =m x{Tlx.AA,B)[x := D].

Proof
By induction on the derivations of r.?.x:A.A \- B. •

Lemma 6.5
(Thinning Lemma for I- and T)
If F and A be h-legal and F £ A, then F h A => A I- A (note that x(r,A) = T(A,/1)).

Proof
By induction on the length of the derivations F I- A. •

Lemma 6.6
(Generation Lemma for h and T)

2. F I- x => 3A[lx-.A G F A T(F,X) = A].

3. F h nx:A.B => 3Si,S2[T \- A A TAX;A h B A x(T,A) =pn S, A x(Tlx:A,B)
=pn S2A(Si,S2) is a rule].

4. F h A^.fc => 3S,B[F h nx;/4.B A T.XX.A \- b A T(r.;,x:/1,ft) = / ! n B A T(F,nx; /1.e)
=^n S\.

5. F h Fa => 3A, B, x[F h F A F h a A T(F, F) =/m Tlx:A.B A T(F, a) =^ n -4]-
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Proof
By induction on the derivations F \- A. D

Lemma 6.7
(Typability of subterms)
If T h A and A' is a subexpression of A then (3F')[F.r' t- A'].

Proof
By induction on F h A. D

Lemma 6.8
(Legal terms and contexts for h)
h-legal terms and contexts are free of Fl-redexes.

Proof
By induction on F h A. The only interesting case is application. Assume F I- F,
F h a, T(F, F) =pn nx: /4.B and T(F, a) =^n 4- By IH, F, F, a are Fl-redexes free. Also,
F # n v : C .D, otherwise, T(F./IX : C , D) = r(F, F) =^ n S2 =/m Ilx:/,.B, absurd. •

Note that F h A j> (T(F, /4) = • V F h T(F, A)). For example, Ax:. h (Xr..y)x and
Ax:. 1/ (FIx:..*)x, by Lemma 6.8. The property however holds when T(F, A) is Il-redex
free. We need first the following lemma:

Lemma 6.9
If F I- A, F h B and A =$ B then x{T,A) =^ n T ( F , B ) .

Proo/
By induction on A =^ B using Lemmas 5.5 and 5.7. •

Lemma 6.10
If F I- A and T(F, A) is Fi-redex free, then T ( F , A ) = D or F h- z(r,A).

Proof
By induction on F h A using Lemma 6.9 (application cannot apply otherwise,
T(F,Fa) =x{T,F)a =pn (Tlx.A.B)a => T ( F , F ) = UxA.B' and T(F,Fa) is a Il-redex).

D

Now, let us study the relationship between h/jn and h.

Lemma 6.11
ltr\-finA:B then F h ^ and T(F,A) =^ n B.

Proof
By induction on the derivations F h^n A : B. D

Definition 6.12
For /4 a pseudo-term, we take /I to be the /?n-normal form of A.

form of M, then: Y\B,E =pn CT\-Fa =^ n A, Ylx.E.G = D, absurd. nx : £ .G and by
substitution, F h G[x := a], and by Lemma 6.8, G[x := a] is Fl-redex free. Now,
= (nx:£.G)a = G[x := a] = G[x := a], and we are done.
h t , .Ax:/i,b) i{T.Xx-.A,b) is free of Fl-redexes by IH, and the fact that A is free of
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Il-redexes (F I- A by generation).

A) —*+pn Si and x(T.XxA,B) —»pn $2 f° r s o m e r u l e (Si,S2)-
^x:/4,fc) (by IH), Ax:/),ft) =^n B (by generation and ab), we get by Lemma 6.9,

x{T.XxA,b)) =nn S2.
b).So,T\-x(r,Xx:A.b).

Lemma 6.13

UT\-A then J, x(T,A) and r\-pA: x(T,A)

Proof
By induction on F V- A. We only treat three cases:
application: Assume F \- F and F \- a give T V- Fa where the application con-
dition (ap) holds and IH holds for the first two derivations. x(T,F) =^ n RX.AB

A x{T,a) =pn A => 3 C,D where A -»pn C, B - n^n D, T(F,F) = Ylx:CD and

Moreover, by IH T \-p x(F,F) : S (otherwise by Corollary 3.10, Ux:CD = O absurd).
Now, use application on T \-p a : C, F h^ F : Tlxc-D to get T \-p Fa : D[x := a].
Hence by Strong Normalisation of \-p, J. Dfx := a].
But, T(F,Fa) = T(F,F)a = (nx:C.D)a = D[x := a] and so | T(F,Fa).

Now, by Corollary 3.10, F \-p Fa : D[x := a] => D[x := a] = D V 3S[F \-p D[x :=
a] : S].

Case D[x := a] = O then x(T,Fa) s Dfx := a] = Dfx := a] and Y \-p Fa :

• Case F h^ Dfx := a] : S, then by SR for h^, as Dfx := a] -»/? Dfx := a],
F h/j Dfx :=a] : S.
Now, use F \-p Fa : D[x := a], F \-p Dfx := a] : S and Dfx := a] =^ Dfx := a]
and conversion for h^ to get F \-p Fa : Dfx := a]. Hence, F \-p Fa : T(F,Fa).

abstraction: assume F h YlxA.B and T.Xx:A \- b imply F I- kx-.Ab where T(F.Ax;/4,fo)
=/,n B, and r(F,nx M .B) - ^ / J Q 5. Hence, T(r,Ylx:A.B) = S.
By IH, F \-p TIx:A.B : z(r,T\x:A.B) = S. Moreover, by ab as T{T.Xx.A,b) =pn

B, we get B - » g n t{T.XxA,b). Hence, Ylx:A.B -»pn UXA.Z{Y2xA,b) and F h^

4,fc) : S by SR for \-fi.

Furthermore, by IH, T.?.x:A \-p b : x{T.Xx-.A,b).
Now, use T.lx:A \-p b : x{T.kx:A,b), F \-p Hx:A.x{T.lx.A,b) : S and abstraction to get
r\-pAx..A.b:nx:A.x(r.xx:A,b).
But nx:A.x{Tix:A,b) ^n nx.j.x(nx:A,b) = x(r,xx:A,b).
Hence by Corollary 3.13, F \-p Xx:A.b : x(T,kx-A.b).
formation: Assume F h A and YJ.x:A h B give F I- T\xA.B and IH holds for
the first two derivations. Hence, [ x(T,A), x(T.kx:A,B), F \-p A : x(T,A) and
T.lx:A \-p B:x{T.Xx:A,B).
Hence, as x{Y,UxA.B) = x{T.XxA,B), we get | x{T,UxA.B).
Furthermore, as by fc, x{T,A) =pn S\ and x{T2xA,B) =pn S2, for some (Si,52) rule,
we get x(T,A) = S, and x{T.XxA,B) = S2.
Now, we use formation to get F h^ UxA.B : T(F, UXA.B). D
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Lemma 6.14
(Subject Reduction for I- and T)
T\-AAA ^Pn A' => [F I- A' A z(r,A) =pn x{T,A')]

Proof
Use Lemmas 6.11, 6.13 and SR for 1-̂ . •

Corollary 6.15
(SR corollary for I- and T)

1. If T h A and F - ^ F' then V \-A and x(T,A) =m x(VA).
2. If A is Fh-term and A -»/? A' then A' is a F^-term.

Proo/
1. r \-p A : T(F,A) => f h ^ : x(T,A). Hence, by Lemma 6.11 V \- A and
i ( r , A) =pn xjT\T) =/m t(r , /I). •

Remark 6.16
Note that r I- X and .4 -»/? A' j> x(T,A) -^^ T(F,X')-

 F o r example, If X = (/I2:w.z)y
and T = kv,..lr.(ix:.x)w, then X - » ? j ; , r (r ,^) = (ITz:vv.w)y -/»^ T(r,j;).

Lemma 6.17

(Unicity of Types for I- and T)

1. r\-A AT\-B A A =p B=>T(r,A)=!m T(T,B)

Proof
Use CR and SR to show T\-C, x{T,A) =m z{V, C) =m x{T, B). D
Theorem 6.18
(Strong Normalisation for h)
If A is rh-legal, then SN-^yl).

Proof
By Lemma 6.13, T hp A : t(T,A). Hence, by Theorem 3.15, SN-./A). D

We believe that if F I- A then SN_,^n(r(F, A)). We leave this as an open problem
for the moment.

Remark 6.19
Note that from Lemmas 6.11, 6.13 and 4.9 , Fl-reduction is necessary for splitting
F \- A : B into Y \- A and T(F, A) =^n B, yet h^n is not necessary. This is shown
by the following proposition (call B h^-legal type iff B = D or F \-p B : S for some
r,S).

Proposition 6.20
r\-pA:BoT\-AA T(F, A) =pn B A B is hrlegal type.

Proof
=>) By Lemma 4.9, F h^n -4 : B. Hence, by Lemma 6.11, F I- A and T(F,/4) =/jn B.
Moreover, by Corollary 3.10, as F h^ A : B, B is h^-legal type.
<=) By Lemma 6.13, | T(T,A) and FhpA: T(T,A). Moreover, B -^p x(T,A).
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• Case B = D then x(T,A) = D and F \-p A : B.
• Case F \-p B : S then by F \-p A : T(F,,4), B =^ T(F, A) and conversion, we get

r\-pA:B.

•
Note in this proposition that B is h^-legal type is needed. The reason is

obvious of course. We may have x{T,A) =pn B and F h A, yet B contains
n-redexes, hence making it impossible to have T \-p A : B. For example, if
F = Ap-..?.z-.lu:z, A = (?-x:z-(AyZ.p)u)u and B = (Hy:z.*)u then obviously T \- A
and z(T,A) = (Tlx-2.(nr.z.*)u)u =pn B but F \fp A : B. In fact, B is not a legal term
nor type for \-p according to Lemma 3.11. We do however have the following:

Lemma 6.21
If B is in /JFI-normal form, then T \-p A : B o T \- A A T(F, A) =^n B.

Proof
=>) is a corollary of Proposition 6.20. <=) As B is in /?Il-normal form and T(F,A) =pn
B, we get T{T,A) = B. Now, use Lemma 6.13 to get F \-p A : B. D

7 Conclusion

In section 1 we introduced various desirable properties for type theory. In this
section we remark how these properties have been treated in our paper discussing
any limitations or future work.

1. Fl-reduction behaves like ^-reduction. This has of course been a fundamental
point to our paper. In fact, recall Remark 6.19 which explained that FI-
reduction is necessary for splitting the question does A have B as a type into
the two questions about whether A is typable and whether its preference type
is equal to B.

2. Compatibility. This has certainly been achieved in h^n via the new application
rule.

3. Unified treatment of terms and types. This is achieved slightly in the Barendregt
Cube. With our Fl-reduction we go a step further allowing types to have similar
reduction rights as terms.

4. The ability to divide two important questions of typing. This has been achieved
in our paper by replacing \-p or h^n by h and x. The important relation
between the standard way of typing terms and our two separate questions is
given in Proposition 6.20.

As for the other points, it has been made clear in the paper that x{A) plays the
role of a preference type for A and that it is very easy to calculate. Furthermore, we
have eliminated the conversion rule from the typing rules for h

Now, let us reflect on the legal terms obtained via \-px\ comparing them to those
legal terms of h^. Lemma 3.11 informs us that h^n-legal terms and contexts have no
n-redexes. Lemma 4.7 tells us that if F h^n A : B then we can only have Fl-redexes
in B and if this is the case than B is itself the unique Fl-redex. So really, we have
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not increased our terms or types much via 1-̂ n- Still this tiny increase is what led to
the loss of SR (even though we get WSR). It is however easy to get back full SR in
two different ways which have been ignored in this article because they emphasize
different issues than those we emphasize in this paper. We will here just briefly
discuss how these two methods work.

The first method (which is being investigated) adds definitions to h^n via the
following extra typing rule (note n = X or FI):

(def rule) T.{nxA.-)B \-m C : D

The intuition behind this rule is obvious. It says that if C : D can be typed
using the definition that x of type A is B, then (nx:A.C)B : D[x := B] can be typed
without this definition. With definitions, terms, types and contexts contain as many
Fl-redexes as they like.

A second method to retrieve back full SR would be to add the following rule to

B : A
(nx:A-C)B :S

The intuition behind this rule is obvious. In fact, think of the formation rule. For
UxA.B : S we needed B : S. Now, if B : S then B[x : a] :S and hence (UxA.B)a : S.
With this extension, terms would contain as many II-redexes as they like. Contexts,
however, would still not contain any II-redex.
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