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Abstract

A high-frequency short-pulsed stroboscopic micro-visual system was employed to capture the transient image sequences of a periodically
in-plane working micro-electro-mechanical system (MEMS) devices. To demodulate the motion parameters of the devices from the images,
we developed the feature point matching (FPM) algorithm based on Speeded-Up Robust Features (SURF). A MEMS gyroscope, vibrating at
a frequency of 8.189 kHz, was used as a testing sample to evaluate the performance of the proposed algorithm. Within the same processing
time, the SURF-based FPM method demodulated the velocity of the in-plane motion with a precision of 10−5 pixels of the image, which was
two orders of magnitude higher than the template-matching and frame-difference algorithms.
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Introduction

Motion parameters of a micro-electro-mechanical system (MEMS),
such as frequency and modal vectors, are crucial in optimizing
process structures and enhancing the device performance.
However, conventional detection methods are difficult to imple-
ment since MEMS devices are not only designed in millimeters
or even smaller sizes, but also vibrate at a high frequency (kilo-
hertz/megahertz) with a small amplitude (micron/nanoscale
units) (Niu et al., 2019). So many optical techniques have been
used and one of the most popular is the laser Doppler vibrometer
(LDV) with nanometer precision. However, it is mainly used for
out-of-plane motion detection and has limited application, as it
can only detect one point at a time. High-speed cameras and
holograms can capture the full field of view, but they are not cost-
effective. Conversely, the stroboscopic micro-visual system cap-
tures the transient image sequences of the MEMS devices with
periodic in-plane motion in a direct and practical way. After
acquiring the image sequences, an appropriate demodulation
algorithm is also essential to effectively extract the motion param-
eters of the device. Jin et al. (2009) proposed an optical flow algo-
rithm, but large errors would occur if the ambient luminance
changed during the period of the device’s motion. Xie et al.
(2005) demonstrated a novel sub-pixel template-matching (TM)
algorithm based on cubic spline interpolation, but it was too
slow for real-time detection. To address the issues raised above,
the authors have proposed a new feature point matching (FPM)

algorithm based on Speeded-Up Robust Features (SURF) in this
paper. It extracts motion parameters from image sequences by
matching identical features. Experimental results show that the
proposed algorithm improved the demodulation precision by
two orders of magnitude in the same processing time compared
with the other two popular algorithms.

Experimental Setup

As shown in Figure 1a, the ultrafast stroboscopic micro-visual sys-
tem mainly consisted of a light-emitting diode (LED) source, a
drive control module, and an imaging system. In the microscope
(DJY-880, manufactured by Dianying Optical Instruments Co. in
Shanghai, China), a blue LED served as the ultrafast stroboscopic
light source in place of the original halogen lamp. It was driven by
a short pulse driver (LDV-V 03-100 V4.0 produced by PicoLAS)
with a minimum pulse duration of 1 ns and a maximum
repetition rate of 35 MHz. A field-programable gate array
(FPGA) triggered the pulse driver through a level converter.
The charge-coupled device (CCD) (E3IS PM produced by KUY
NICE) captured the transient image sequences of the MEMS
device in motion. The acquired images were saved on a computer
via USB 3.0. The experimental setup in our laboratory is shown in
Figure 1b.

The timing chart of the stroboscopic system is illustrated in
Figure 2. The illumination time should be kept as short as possible
to capture the transient image sequences of the periodically
in-plane working MEMS devices. It was impossible for the
CCD camera to obtain sufficient luminous flux for clear imaging
in a single shot. Thus, the strobe signal was set to the same fre-
quency as that of the MEMS device, measured by the LDV.
This ensured that the same position could be exposed multiple
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times until the CCD acquired a clear image. The CCD was trig-
gered to open prior to the output of the strobe pulse and close
after acquiring a clear image at a point in the phase cycle. This
feature eliminated the need for a high-frequency electronic shutter
on the CCD, allowing for a more cost-effective field implementa-
tion of the micro-visual system. Then a phase delay of δ = 2π/n
was added to the strobe pulse to acquire the image at the next
position of the periodically moving MEMS device until n images
of an entire period were acquired (Hart et al., 2000; Pandey et al.,
2017). The dynamic periodic motion of a vibrating part could be

observed and measured using this type of signal synchronization.
The reason that the ultrafast stroboscopic system can acquire clear
images of the MEMS devices vibrating at a high frequency is
derived as follows.

The displacement and velocity of the MEMS in-plane motion
can be described by the following equation:

y = A sin (vt)
v = Av cos (vt)

,

{
(1)

Fig. 1. (a) Schematic of the ultrafast stroboscopic micro-visual system. (b) Experimental setup of the ultrafast stroboscopic micro-visual system.

Fig. 2. Timing chart of the stroboscopic system.
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where A is the maximum amplitude of motion and ω is the angu-
lar frequency which can be calculated by the following equation:

v = 2pf , (2)

where f is the vibrating frequency of the MEMS device.
The maximum velocity of the motion is

vmax = Av, (3)

and the displacement within the flash width of a single strobo-
scopic pulse is

DS =
∫Dt/2
(−Dt/2)

vdt = 2A sin
p

n
= 2A sin (pfDt), (4)

where n is the number of image sequences captured during a
MEMS device’s motion cycle and Δt is the flash width of a single
stroboscopic pulse calculated by the following equation:

Dt = 1
nf

. (5)

Supposed f = 500 kHz, n = 100, the calculated displacement ΔS
was about 3.14 × 10−7 m, at least two orders of magnitude smaller
than the resolution limit of human eyes (10−4 m), which satisfied
the conditions for clear imaging.

So, the ultrafast stroboscopic photography utilizing 20 ns light
pulses enabled the system to visualize the MEMS devices at a fre-
quency of 500 kHz and acquired clear images of the in-plane
motion well beyond the resolution limit of human eyes.

In-Plane Motion Demodulation Algorithm

The SURF-based FPM algorithm was developed to demodulate
the motion parameters of the MEMS devices from the image
sequences obtained above.

FPM Algorithm Based on SURF

Image matching, which matches the target regions of two or more
images, has been widely used in many fields, such as target track-
ing (Zitová & Flusser, 2003; Salvi et al., 2006). And it also pro-
vides a possible way to demodulate the motion parameters of
the MEMS devices. The image matching algorithms can be
divided into two categories: the one based on grayscale and the
one based on features. The grayscale-based one directly matches
the original images with the image mask by comparing their sim-
ilarities, which can be calculated by the grayscale information. It is
shown to be quite compute-intensive, and many regions of the
original image are calculated unnecessarily. The feature-based
routine matches the feature points of the two images. It signifi-
cantly reduces the computational cost as there are fewer feature

points than pixels in an image. The three main steps of feature-
based methods are feature point detection, feature point match-
ing, matching information output.

As for feature point detection, the three most popular algo-
rithms are scale-invariant feature transform (SIFT) (Lowe,
2004), SURF (Bay et al., 2006), and oriented fast and rotated
binary robust independent elementary features (BRIEF) with the
whole routine abbreviated to ORB (Rublee et al., 2011).
Compared with SURF, SIFT is more time-consuming and less sta-
ble, and ORB is insensitive to micro displacements (Banerjee
et al., 2019; Bansal et al., 2021). So, SURF was selected to detect
the feature points in our proposed algorithm. Then the feature
points of two images were matched according to the matching
degrees calculated by Euclidean distance. The random sample
consensus (RANSAC) model (Brown & Lowe, 2002; Zhao &
Du, 2004) was applied to eliminate the existing mismatched
point pairs, and the motion parameters could finally be
calculated.

SURF Feature Point Detection
The main flows of SURF feature point detection are shown in
Figure 3.

The core of SURF involves constructing a Hessian Matrix for
each pixel of the image. In order to retain the scale invariance
property of feature points, a Gaussian filter is applied to each
image by convolving them with a Gaussian kernel, which can
be described as follows (Li et al., 2019):

Lxx(x, y, s) = G(x, y, s)⊗ I(x, y), (6)

G(x, y, s) = ∂2

∂x2
1

2ps2
e(−x2+y2/2a2), (7)

where I(x, y) is the pixel value of point (x, y) in the image, and G
(x, y, σ) is the Gaussian kernel on the σ scale.

Then the Hessian matrix, which can be written as follows, is
constructed to detect edges of the integral images:

H(x, y, s) = Lxx(x, y, s) Lxy(x, y, s)
Lxy(x, y, s) Lyy(x, y, s)

[ ]
, (8)

where Lxx, Lyy, and Lxy are elements of matrix calculated by for-
mula (6). The discriminant of the Hessian matrix is calculated
to get the feature points at extreme values:

Det(H) = s4(Lxx(x, y, s)Lyy(x, y, s)− L2xy(x, y, s)). (9)

It took a good deal of CPU time to compute the Gaussian
function as it was required to be discrete and cropped in practical
use. To reduce the processing time, box filters (Bay et al., 2006)
were employed in place of the Gaussian kernel, and the integral
images were used in place of the original ones. Then formula

Fig. 3. The flow chart of SURF feature point detection.
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(9) can be approximately written as follows:

Det(Happrox) = DxxDyy − (vDxy)
2, (10)

in which ω, usually set as 0.9, is the compensation coefficient of
the box filter for the Gaussian kernel. The box functions Dxx,
Dyy, and Dxy correspond to the Gaussian kernel functions Lxx,
Lyy, and Lxy, respectively.

Different sizes of the box filters are applied to the images, and
multi-scale image pyramids are built (Bay et al., 2006). In order to
localize feature points in the image and over scales, a non-
maximum suppression is applied in a 3 × 3 × 3 neighborhood. If
the Hessian matrix discriminant of a pixel, calculated by formula
(10), is the maximum or minimum value compared to its neigh-
bors, we save it as a feature point candidate. Interpolation in scale
and image space is then applied to precisely obtain the position
and scale value of feature points.

In order to be invariant to rotation, Haar wavelet responses are
calculated, and SURF descriptors are built (Xie et al., 2020).

Feature Point Matching
In feature point matching, the Euclidean distance between two
sets of feature points, for which a smaller value means higher
match quality, can be calculated as follows:

D =
�������������������∑n

i=1
(xi1 − xi2)

2
√

, (11)

where xi1 is the ist coordinate of the first point and xi2 is the ist
coordinate of the second point. The feature point pairs would
be reserved if their Euclidean distance was below the setting
threshold (Idris et al., 2019).

The flow chart of the FPM algorithm based on SURF is shown
in Figure 4.

After feature point detection and matching, there still existed
some mismatched point pairs, and the RANSAC model was
applied to eliminate them. The displacement between adjacent
frames was then calculated by taking a weighted average of all
the displacements calculated by each point pairs.

Fig. 4. The flow chart of FPM algorithm based on SURF.
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Experimental Results and Discussions

The images of the tested MEMS gyroscope, whose designed resonant
frequency was 8.189 kHz, are shown in Figure 5. However, the max-
imum amplitude was an unknown parameter that must be charac-
terized as the manufactured devices were not always consistent
with the design criteria. Figure 5a was captured by the CCD camera
under the halogen lamp as a light source, while Figure 5b under the
ultrafast stroboscopic system. It is evident that the image of the
vibrational region highlighted in the red box in Figure 5b is more
distinguishable compared with the one in Figure 5a.

The image sequences of the periodically in-plane working
MEMS devices we captured included 190 frames. The FPM algo-
rithm based on SURF was applied to acquire the velocities and
displacements of the device. The demodulation area was limited
to the region highlighted with the red box in Figure 5b since
the entire area vibrated at the same speed. But for the part outside
of the red box, only middle tooth structures in combs were

vibrating, while others were static. It could introduce distortion
to the demodulation calculation, which was not favorable. The
processing time of all 190 frames was 100.85 ms. Therefore, the
processing rate was 1884 fps, which could realize real-time detec-
tion. Experiments of the demodulation algorithms were con-
ducted on a computer equipped with a Windows 10 operating
system and an Intel i7-9700 F CPU. The required software envi-
ronments were visual studio 2015 and its OpenCV 2.4.9 libraries.
The curves of the displacements and velocities were constructed,
which are shown in Figure 6.

The dominant noise in Figure 6a was caused by environmental
vibration, which was depicted as the difference between the sine-
fitting velocity curve and the measured one. Due to the random
nature of environmental vibration, the displacements calculated
by integrating the velocities averaged out the random noise as
shown in Figure 6b. It had a minor difference between the fitted
and measured data. According to the displacement curve of the

Fig. 5. Local images of the MEMS vibratory gyroscope. (a) Image captured by the CCD camera illuminated by the halogen lamp. (b) Image acquired by the ultrafast
stroboscopic system.

Fig. 6. Motion parameters demodulated by FPM based on SURF. (a) The velocity curve of the MEMS gyroscope. The inset is an enlarged part to show the error bar
area. The reduced χ2 of sine fit is 0.00625; R2 is 0.99596; and Adj. R2 is 0.99589. (b) The displacement curve of the MEMS gyroscope. The reduced χ2 of sine fit is
0.28380; R2 is 0.99922; and Adj. R2 is 0.99921.
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MEMS gyroscope under test, the amplitude was 26.61 pixels, cor-
responding to 4.59 μm. This result matched well with the design
parameter.

Other two commonly used gray-based motion demodulation
algorithms, TM (Lai et al., 2020; Wang et al., 2020) and frame-
differences (FD) (Li et al., 2006), were also developed to make a
comparison with the FPM algorithm based on SURF. TM calcu-
lated the displacements by translating the template pixel by pixel
from the top left to the bottom right of the image to find the best-
matched position. The FD method also obtained the displace-
ments by translating the adjacent frames pixel by pixel. Six of
all 190 recorded frames were selected as a sample to be demodu-
lated by the three different algorithms to compare the sub-pixel
precision. The results are summarized in Table 1. With the
same processing time, the precision achieved by the FPM algo-
rithm based on SURF was 10−5 pixels, while that of the TM
and the FD were 10−2 and 10−1, respectively. The precision of
TM and FD algorithms could be further improved with interpo-
lation algorithms, but would undoubtedly result in longer pro-
cessing time.

The vibrating velocity shown in Table 1 was defined as the rel-
ative displacement of the current frame to the previous one with a
fixed sampling time. Since six frames were under the demodula-
tion process, five relative displacements were calculated. The
images of the MEMS devices were magnified by 20 times with
an objective, and the pixel size of the Point Gray industrial
CCD was 3.45 μm, from which we could calculate the actual
image size of the pixel as follows:

1 pixel = 3.45mm
20

= 172.5 nm. (12)

Finally, the velocity curves demodulated by the three algo-
rithms of all 190 frames are shown in Figure 7.

As shown in Figure 7, all three algorithms could roughly
demodulate the velocity curves. But at the extreme points, com-
pared with the FPM based on SURF, the TM algorithm displayed
more substantial fluctuation, and the demodulation of FD was
distorted to some extent. Thus, the FPM method based on
SURF achieved higher accuracy while demodulating the image
sequences. Additionally, this was also shown from the quantitative
R2 results given in Table 2. The closer the R2-value was to 1, the
more consistent the fitting curve was with the data.

Conclusions

An ultrafast stroboscopic method using a 20 ns flash pulse was
developed and implemented to obtain clear “frozen” images of
the MEMS devices with in-plane vibration at kHz repetition
rates, which overcame the limitation of the slow electronic shutter
rate of the CCD. By utilizing the FPM method based on SURF, a
precision of 10−5 pixels of the image was achieved, which was
2-magnitude higher than that of the TM and FD algorithms
within the same processing time. The velocity and displacement
curves of a MEMS vibratory gyroscope, which vibrated at a fre-
quency of 8.189 kHz, were demodulated from the recorded images.

Funding. National Key Research and Development Program of China
(2018YFF01013203).
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