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Building a Stationary Stochastic Process
From a Finite-Dimensional Marginal
Marcus Pivato

Abstract. If A is a finite alphabet, U ⊂ ZD, and µU is a probability measure on AU that “looks like”

the marginal projection of a stationary stochastic process on AZD
, then can we “extend” µU to such

a process? Under what conditions can we make this extension ergodic, (quasi)periodic, or (weakly)
mixing? After surveying classical work on this problem when D = 1, we provide some sufficient
conditions and some necessary conditions for µU to be extendible for D > 1, and show that, in
general, the problem is not formally decidable.

1 Introduction

1.1 The Markov Extension in Z

Let A be a finite alphabet, and let AZ be the space of bi-infinite sequences on A. A
stationary stochastic process is a probability measure µ on AZ so that, for any V ∈ N,
b0, b1, . . . , bV ∈ A, and any k ∈ Z

µ{a ∈ AZ ; a0 = b0, . . . , aV = bV} = µ{a ∈ AZ ; ak = b0, . . . , ak+V = bV}.

Let U be the interval [0 · · ·U ] ⊂ Z. The projection map prU : AZ → AU is the
map sending the sequence [an|n∈Z] to the sequence [an|n∈U]. With this map, we
can project µ down to a marginal measure, µU := pr∗U[µ], on the space AU. This
marginal is then locally stationary: for any V < U , any b0, b1, . . . , bV ∈ A, and any
k ∈ Z so that V + k ≤ U also,

µU{a ∈ AU ; a0 = b0, . . . , aV = bV} = µU{a ∈ AU ; ak = b0, . . . , ak+V = bV}.

Can we reverse this process? Given a locally stationary measure µU upon AU, can
we extend it to a stationary stochastic process µ on AZ, so that pr∗U[µ] = µU? Yes, and
furthermore, we can do so in a canonical fashion, via the so-called Markov Extension.

An intuitive description of the Markov Extension is this: We randomly “choose”
the coordinates a0, . . . , aU according to the probability measure µU. We then ran-
domly chose the coordinate aU +1, again according to µU (now treated as a proba-
bility measure on AU+1), but conditioned upon the fact that we have already fixed
coordinates a1, . . . , aU . Next, we randomly chose the coordinate aU +2, again accord-
ing to µU (now treated as a probability measure on AU+2), but conditioned upon the
fact that we have already fixed coordinates a2, . . . , aU +1. Inductively, we get a U -step
Markov process on A.

To formally construct the Markov Extension, we need a bit of notation:
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• If a = [an|n∈Z] is an element of AZ, and V ⊂ Z, then let aV := [av|v∈V]
• Ifµ is a measure upon AZ, V ⊂ Z, and b ∈ AV, then let “µ[b]” denote the measure

of the associated cylinder set:

µ[b] := µ{a ∈ AZ ; aV = b}.

• Suppose V ⊂ Z and k ∈ Z are such that (k+V) ⊂ U. If b := [bv|v∈V] is an element
of AV, then let b ′ be the “shift” of b by k: that is, b ′ := [b ′v|v∈(k+V)], where, for all
v ∈ V, b ′v = bv−k. Then define:

µU[b] := µU{a ∈ AU ; a(k+V) = b ′}.

(because µU is locally stationary, it doesn’t matter which k we use in this defini-
tion, if more than one k is available)

The Markov Extension of µU is the probability measure µmrk, where, for any N ≥
U , and b ∈ A[0···N],

µmrk[b] := µU[bU] ·
N−U∏
k=1

µU

[
b[k···U +k]

b[k···U +k)

]

Here, [k · · ·U + k) := {k, k + 1, . . . , k + U − 1}, while [k · · ·U + k] :=

{k, k + 1, . . . , k + U}, and µU[ b[k···U +k]

b[k···U +k)
] is the conditional probability:

µU

[
b[k···U +k]

b[k···U +k)

]
:=

µU[b[k···U +k]]

µU[b[k···U +k)]

µmrk is a stationary probability measure on AN. Define the probabilities of cylinder
sets indexed by negative coordinates by simply shifting them into the positive domain.
Thus, µmrk is defined on all cylinder sets in AZ. It is straightforward to check that the
probability measure thus defined is stationary, and that its marginal projection upon
AU is equal to µU.

This construction indicates that a stationary extension of the measure µU always
exists. In general, there may be many such extensions. Intuitively, µmrk is an exten-
sion built so as to provide the maximum amount of “random choice” at each succes-
sive coordinate. Hence, the following variational principle is not too surprising:

Theorem (Maximal Entropy Property) Of all the different stationary extensions of
µU that exist, µmrk is the one possessing the largest process entropy, which we define as:

H(µmrk) := lim
N→∞

−1

N

∑
a∈A[1···N]

µmrk[a] log2(µmrk[a]).

Proof See, for example, [21].

Under what circumstances do ergodic extensions of µU exist? Can we build an ex-
tension measure which is supported only on periodic words of some fixed periodicity?
Also, what happens if U is not just an interval inside Z?
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1.2 Extension on Lattices

Now, let D > 0, and let ZD be a D-dimensional lattice. Then AZD
is the space

of D-dimensional configurations on A. If k ∈ ZD, then the shift by k is the map
Shiftk : AZD

→ AZD
so that, if a := [an|n∈ZD ], then Shiftk a := [a ′n|n∈ZD ], where

a ′n = an−k, ∀n ∈ ZD.

A stationary stochastic process is a probability measure µ on AZD
that is invariant

under all shift maps. That is, if V ⊂ ZD is any finite subset, and b ∈ AV, then for any
k ∈ ZD,

µ[Shiftk(b)] = µ[b].

If U ⊂ ZD, and k ∈ ZD, then define Shiftk U = U + k, and define Shiftk : AU →
AU+k so that, if a := [an|n∈U], then Shiftk a := [a ′n|n∈U+k], where a ′n = an−k,
∀n ∈ U + k. A probability measure µU on AU is locally stationary if for any V ⊂ U,
any b ∈ AV, and any k ∈ ZD so that Shiftk V ⊂ U also,

µU[Shiftk(b)] = µU[b].

The Extension Problem Given a locally stationary measure µU upon AU, can we
extend it to a stationary stochastic process µ on AZD

, so that pr∗U[µ] = µU?
The Extension Problem does not always have solutions, as examples in Section 3

will show. If we can solve the Extension Problem, can we construct an extension
which is ergodic? (quasi) Periodic or (weakly) mixing?

1.3 Extension on Group Modules

Now, let G be an arbitrary group, and let M be a G-module: an arbitrary set equipped
with a G-action. A few examples of this to keep in mind:

• M := ZD and G := ZD, also, acting upon M by translation.
• M := (Z/P1) ⊕ (Z/P2) ⊕ · · · (Z/PD), and G := ZD acts upon M by translation

with periodic boundary conditions.
• G is an arbitrary group, H an arbitrary subgroup, and M := G/H is the set of

right cosets. G acts upon M by multiplication: if g ∈ G and (kH) ∈ M, then
g · (kH) := (g · k)H. (Every transitive G-module is of this type, and every G-
module can be written as a disjoint union of transitive G-modules.)

• Let AM be the space of M-indexed configurations on A. If g ∈ G then the shift
by g is the map Shiftg : AM → AM so that, if a := [am|m∈M], then Shiftg a :=
[a ′m|m∈M], where a ′m = ag−1·m, ∀m ∈M.

A G-invariant stochastic process is a probability measure µ on AM that is invariant
under the shift action of G. That is, if V ⊂ M is any finite subset, and b ∈ AV, then
for any g ∈ G,

µ[Shiftg(b)] = µ[b].
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If U ⊂ M and g ∈ G, then define Shiftg U = g · U = {g · u ; u ∈ U}, and define
Shiftg : AU → Ag·U so that, if a := [au|u∈U], then Shiftg a := [a ′u|u∈g·U], where

a ′u = ag−1·u, ∀u ∈ g · U. A probability measure µU on AU is locally stationary if for
any V subset U, any b ∈ AV, and any g ∈ G so that Shiftg V ⊂ U also,

µU[Shiftg(b)] = µU[b].

Again, we ask:

The (Group Module) Extension Problem Given a locally stationary measure µU

upon AU, can we extend it to a stationary stochastic process µ on AM, so that
pr∗U[µ] = µU?

If M = ZD = G, then this is just the Extension Problem on a D-dimensional lat-
tice. If M := (Z/P1)⊕(Z/P2)⊕· · · (Z/PD) and G := ZD, then a G-invariant measure

on AM is “equivalent” to a stationary stochastic process on AZD

which is supported
only on periodic configurations with fundamental domain [0 · · · P1) × [0 · · ·P2) ×
· · ·×[0 · · ·PD). In Section 6, we will demonstrate that, if U ⊂ [0 · · ·P1)×[0 · · · P2)×
· · · × [0 · · ·PD) ⊂ ZD is some “small enough” domain, then any locally stationary
measure µU can be identified with a locally invariant measure µU ′ , where U ′ ⊂M is
the obvious “representation” of U inside M.

1.4 Organization of this Paper

In Section 2, we motivate the Extension Problem by discussing applications to the
Invariant Measure Problem for subshifts of finite type and cellular automata. In Sec-
tion 3, we show that the Extension Problem is not trivial by providing examples of
locally stationary measures which cannot be extended. These examples imply two
necessary conditions for extendability: the Entropy Condition and the Tiling Condi-
tion.

In Section 4, we review basic harmonic analysis on configuration space, treating
it as a compact abelian group, and characterise the Extension Problem in terms of
constructing a suitable set of Fourier coefficients. We use this in Section 5, where we
consider extension on finite G-modules, and show that, if ν is an extendible measure
with full support, and µ is “close enough” to ν, then µ is also extendible. A similar
result can be developed for constructing periodic extensions, but first we need a tool
to “reduce” the Extension Problem on an infinite module to an extension problem
on a suitably chosen finite module, which we develop in Section 6, via the concept of
“envelopes”.

In Section 7, we show that an extendible, locally stationary measure with full sup-
port can be “embedded” in any ergodic ZD-dynamical system, in the sense that it
is a marginal projection of a stationary ZD-process generated by a partition on that
system.

In Section 8, we combine the results of Section 5 and Section 6 to investigate
when a measure has an almost-surely periodic extension, and provide examples of
measures which never have periodic extensions, as well as measures which only have
periodic extensions. Then we use the results of Section 7 to show that “almost all”
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extendible measures have extensions which are ergodic, mixing, weakly mixing, or
quasiperiodic.

In Section 9, we show that the Extension Problem is, in general, formally unde-
cidable.

1.5 Preliminaries and Notation

If we treat A as a discrete topological space, and endow AM with the Tychonoff prod-
uct topology, then AM is a compact, metrizable space. If M is finite, then AM is finite
and discrete. If M is infinite, then AM is uncountable and totally disconnected.

The topology on AM is generated by cylinder sets. If U ⊂M is finite, and b ∈ AU,
then the associated cylinder set is:

{a ∈ AM ; aU = b}.

Here, by “aU” we mean the element [au|u∈U], where a = [am|m∈M]. Normally, we
will use the symbol “b” to denote both the word b and the cylinder set it induces—
the distinction will be clear from context. For example, if µ is some measure, then
“µ[b]” indicates the measure of the cylinder set defined by b.

Whenever we speak of measures on AM, we will mean measures on the Borel
sigma-algebra generated by the product topology.

If M is a G-module, then MeasG[AM] is the space of all G-invariant probability
measures on AM. This is a convex subset of Meas[AM], the space of all probability
measures on AM, which, in turn, is a convex subset of the real vector space Meas[AM ;
R] of real-valued measures on AM.

The elements of Meas[AM ; C] (complex-valued measures on AM) act as linear
functionals on C(AM ; C) (the Banach space of complex-valued, continuous func-
tions). This induces a weak-∗ topology on Meas[AM ; C], making it into a locally
convex topological vector space.

MeasG[AM] is a compact subset of Meas[AM ; C] under this topology.
When G =M = ZD, we will refer to MeasG[AM] as “Measstat [AZD

]”.
If U ⊂M, then MeasG[AU] is the space of all locally G-invariant probability mea-

sures on AU. Measext[AU] is the set of all extendable probability measures: measures
which can be extended to a G-invariant measure on AM. Notice that:

Measext[AU] is a compact, convex subset of Meas[AU ; C].

This is because the marginal projection map pr∗U : Meas[AM ; C] → Meas[AU ;
C] is linear and continuous, and Measext[AU] is simply the image of the compact,
convex subset MeasG[AM] under pr∗U.

2 Applications

2.1 Subshifts of Finite Type

Let U ⊂ ZD be finite, and suppose that W ⊂ AU is some set of “admissible” U-words.
The subshift of finite type defined by W is the closed, shift-invariant subset of AZD

:

〈W〉 := {a ∈ AZD

; ∀n ∈ ZD, aU+n ∈W}.
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One-dimensional subshifts of finite type were first studied by Parry [17] and Smale
[22]; excellent recent introductions are [11] and [10]. Higher dimensional subshifts
are closely related to tilings [13], [14], [18], and involve many additional subtleties;
see, for example [16], [15]. Of particular interest is

The Nontriviality Problem For a given set W, is the corresponding set 〈W〉 is even
nonempty?

The Nontriviality Problem is known to be formally undecidable; see [19], [2], or
[9].

Theorem 1 Let U and W be as above. 〈W〉 is nontrivial if and only if there is some
locally stationary probability measure µU on AU, with supp[µU] ⊂ 〈W〉, such that µU

has a stationary extension.

Proof Suppose that such a µU existed, and let µ be a stationary extension. Clearly,

any µ-generic configuration in AZD

must satisfy the membership criteria of 〈W〉.
Hence, 〈W〉must be nonempty.

Conversely, if 〈W〉 was nonempty, then by the Krylov-Bogoliov theorem [26],
there are stationary probability measures whose support is contained in 〈W〉. Let
µ be one of these measures, and let µU := pr∗U[µ]. Then supp[µ] ⊂W.

Let Measext[W] be the set of extendible measures supported on W.

Corollary 2 It is formally undecidable whether, for a given subset W ⊂ AU, the set
Measext[W] is nonempty.

However, it is easily decidable whether Measstat [W] itself is nonempty. The set of
all real-valued measures supported on W is a finite-dimensional vector space, and
the stipulation that an element of this vector space be a locally stationary probability
measure takes the form of a finite system of linear equations and inequalities; solving
such a system is a decidable problem.

2.2 Cellular Automata

Let U ⊂ ZD be finite (metaphorically speaking, U is a “neighbourhood of zero”) and
let φ : AU → A. For every n ∈ ZD, define φn := φ ◦ Shift−n : AU+n → A.

The cellular automata determined by φ is then the function Φ : AZD
→ AZD

send-
ing [an|n∈ZD ] �→ [φn(aU+n)|n∈ZD ]. φ is called the local transformation rule for Φ.
Cellular automata were first investigated by Von Neumann [25] and Ulam [24], and
later extensively studied by Hedlund [6], Wolfram [27], and others; more recent sur-
veys are [23], [5], [12], [3].

Any cellular automaton on ZD can be represented by a subshift of finite type on
ZD × Z. Simply define

Ũ := (U× {0}) � {(0, 0, . . . , 0︸ ︷︷ ︸
D

, 1)}
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and then set W̃ := {a ∈ AŨ ; a(0,0,...,0,1) = φ(a(U×{0}))}

If a ∈ AZD×Z, then a can be seen as a Z-indexed sequence of configurations in AZD

.
Clearly, a is in 〈W̃〉 if and only if this sequence describes theΦ-orbit of some point in

AZD
.

Of course, unless Φ is surjective, not every element of AZD

will necessarily have a
Φ-preimage, and thus, not every element can appear in such a Z-indexed sequence
of configurations. We can obviate this difficulty by concentrating on the center of the
dynamical system (AZD

,Φ).
If X is any compact space, and T : X → X continuous, then the nonwandering

set, Ω(X,T) is the set of all points x ∈ X which are regionally recurrent: for any
neighbourhood U of x, there is some n ∈ N so that Tn(U ) ∩ U �= ∅. Ω(X,T)
is a compact T-invariant subset, so we can look at the restricted dynamical system(
Ω(X,T),T|Ω(X,T)

)
—however, not all elements of Ω(X,T) will be regionally recur-

rent under T, when seen in the subspace topology (see [26] for an example)—hence,
Ω2(X,T) := Ω

(
Ω(X,T),T|Ω(X,T)

)
may be a proper subset.

By transfinite induction, for any countable ordinal number α, define
Ωα+1(X,T) := Ω

(
Ω(X,T),T|Ωα(X,T)

)
, and, if γ is a limit ordinal, defineΩγ(X,T) :=⋂

α<γ Ω
α(X,T). Since X is compact, this descending sequence of compact subsets

must become constant at some countable ordinal α, so that Ωα+1(X,T) = Ωα(X,T).
The center of (X,T), defined Z(X,T) := Ωα(X,T), is nonempty, compact, and T-
invariant. If µ is any T-invariant Radon measure on X, then supp[µ] ⊂ Z(X,T).

So, treat (AZD

,Φ) as a compact topological dynamical system, and let Z(Φ) be its
center. The restricted map Φ| : Z(Φ)→ Z(Φ) is surjective, so every element in Z(Φ)

appears in some Z-indexed sequence of AZD

-configurations admissible to W̃.

The Invariant Measure Problem Given a local transformation rule φ : AU → A,
describe the set of Φ-invariant, stationary measures on AZD

.
Suppose that we represent the cellular automata as a subshift of finite type in the

aforementioned way, and suppose that µŨ is a locally stationary probability measure

on AŨ. It is easy to verify that a stationary extension of µŨ to AZD×Z is equivalent to

a Φ-invariant, stationary measure on AZD
.

3 Caveats and Counterexamples

3.1 Nonextendability in Z; The Entropy Metric

The following counterexample, which first appeared in [1], shows that, even in Z, lo-
cally stationary measures are not always extendible, when the initial domain is “dis-
connected”.

Suppose that U := {0, 1, 3}. If µU is a probability measure on AU, then we can
treat the functions pr0, pr1, and pr3 as random variables ranging over the domain A.
So, let µU be any probability measure on AU such that:

(A) pr0 = pr1, µU-almost-surely.
(B) pr0 and pr3 are independent as random variables. (thus pr1 and pr3 are also

independent.)
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To ensure µU is locally stationary, it suffices to require only that the random vari-
ables pr0, pr1, and pr3 are identically distributed.

The measure µU cannot be extended even to a locally stationary measure on
A[0···3], much less a stationary measure on AZ. To see this, suppose that µ[0···3] was a
locally stationary extension. Then condition (A) definingµU implies that, as random
variables on the probability space (A[0···3], µ[0···3]), pr0 = pr1 = pr2 = pr3. But by
condition (B), pr0 and pr3 are independent—a contradiction.

This example can be understood as part of a more general phenomenon. If S is
any set, and µ is any probability measure on AS, then µ induces an entropy metric,
Dµ, on the set Fin[S] of all finite subsets of S. If U,V ⊂ S are finite, then define

Hµ[U|V] := −
∑

b∈AV

∑
a∈AU

µ[a|b] log2(µ[a|b]),

where µ[a|b] :=
µ{c ∈ AS ; cU = a and cV = b}

µ{c ∈ AS ; cV = b}
.

Then define: Dµ[U,V] := Hµ[U|V] + Hµ[V|U].
It is easy to check that Dµ is a metric on Fin[S]. Furthermore, if S is a G-module,

and µ is a G-invariant measure, then Dµ is a G-action invariant metric. If S is a subset
of some G-module, and µ is a locally G-invariant measure, then Dµ is a “locally”
G-invariant metric, in the obvious sense.

Now, suppose M is a G-module, U ⊂M, and µU is a locally G-invariant measure
on AU. If µ is to be an invariant extension of µU, then it must satisfy the condition:

For every V,W ∈ Fin[U], and every g ∈ G, Dµ[g · V, g ·W] = DµU
[V,W].

Hence, Dµ is forced to take certain values on a subset of Fin[M]. The question is:
can we define Dµ in the rest of Fin[M] so that it is a metric? If we cannot, then it is
impossible to extend µ.

In the aforementioned counterexample, DµU
[{0}, {1}] = 0. Thus, if µ was an

extension of µU, we would have:

Dµ[{0}, {1}] = Dµ[{1}, {2}] = Dµ[{2}, {3}] = 0

and hence, Dµ[{0}, {3}] = 0. But we know that Dµ[{0}, {3}] > 0, because pr0 and
pr3 are independent random variables. Hence, no such extension µ can exist.

3.2 Nonextendability in ZD; The Tiling Condition

In the previous counterexample, it seems the problem was that the domain U was not
“connected”. However, in Z2, extendability can fail even when U is a 2× 2 box.

Suppose U ⊂ ZD, and µU ∈ Measstat [AU]. The support of µU is some subset
supp[µU] ⊂ AU; let 〈supp[µU]〉 be the subshift of finite type defined by supp[µU]. If

µ ∈ Measstat [AZD
] is a stationary extension of µU, then any µ-generic configuration

a ∈ AZD
must be an element of 〈supp[µU]〉.

Thus, we have:
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The Tiling Condition µU cannot be extendible unless 〈supp[µU]〉 is nontrivial.
Intuitively, the configuration a determines a tiling of ZD by elements in supp[µU]:

for any k ∈ ZD, a(k+U) is an element of supp[µU].
For example, suppose that D := 2, U := [0 · · · 1] × [0 · · · 1], and A := {0, 1, 2}.

Elements of AU are thus 2× 2 words in A.

. . .
...

...
...

...
...

· · · 0 0 2 1 1 · · ·
· · · 1 0 1 0 1 · · ·
· · · 2 1 2 1 2 · · ·
· · · 0 1 1 1 1 · · ·
· · · 0 1 0 0 1 · · ·

...
...

...
...

...
. . .

Figure 1: A configuration of letters

� � � �

←→
0 0
1 0

←→
0 2
0 1

←→
2 1
1 0

←→
1 1
0 1

←→

� � � �

←→
1 0
2 1

←→
0 1
1 2

←→
1 0
2 1

←→
0 1
1 2

←→

� � � �

←→
2 1
0 1

←→
1 2
1 1

←→
2 1
1 1

←→
1 2
1 1

←→

� � � �

←→
0 1
0 1

←→
1 1
1 0

←→
1 1
0 0

←→
1 1
0 1

←→

� � � �

Figure 2: The corresponding assignment of matrices.

Choosing a configuration in AZ2
is equivalent to assigning a 2× 2 matrix to each

point in the lattice, so that adjacent sides agree. For example, the configuration in
Figure 1 is equivalent to the assignment of Figure 2
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We will define a locally stationary measure µU so that supp[µU] cannot tile Z2 in
this manner. We will do this by explicitly constructing supp[µU] to tile a different
space instead, a kind of “pseudolattice” (see Figure 3).

A

H

G F E

D

CB

G F E

A

H

G

CBA

E

D

C

I J K I

P

O

KJI

M

L

K

P

O N M

L

MNO

Figure 3: A “pseudolattice”.

Stack two 3× 3 grids on top of one another, and then “break” the connection be-
tween the central element of each level, and its southern, eastern, and western neigh-
bours. Cross-connect the eastern and western neighbours with each other. Connect
the southern neighbour to the central element of the level above, and we connect
the central element of this level to the southern element of the level below. We also
maintain the connection between the central element and its northern neighbour,

Now we’ll form a locally stationary measure which tiles this space instead. Con-
sider the tiling portrayed in Figure 4. Count every element of A2×2 as many times as
it appears in these two pictures. There are 18 tiles, and each one appears exactly once.
Thus, each of the tiles shown gets a probability of 1

18 .
To show that µU is locally stationary, it suffices to check that the left columns and

right columns have the same probability distribution, and that the top and bottom
rows have the same probability distribution. This is easy to confirm.

We claim that one simply cannot tile Z with this collection of blocks. For example,

as soon as one lays down a tile of the form 0
6

0
6 , one is forced to place a tile 1

0
4
0

immediately above it, since this is the only tile which will “match”. Once one has

done this, one must place the tile 9
10

1
0 to the left of 1

0
4
0 , and the tile 4

0
9
10 to its right.

So far, all the tiles are compatible. However, now, what tile shall we lay down below
9
10

1
0 ? To be compatible with 9

10
1
0 , this tile’s top row should read 10 0 . However,

to be compatible with the tile 0
6

0
6 to its immediate right, the tile’s right-hand side

should read 0
6 . There is no tile in our collection which meets these two criteria.
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� � �

←→
9 1

10 0
←→

1 4
0 0

←→
4 9
0 10

←→

� � �

←→
10 0
11 7

0 0
6 6

0 10
7 11

←→

� �

←→
11 7
9 1

←→
7 7
1 4

←→
7 11
4 9

←→

� � �

� � �

←→
13 12
14 2

←→
12 5
2 2

←→
5 13
2 14

←→

� � �

←→
14 2
15 6

2 2
7 7

2 14
6 15

←→

� �

←→
15 6
13 12

←→
6 6

12 5
←→

6 15
5 13

←→

� � �

Figure 4: A configuration on the pseudolattice
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The Tiling Condition is necessary, but not sufficient. To see this, recall that the set
Measext[U] is closed as a subset of Measstat [U]. Thus, its complement is open. Hence,
every nonextendible measure is surrounded by a neighbourhood of nonextendible
measures.

If β is the equidistributed measure (assigning equal probability to every element of
AU), and ε > 0 is small, then consider the measure:

µε := (1− ε) · µU + ε · β

µε is a convex combination of µU and β. Since ε > 0, the support of µε is all of AU.
Thus, µε always satisfies the Tiling Condition. However, if ε is “sufficiently small”, the
measure µε will be inside the neighbourhood of nonextendible measures around µU.

4 Harmonic Analysis of Extensions

4.1 Configuration Space as a Compact Group

Solving the Extension Problem requires a good way of describing measures, and Har-
monic Analysis provides one. To employ this approach, we must reconceive the con-
figuration space as a compact abelian topological group. Hence, from now on, we will
operate under the assumption that:

The alphabet A is a finite abelian group.

The choice of group structure on A is unimportant—if A has A elements, then the
simplest choice is to let A := Z/A.

If we endow AM with the product group structure, it is a compact abelian topo-
logical group. What is its dual group?

Let Â be the dual group of A. If V ⊂ M is finite, and, for all v ∈ V, χv ∈ Â,
then χv ◦ prv : AM → T1 is the map taking the configuration [am|m∈M] to the value
χv(av). (Here “T1” is the unit circle group.)

We will use the notation “
⊗

v∈V χv” to refer to the map:

(∏
v∈V

χv ◦ prv

)
: AM → T1

[am|m∈M] �→
∏
v∈V

χv(av)

It is easy to verify the next theorem:

Theorem 3 Let M be any set. The dual group of AM is the set:{⊗
v∈V

χv ; V ⊂M is any finite subset, and, for all v ∈ V, χv ∈ Â.
}
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4.2 The Fourier Transform

Now, if µ is a measure on AM, and χ ∈ ÂM, then the Fourier Coefficient of µ at χ is
defined:

µ̂χ = 〈µ, χ〉 :=

∫
AM

χ̄ dµ

The Fourier Transform of µ is the function: µ̂ : ÂM → C so that µ̂χ = 〈µ, χ〉.

If Meas[AM ; C] is endowed with the total variation norm, and C(ÂM ; C) is
endowed with the uniform norm, then the map

Four : Meas[AM ; C]→ C(ÂM ; C)

µ �→ µ̂

is an injective, bounded linear function of norm 1 [8]. Thus, the Fourier transform of
µ totally characterizes it: if µ and ν are two measures, and µ̂ = ν̂, then µ = ν.

4.3 Fourier Theory and (local) Stationarity

The shift action of G upon AM induces a right action of G upon ÂM. If g ∈ G, and

χ ∈ ÂM, then define:

χ · g = χ ◦ Shiftg−1

(1)

Note that, if χ =
∏

v∈V(χv ◦ prv), then χ · g =
∏

v∈V(χv ◦ prg·v).

If U ⊂M is not closed under the G-action, then there is no “shift action” on AU.
However, we can still treat G as “acting” upon ÂU in a certain limited capacity, as
follows:

Suppose V ⊂ U, and χ =
∏

v∈V(χv ◦ prv). Suppose that g ∈ G is such that

g · V ⊂ U also. Then χ · g =
∏

v∈V(χv ◦ prg·v) is still an element of ÂU.

Theorem 4 1. If µ ∈ Meas[AM], then µ is G-invariant if and only if, for every

χ ∈ ÂM and every g ∈ G, 〈µ, χ〉 = 〈µ, χ · g〉.
2. If U ⊂ M, and µ ∈ Meas[AU], then µ is locally G-invariant if and only if, for

every χ ∈ ÂU and every g ∈ G so that χ · g is also in ÂU, 〈µ, χ〉 = 〈µ, χ · g〉.

Proof We will prove Part 2, since Part 1 clearly follows.

Proof of “ =⇒ ” Let χ =
⊗

v∈V χv, for some V ⊂ U. Then a simple computation
reveals:

〈µ, χ〉 =
∑

a∈AV

µ[a] · χ̄(a)
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Where, by “µ[a]”, we mean µ{b ∈ AU ; bV = a}. Thus,

〈µ, χ · g〉 =(1)

∑
a∈Ag·V

µ[a] ·
(
χ̄ ◦ Shiftg−1

(a)
)

=(2)

∑
a∈AV

µ[Shiftg a] ·
(
χ̄ ◦ Shiftg−1

◦ Shiftg(a)
)

=
∑

a∈AV

µ[Shiftg a] · χ̄(a)

=(3)

∑
a∈AV

µ[a] · χ̄(a)

= 〈µ, χ〉

(1) By definition of χ · g (equation (1)).
(2) Because Shiftg : AU → Ag·U is an isomorphism.
(3) Because µ is locally G-invariant.

Proof of “⇐=” If V ⊂ U is finite, then for any a ∈ AV, then it is easy to verify that:

µ[a] = pr∗V[µ][a] =
∑
χ∈ÂV

µ̂χ · χ(a)

The argument is then very similar to that of “ =⇒ ”.

4.4 Fourier Properties of Stationary Extensions

Suppose that U ⊂ M, and V ⊂ U is a finite subset, and suppose that χ :=
⊗

v∈V χv

is some element of ÂU. Then we can also think of χ as an element of ÂM. In other

words, ÂU embeds canonically in ÂM. We will “abuse notation”, and identify ele-

ments of ÂU with their images in ÂM. The following theorem is a straightforward
computation:

Theorem 5 Let µU ∈ Meas[AU ; C], and let µ ∈ Meas[AM ; C]. Then(
pr∗U[µ] = µU

)
⇐⇒

(
∀χ ∈ ÂU, 〈µ, χ〉 = 〈µU, χ〉

)
.

Thus, we have reduced the Extension Problem to finding a measure µ on

Meas[AM] whose Fourier coefficients agree with those of µU on ÂU. However, we
can’t just “fill in” the remaining Fourier coefficients in an arbitrary way. First of all,
we must produce something which is G-invariant. Second of all, we want to end up
with a probability measure.

Theorem 6 Let µU ∈ MeasG[AU], and let µ ∈ Meas[AM]. Then µ is a stationary
extension of µU if and only if the following two conditions are satisfied:
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• For every χ ∈ ÂU, and every g ∈ G, 〈µ, χ · g〉 = 〈µU, χ〉.

(This equation must be true even when χ · g is no longer in ÂU).
• The Fourier coefficients of µ form a positive definite sequence.

Proof The first condition follows from Part 1 of Theorem 4. Notice that, if more than

one G-translate of χ lies inside ÂU, then all of them will produce the same equation,
by Part 2 of Theorem 4 (since µU is locally G-invariant).

The second condition is just the Bochner-Herglotz theorem to guarantee that the
measure µ is nonnegative [8]. This forces µ to be a probability measure, because
now µ[AM] = 〈µ, 1〉 = 〈µU, 1〉 = µU[AU] = 1. (Since µU itself is a probability
measure).

5 Extension on Finite Modules

Suppose that M is a finite G-module, U ⊂ M, and µU ∈ MeasG[AU]. We will show
that if µU is “sufficiently close” to a product measure, then it is extendible. More
generally, we will show:

Theorem 7 Let νU ∈ MeasG[AU] be an extendible measure, with an invariant exten-
sion ν such that supp[ν] = AM.

There exists an ε > 0 so that, if µU ∈ MeasG[AU] is any measure with
‖µU − νU‖var < ε, then µU is also extendible. This ε is of the form:

ε =
1

H(M)
· min

a∈AM
ν[a]

(mina∈AM ν[a] > 0 by hypothesis that supp[ν] = AM), where H(M) is a number
determined by the G-module structure of M, and which satisfies the following bounds:

(A) H(M) ≤ Card[ÂM].

(B) H(M) ≤ Card[G/H] · Card[ÂU].

where H is the stabiliser of M in G:

H := {h ∈ G ; ∀m ∈M, h ·m = m}

Proof Define δU := µU − νU. Thus, δU is a real-valued measure. Since µU and νU

are locally G-invariant, δU is also1.
Next we will define δ, a real-valued, G-invariant measure upon AM, in terms of

its Fourier coefficients. For every χ ∈ ÂM,

• If there is some κ ∈ ÂU and g in G so that χ = κ · g, then let δ̂(χ) := δ̂U(κ).
• Otherwise, let δ̂χ := 0.

1Cylinder subsets of AU can have negative δU-measures, but these measures are still preserved under
any shift which leaves the cylinder set inside AU.
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By Part 2 of Theorem 4, the definition of δ̂χ is independent of the choice of κ and g,
if more than one choice is available. By Part 1 of the same theorem, the measure δ is
G-invariant.

Claim 1 δ is a real-valued measure.

Proof Since δU is a real-valued measure, we know that, for every χ ∈ ÂU, δ̂U(χ̄) =

δ̂U(χ). It follows that, for every χ ∈ ÂM, δ̂(χ̄) = ¯
δ̂(χ), and from this, we conclude

that δ is also a real-valued measure.

Claim 2 There is a number H(M), determined by the G-module structure of M, and
satisfying inequalities (A) and (B), so that ‖δ‖var ≤ H(M) · ‖δU‖var .

Proof From elementary harmonic analysis [8] , we know that:

• ‖δ̂U‖∞ < ‖δU‖var .
• ‖δ‖var < ‖δ̂‖1.

Hence, it suffices to show that ‖δ̂‖1 < H(M) · ‖δ̂U‖∞, where H(M) is the afore-
mentioned number. To see inequality (A), notice that

‖δ̂‖1 ≤ Card[M] · ‖δ̂‖∞ = Card[M] · ‖δ̂U‖∞

where the second equality follows immediately from the definition of δ̂.

Now for inequality (B). For any χ ∈ ÂU, let G · χ := {g · χ ; g ∈ G} be the orbit
of χ under the action of G. Then:

‖δ̂‖1 =
∑
χ∈ÂM

|δ̂(χ)|

=
∑
χ∈ÂU

∑
ξ∈G·χ

|δ̂(ξ)|

=
∑
χ∈ÂU

∑
ξ∈G·χ

|δ̂U(χ)|

=
∑
χ∈ÂU

Card[G · χ] · |δ̂U(χ)|

But for any χ ∈ ÂU, Card[G · χ] < Card[G/H]. So this expression is less than∑
χ∈ÂU

Card[G/H] · |δ̂U(χ)| = Card[G/H] · ‖δ̂U‖1

≤ Card[G/H] · Card[ÂU] · ‖δ̂U‖∞.

Recall that ν is some invariant extension of νU. Define:

µ := ν + δ

Claim 3 µ is a nonnegative, G-invariant probability measure.
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Proof µ is a sum of two real-valued, G-invariant measures, and thus is also a real-
valued, G-invariant measure.

Also, ‖ν − µ‖var = ‖δ‖var < H(M)‖̇δU‖var = H(M) · ‖νU − µU‖var . Thus,(
‖νU − µU‖var < ε :=

1

H(M)
· min

a∈AM
ν[a]

)
=⇒ (For every a ∈ AM, µ[a] > 0.)

It remains to show that µ[AM] = 1, or, equivalently, that 〈µ, 1〉 = 1. Since
〈ν, 1〉 = 1, this is equivalent to showing that 〈δ, 1〉 = 0. But 〈δ, 1〉 = 〈δU, 1〉, and
〈δU, 1〉 = 〈νU, 1〉 − 〈µU, 1〉 = 0.

Finally, we want to show that µ is an extension of µU. But

pr∗U[µ] = pr∗U[ν] + pr∗U[δ] = νU + δU = µU.

If ρ is a probability measure on A, let ρU be the corresponding product measure
on AU.

Corollary 8 Let M and H(M) be as in the previous theorem. Let ρ be a probability
measure on A with full support, and let

ε :=
1

H(M)

(
min
a∈A

ρ(a)
)Card[M]

Let U ⊂M. If µ ∈ MeasG[AU], and ‖µ− ρU‖var < ε, then µ is extendible.

Proof ρU extends to the G-invariant probability measure ρM on M, and

min
a∈AM

ρM[a] =
(

min
a∈A

ρ(a)
)Card[M]

.

6 Envelopes: Reduction to Smaller Modules

Suppose that M and M̃ are G-modules, and that φ : M → M̃ is a G-module homo-
morphism, that is, for all m ∈M and g ∈ G, φ(g ·m) = g · φ(m).

If ã := [ãm̃|m̃∈M̃] ∈ AM̃, then define the element a := [am|m∈M] ∈ AM, by the
formula:

∀m ∈M, am := ãφ(m)(2)

This determines a function Aφ : AM̃ → AM, where Aφ(ã) := a.
If µ̃ is a G-invariant measure on AM̃, we define the pullback of µ̃ through φ to be

the measure: φ↖µ̃ := (Aφ)∗µ. It is easily verified that φ↖µ̃ is a G-invariant measure
on AM.
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Given a G-module M, a subset U ⊂ M and a locally G-invariant measure µU

on AU, we want to find a smaller G-module M̃, a subset Ũ ⊂ M̃, and a locally G-
invariant measure µ̃Ũ on AŨ, such that, if we can extend µ̃Ũ to a G-invariant measure

µ̃ on AM̃, then µ := φ↖µ̃ is an extension of µU.

Definition 9 Envelope.
Let M be a G-module, and U ⊂M.
An envelope for U is a G-module M̃, along with a G-module homomorphism

φ : M→ M̃, such that

(E1) When restricted to U, the function φ is injective.
(E2) If V ⊂ U, then for any g̃ ∈ G such that g̃ · φ(V) ⊂ φ(U), we can find some

element g ∈ G so that:

1. g · V ⊂ U,

2. For all v ∈ V, φ(g · v) = g̃ · φ(v). (Thus, φ(g · V) = g̃ · φ(V).)

Example: Envelopes in a Lattice Suppose G = M = ZD, and let U ⊂ ZD be finite,
and small enough that it fits into a box of dimensions N1 × N2 × · · · × ND. We will
indicate the action of ZD on itself with the “+” symbol.

Consider the ZD-module:

M̃ :=
Z

2N1Z
×

Z

2NDZ
× · · · ×

Z

2NDZ

and let φ : M→ M̃ be the ZD-module homomorphism:

φ(n1, . . . , nD) :=
(

n1 +
Z

2N1Z
, n2 +

Z

2N2Z
, . . . , nD +

Z

2NDZ

)

Then (M̃, φ) is an envelope for U.

Remark In this example, the module

M̃ :=
Z

N1Z
×

Z

N2Z
× · · · ×

Z

NDZ

with the quotient map φ : M→ M̃ would not necessarily have worked as an envelope
for U. To see this, suppose that

U := [1 · · ·N1]× {1} × {1} × · · · × {1}

and let V := {v1, v2}, where v1 := (1, 1, . . . , 1), while v2 := (2, 1, 1, . . . , 1). Let
g̃ := (N1 − 1, 0, 0, . . . , 0) ∈ G. Then note that

g̃ + φ(v1) = φ(g̃ + v1) = φ(N1, 1, 1, . . . , 1) = φ(v3),
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where v3 := (N1, 1, 1, . . . , 1), while

g̃ + φ(v2) = φ(g̃ + v2) = φ(N1 + 1, 1, 1, . . . , 1) = φ(1, 1, 1, . . . , 1) = φ(v1)

Now, there is no element g ∈ G so that g+V = {v1, v3}. Thus, although g̃+φ(V) ⊂
φ(U), we cannot find some g ∈ G so that g + V ⊂ U and φ(g + V) = g̃ + φ(V).

Proposition 10 Let M be a G-module, and U ⊂ M. Let φ : M → M̃ be an envelope
for U, and Ũ := φ(U).

1. For any probability measure µU on AU, there is a unique probability measure µ̃Ũ on

AŨ so that µU = φ
↖µ̃Ũ.

2. If µU is locally G-invariant, then so is µ̃Ũ.

3. If µ̃ is an extension of µ̃Ũ to a G-invariant probability measure on AM̃, then ν :=
φ↖µ̃ is an extension of µU to a G-invariant probability measure on AM,

Proof of Part 1 By hypothesis, φ| : U→ Ũ is injective. Let ψ : Ũ→ U be the inverse
map, and define µ̃Ũ := ψ↖µU. Thus, µU = φ↖µ̃Ũ. Since φ|U is injective, the
measure µ̃Ũ is the unique one satisfying this equation.

Proof of Part 2 Let Ṽ ⊂ Ũ, and c̃ ∈ AṼ. Suppose g̃ ∈ G is such that g̃ · Ṽ ⊂ Ũ as
well. We want to show:

µ̃Ũ[Shift g̃ c̃] = µ̃Ũ[c̃]

Let V := ψ(Ṽ) ⊂ U, and let c := Aφ(c̃), where Aφ : AṼ → AV is as defined
by equation (2) near the beginning of Section 6. Thus, if c̃ = {c̃v|v∈Ṽ

}, then c =
{cv|v∈V

}, where, for all v ∈ V, cv := c̃φ(v).
Let C be the cylinder set in AU associated to c (and likewise, C̃ for c̃). Thus,

C̃ = Aψ(C). Since M̃ is an envelope, there is a g ∈ G satisfying condition (E2).
By (E2)(1), Shiftg C is also a cylinder set in AU, and since µU is locally G-invariant,
µU[Shiftg C] = µU[C].

Claim 1 Aψ(Shiftg C) = Shiftg̃ C̃

Proof Let ã := [ãũ|ũ∈Ũ] ∈ AŨ, and suppose that ã = Aψ(a), where a := [au|u∈U] ∈
AU. Then (ã ∈ Aψ(Shiftg C)) ⇐⇒ (a ∈ Shiftg C) ⇐⇒ (∀v ∈ V, a(g.v) = cv) ⇐⇒

(1) (∀v ∈ V, ã(g̃.φ(v)) = c̃φ(v)) ⇐⇒ (ã ∈ Shift g̃ C̃).
(1) Because, for all v ∈ V, ã(g̃·φ(v)) = ãφ(g.v) = ag·v, and cv = c̃φ(v).

Thus, µ̃Ũ[Shift g̃ C̃] = µ̃Ũ[Aψ(Shiftg C)] = µU[Shiftg C] = µU[C] = µ̃Ũ[C̃].

Proof of Part 3 This is straightforward.
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7 Embedding of Locally Stationary Measures

Suppose that (X,X, ν) is a probability space, and T is a ν-preserving action of ZD

upon X. Let P : X → A be a measurable function (i.e. a A-labelled, measurable
partition of X), and let PZD

: X → AZD
be the map x �→ [P(Tn(x))|n∈ZD ]. The

projection of µ through PZD
is then a stationary probability measure on AZD

, called
the stochastic process induced by P and T. Call this measure η.

Suppose that U ⊂ ZD, and µU ∈ Measstat [AU]. The map P is an embedding of
µU in the system (X,X, ν ; T) if pr∗U[η] = µU. When can µU be thus embedded?

Theorem 11 Suppose that U ⊂ ZD is finite, and that µU lies in the interior of
Measext[AU]. Suppose that (X,X, ν ; T) is ergodic. Then µU can be embedded in
(X,X, ν ; T).

Proof We will first show how to construct an “approximate” embedding for µU. The
approximation method involves a certain degree of error, which can be exactly char-
acterized and then compensated for.

Suppose U ∈ N, so that U ⊂ B(U ). Let µ ∈ Measstat [AZD
] be an extension of µU.

Then for any N > 0, µB(N) := pr∗B(N)[µ] is a locally stationary probability measure

on AB(N). Also, if U0 ⊂ B(N) is any translation of U, then pr∗U0
[µB(N)] = µU0 ,

where µU0 is the obvious “translation” of µU to the domain U0.
The Rokhlin Tower Lemma for ZD-actions says that, for any ε > 0 and N ∈ N,

there is a subset R ∈ X so that the disjoint union:

⊔
n∈B(N+U )

Tn(R)

has measure greater than 1− ε.
Let x ∈ X be a generic point for R, and suppose we look at the “name” of x with

respect to the partition {R,X \ R}: for all n ∈ ZD, colour the point n “black” if
Tnx ∈ R, and “white” otherwise. Let R ⊂ ZD be the set of “black” points. The
Rokhlin Tower condition is equivalent to saying that the union:

⊔
r∈R

(
B(N + U ) + r

)

is disjoint, and has Cesáro density greater than 1− ε in ZD.
To define a measurable function P : X → A, we will provide a scheme to deter-

mine its value at every point in the ZD-orbit of x, in terms of the {R,X \ R}-name
of x (this is sometimes called “colouring the name of x”). The scheme well-defines
the values of P on the orbit of every generic point in X—thus, it defines P almost
everywhere on X.

Defining the value of P on the ZD-orbit of x is equivalent to defining a function
p : ZD → A—in other words, a configuration. Do this as follows: Let φ : R→ AB(N)

be some function so that, for each a ∈ AB(N), the Cesáro density of the subset φ−1(a)
inside R is equal to µB(N)[a] (since the set R itself has a well-defined Cesáro density,
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such a function can always be constructed). For each u ∈ R, let pB(N)+u = φ(u).
This immediately defines p on “most” of ZD. Now, fix some a ∈ A, and label all
remaining points in ZD with the symbol a.

The function P induces a stationary probability measure η on AZD
. ηU := pr∗U[η]

is “close” to µU, but slightly “enriched” in words that contain big blocks of the “a”
symbol, while impoverished in words that don’t. If we fix ε > 0 and N ∈ N, then
ηU = Fε,N [µU], where Fε,N : Measext[AU]→ Measext[AU] is an affine function.

So, if we want to actually produce the measure µU as an outcome of this procedure,
we must find some νU ∈ Measext[AU], so that µU = Fε,N [νU]. In other words, in
order to use this construction to build an embedding of µU within X, we must find
some N and ε so that µU ∈ IN,ε := FN,ε(Measext[AU]).

Claim 1 For any δ > 0, there exist ε and N so that Lbsg[Iε,N ] ≥ (1 − δ) ·
Lbsg

[
Measext[AU]

]
, where Lbsg is the Lebesgue measure.

Proof Fε,N is affine, and thus, differentiable with a constant derivative, Dε,N . For
any δ1 > 0, we can find a small enough ε and large enough N that, for every µU ∈
Measext[AU], ‖Fε,N [µU]− µU‖var < δ1. Thus, for any δ2 > 0, we can make δ1 small
enough so that ‖Dε,N − Id ‖∞ < δ2 (where ‖ · ‖∞ is the operator norm). Thus, for
any δ, we can in turn make δ2 small enough that the determinant of Dε,N is within δ
of 1. Thus, for large enough N and small enough ε, Fε,N : Measext[AU] → Iε,N is a
diffeomorphism, and, if Lbsg is the Lebesgue measure, then Lbsg[Iε,N ] ≥ (1 − δ) ·
Lbsg

[
Measext[AU]

]
.

Claim 2 For any µ in the interior of Measext[AU] there exist ε and N so that µ ∈ Iε,N .

Proof Identify Meas[AU ; R] with RAU

, endowed with an inner product. Iε,N is

convex, so if µ ∈ Measext[AU] \ Iε,N , then there is some unit vector v ∈ RAU

, so that

Iε,N ⊂ {w ∈ RAU

; 〈w − µ, v〉 < 0}. Fix µ, and regard mv as a function of v. The

set {w ∈ RAU

; 〈w − µ, v〉 ≥ 0} ∩ Measext[AU] has nontrivial Lebesgue measure

mv ·Lbsg
[

Measext[AU]
]

, for some mv > 0. Since the unit sphere in RAU

is compact,
there is some M > 0 so that mv ≥ M for all v in the sphere.

Let δ < M, and, by Claim 1, find ε and N so that Lbsg[Iε,N ] ≥ (1 − δ) ·
Lbsg

[
Measext[AU]

]
. Then we have M·Lbsg

[
Measext [AU]

]
> δ·Lbsg

[
Measext[AU]

]
> Lbsg

[
Measext[AU]\Iε,N

]
≥ Lbsg

[
{w ∈ RAU

; 〈w−µ, v〉 > 0}∩Measext[AU]
]
>

M · Lbsg
[

Measext[AU]
]

, a contradiction.

We conclude that any point µ in the interior of Measext[AU] is in Iε,N for some ε
and N , and thus, can be “embedded” in the system (X,X, µ ; T) via the aforemen-
tioned construction.
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8 (Quasi)Periodic, Ergodic, and Mixing Extensions

8.1 Periodic Probability Measures

If P ⊂ ND, then a configuration a ∈ AZD
is called P-periodic if, for all n ∈ ZD and

p ∈ P, an+p = an. If 〈P〉 is the sublattice generated by P, and M̃ := ZD/〈P〉, with ZD

acting upon M̃ by translation, then M̃ is ZD-module. The quotient map φ : ZD → M̃

is a homomorphism of ZD-modules. Configuration a is P-periodic if and only if
a = Aφã, for some word ã ∈ AM̃ (in the notation of Section 6).

In general, if M is a G-module, M̃ is another G-module, and φ : M → M̃ is a
G-module homomorphism, then we will say that an element a ∈ AM is M̃-periodic
if a = Aφ[ã], for some ã ∈ AM̃.

If µ is a G-invariant measure on AM, then µ is M̃-periodic if the elements of the
space (AM, µ) are µ-almost surely M̃-periodic. This is the case if and only if there is
a G-invariant measure µ̃ on AM̃, such that µ = φ↖[µ̃].

8.2 Periodic Extensions

Suppose that U ⊂ M, and µU is a locally G-invariant measure upon AU. Can we
extend µU to a periodic measure on AM?

Theorem 12 Suppose that M̃ is a finite G-module, a quotient of M via the map φ :
M→ M̃, and an envelope for U. Let H(M̃) be the constant described in Theorem 7.

Let ν̃ be a G-invariant measure on AM̃, with full support, and let

ε :=
1

H(M)
· min

ã∈AŨ
ν̃[ã].

Let ν = (Aφ)∗ν̃, and let νU := pr∗U[ν]. If µU is any locally G-invariant measure on
AU so that ‖µU − νU‖var < ε, then µU can be extended to a G-invariant, M̃-periodic
probability measure on AM.

Proof Let Ũ := φ(U) ⊂ M̃. By Part 1 of Theorem 10, the measure µ̃Ũ :=

(φ−1)↖µU is a locally G-invariant measure on AŨ. Further, if ν̃Ũ := pr∗
Ũ

[ν̃], then

‖µ̃Ũ − ν̃Ũ‖var < ε. Since M̃ is finite, we can apply Theorem 7, and extend µ̃Ũ to a

G-invariant measure, µ̃, on all of AM̃.
Now, define µ := φ↖[µ̃]. Then µ is a M̃-periodic, G-invariant measure by con-

struction, and also, pr∗U[µ] = µU.

Corollary 13 The set Measext[AU] has nontrivial interior in the space Meas[AU ;
R], and the set of M̃-periodically extendible measures has nontrivial interior within
Measext[AU].

Proof Let ρ be any probability measure on A with full support, and let µU := ρU

be the product measure on AU. In the notation of Theorem 12, ρM̃ is a G-invariant
extension of ρŨ, with full support, and induces a M̃-periodic extension of µU to
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AM. By Theorem 12, all measures in an open ball around µU also have M̃-periodic
extensions.

Corollary 14 Suppose U ⊂ ZD is finite, and fits inside a box of size Q1×Q2×· · ·×QD.
Suppose that P := (P1, . . . , PD), where P1 ≥ 2Q1, P2 ≥ 2Q2, . . . , P2 ≥ 2Q2, and let ν
be a P-periodic, stationary probability measure on AZD

. Let νU := pr∗U[ν].
There is an ε > 0 (a function of P and ν), so that, if µU is any locally stationary

probability measure on AU within ε of νU in total variation norm, then µU has a P-
periodic extension.

For any P := (P1, . . . , PD), let MeasP[AZD
] denote the set of P-periodic, stationary

processes.
If U ⊂ ZD, then let MeasP[AU] denote the set of P-periodically-extendible mea-

sures: those elements of Measstat [AU] having an extension that is P-periodic. The
following facts are not difficult to verify:

• MeasP[AU] is a closed, convex set.
• If µ ∈ MeasP[AU] and ν ∈ MeasQ[AU], then any convex combination of µ and
ν is inside MeasR[AU], where, for each d ∈ [1 · · ·D], Rd is the lowest common
multiple of Pd and Qd.

Let Measper [AU] be the set of all locally stationary measures possessing a periodic
extension of any periodicity. It follows that Measper [AU] is also a convex set.

8.3 Essentially Aperiodic Measures

Not every extendible measure has a periodic extension. This follows from the exis-
tence of essentially aperiodic tile systems—that is, sets of tiles which can tile the plane,
but only in an aperiodic fashion. In [19], Raphael Robinson exhibits a collection of
six “notched” square tiles, which, along with their 4 rotations, will tile the plane, but
only in an aperiodic fashion. We can code these six tiles as six 3 × 3 matrices in the
alphabet A := {0, a,A, b,B, c,C}

A C A
B 0 d
A B A

a c a
c 0 c
a C a

a b a
c 0 c
a B a

a C a
B 0 C
a B a

a b a
c 0 c
a b a

a b a
b 0 b
a B a

Each tile has a “0” symbol in its center, surrounded by four “corners” and four
“edges”. The tiles must be put together so that these corners and edges “match” ac-
cording to the following mapping rules:

• “b” edges must be matched to “B” edges.
• “c” edges must be matched to “C” edges.
• Where four tiles meet, exactly three corners must be of type “a”, and one of type

“A”.

https://doi.org/10.4153/CJM-2001-016-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-016-3


Finite-Dimensional Marginal 405

These matching rules can be encoded as a subshift of finite type on the alphabet
A, defined by some subset R ⊂ AU, where U := [1 · · · 3]2. Any configuration in
〈R〉 corresponds to some Robinson tiling. Now let µ be a stationary probability mea-
sure on 〈R〉, and let µU := pr∗U[µ]. Then µU is a locally stationary measure, and
supp[µU] = R.

We claim that µU is “essentially aperiodic”. To see this, suppose that ν was any
extension of µU. Then supp[ν] ⊂ 〈R〉, and thus, almost every configuration in the

probability space (AZ2

, ν) is aperiodic.

8.4 Essentially Periodic Measures

At the opposite extreme are essentially periodic measures: locally stationary measures
which only have periodic extensions.

For example, let A := {0, 1} and U := [1 · · · 9] × {0, 1}, and let B ⊂ AU be the
set:




0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 ,

...
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 ,
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 ,
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 ,
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0




In other words, all blocks are of the form

w1 0
w0 0 where w0 and w1 are successive

8-bit binary numbers. Let W ⊂ AU be the set containing all elements of B and all
their horizontal cyclic permutations. B defines a subshift of finite type, which con-
tains only the orbit of a single, periodic configuration, having horizontal periodicity
9, and vertical periodicity 256. Call this configuration a

If µU is the measure on AU assigning equal mass to each of the 2304 elements of
B, then µU has only one stationary extension: the measure µ which assigns equal
mass to each of the 2304 distinct translates of a. Thus, µU is essentially periodic, with
period 256× 9.

Note that the periodicity 256 × 9 is much larger than 2 × 9, which was the size
of the initial domain U. Indeed, as this argument makes clear, the periodicity of
essentially periodic measure can be made to grow exponentially with the size of the
initial domain.
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8.5 Ergodic Extensions

A stationary probability measure µ on AZD
is called ergodic if any measurable subset

U ⊂ AZD
which is invariant under all shifts has µ-measure either zero or one. The set

of ergodic measures on AZD
, which we denote by “Measerg[AZD

]”, is exactly the set of
extremal points of Measstat [AZD

] (see [4] or [26]). Hence, every stationary measure
can be approximated arbitrarily well as a convex combination of ergodic measures.

If U ⊂ ZD, and µU ∈ Measstat [AU], then we say µ is ergodically extendible if it
can be extended to an ergodic measure on AZD

. The set of ergodically extendible
measures will be written as “Measerg[AU]”. Since the map pr∗U : Meas[AZD

] →
Meas[AU] is linear, any extremal point of Measext[AU] has a pr∗U-preimage which

is extremal in Measstat [AZD
]. As a consequence, every extremal point of Measext[AU]

is in Measerg[AU]. Hence, every extendible measure on AU can be approximated
arbitrarily well as a convex combination of ergodically extendible measures.

We will see in Section 8.6 that, in fact, “almost all” extendible measures are ergod-
ically extendible. However, not every extendible measure is. To see this, suppose that
U ⊂ ZD is some finite domain, let A and B be two disjoint alphabets, and suppose
that µU ∈ Measstat [AU] and νU ∈ Measstat [BU] are two extendible probability mea-
sures. Let ηU := 1

2µU + 1
2νU. Then ηU is also extendible, and any extension of ηU

is of the form η := 1
2µ + 1

2ν, where µ and ν extend µU and νU, respectively. η can

never be ergodic: AZD
and BZD

are disjoint, shift-invariant subsets of (A�B)ZD
, each

having η-measure 1
2 .

Proposition 15 Let U ⊂ ZD be finite.

1. Every ergodically extendible measure on AU is a limit point of periodically extendible
measures.

2. Measper [AU] is a dense, convex subset of Measext[AU].
3. Measper [AU] contains the entire interior of Measext[AU].

Proof Part 2 follows immediately from Part 1, and the fact that Measper[AU] is con-
vex, and the fact that Measext[AU] is the convex closure of Measerg[AU].

Proof of Part 3 This follows from Part 2, and the fact that, if C a dense, convex subset
of a D-dimensional convex set K, then C contains int [K]. To see this, let x ∈ int [K],
and let B be an open ball around x inside of int [K]. Let S be the boundary of B, and
let s1, . . . , sD be D equidistant points in S, so that their convex closure, co{s1, . . . , sD}
is a regular D-simplex containing the centre-point x.

Since C is dense in K, C ∩ B is dense in B. Thus, find elements c1, . . . , cD ∈ C
so that, for all d ∈ [1 · · ·D], cd is “very close” to sd. Then co{c1, . . . , cD} ⊂ C is a
D-simplex “very close” to co{s1, . . . , sD}, and therefor contains x.

Proof of Part 1 Let µU ∈ Measerg[AU], and let µ be an ergodic extension of µU. Let
a ∈ AZD

be a generic configuration for µ: in other words, for any finite subset V ⊂ ZD

and configuration b ∈ AV,

µ[b] = lim
N→∞

Freq [b ⊂ a ; B(N)]
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where B(N) := [0 · · ·N)D is the D-dimensional cube of side length N , and

Freq [b ⊂ a ; B(N)] :=
# of times “b” appears inside aB(N)

ND

=
1

ND

∑
n∈B(N)

1{aV+n = b}

Such generic configurations exist, by the Birkhoff Ergodic Theorem.
In particular, for any ε > 0, we can find a large enough N so that, for all b ∈ AU,

|µ[b]− Freq [b ⊂ a ; B(N)]| <
ε

2

Suppose that all of U fits inside a cube of side length U . Assume that N is so large
that the U -thick boundary of B(N) is “relatively small”:

Card[B(N)]− Card[B(N −U )]

Card[B(N)]
<
ε

2

Now, identify B(N) with N := (Z/N) ⊕ · · · ⊕ (Z/N), and treat aB(N) as an
element of AN. Then this configuration, along with its ND periodic translations
on AN, defines a stationary measure on AN, which, in turn, defines an N-periodic,
stationary measure on AZD

. Call this measure ν, and then let νU := pr∗U[ν]. It is
straightforward to verify that

‖νU − µU‖<ε

and of course, by construction, νU ∈ Measper [AU].

8.6 Mixing, Weak Mixing, and Quasiperiodicity

A stationary probability measure µ on AZD
is called weakly mixing if the stochastic

process (AZD

× AZD

, µ ⊗ µ) is ergodic. µ is called mixing if, for any measurable
A,B ⊂ AZD

of nonzero measure, any any sequence {nk|k∈N} ⊂ ZD tending to infinity,

limk→∞ µ[A∩Shiftnk B] = µ[A]·µ[B]. A function φ ∈ L2(AZD
, µ) is an eigenfunction

of the system (AZD
, µ) if there is a group homomorphism χ : ZD → T1 such that, for

all n ∈ ZD, Shiftn(φ) = χ(n) · φ. The system is called quasiperiodic if L2(AZD
, µ) has

an orthonormal basis of eigenfunctions.
All of these concepts can be defined for any measure-preserving ZD-action on a

probability space (X,X, µ). Mixing implies weak mixing implies ergodicity, but weak
mixing and quasiperiodicity are mutually exclusive. Furthermore, all of these prop-
erties are inheritable through morphisms. If (X,X, µ ; T) and (X̂, X̂, µ̂ ; T̂) are two
measure-preserving ZD-actions, then a morphism between the systems is a measure-
preserving surjection Ψ : X → X̂ so that, for all n ∈ ZD, Ψ ◦ Tn = T̂n ◦ Ψ. If Ψ is
such a morphism, and (X,X, µ ; T) is ergodic (respectively: weakly mixing, mixing,
or quasiperiodic), then so is (X̂, X̂, µ̂ ; T̂).
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In particular, let F : X → A be a measurable function, so that F and T together
induce a stationary stochastic process on AZD

, having measure µ̂ (see Section 7). If
X̂ := supp[µ̂] ⊂ AZD

and T̂ := Shift , then the map FZD
: X → AZD

is a morphism.
Thus, if (X,X, µ ; T) possesses any of the aforementioned inheritable properties, so
does the process (AZD

, µ̂).

Theorem 16 Suppose that U ⊂ ZD is finite, and that µU is in the interior of
Measext[AU]. Then µU can be extended to a stationary process µ which is any of: er-
godic, mixing, weakly mixing, or quasiperiodic.

Proof The argument is the same in all four cases. First, find a system (X,X, ν ; T)
which is ergodic, and which also has the property in question (for the first three, this
is trivial; for the fourth, it is sufficient to know that ergodic, quasiperiodic systems
exist). Next, use Theorem 11 to embed µU within the desired process. Let µ ∈
Measstat [AZD

] be the stochastic process generated by this embedding. Then µ itself
has the desired property.

The same argument works for any other “inheritable” property of dynamical sys-
tems. The interpretation: knowledge of the local marginal µU tells you basically
nothing about the asymptotic dynamical properties of the process µ.

9 Decidability Questions

In Section 2.1, we showed:

It is formally undecidable whether, for a given subset W ⊂ AU, the set Measext[W]
is nonempty.

This raises the question of whether the Extension Problem itself is formally decid-
able.

Let R† be the set of all recursively computable (r.c.) real numbers: that is, real num-
bers whose decimal expansion can be generated by some Turing Machine [7]. R† is a
countable field, containing all rational and real-algebraic numbers. Let Meas†[AM ;
R] be the set of r.c., real-valued measures: those such that, if V ⊂ M is finite, and
a ∈ AV, then the measure of a is an element of R†. (Of course, some “exotic” mea-

surable subsets of AZD

may have non r.c.measures). Meas†[AM ; R] is a vector space
over the field R†.

Let MeasG
† [AM] be the set of G-invariant probability measures, etc. Clearly, when

we ask about the “formal decidability” of the Extension Problem, what we are really
referring to is the Extension Problem for r.c. measures:

If U ⊂ M, and µU ∈ MeasG
† [AU], is µ extendible to a G-invariant measure on

AU?

Note that we do not require the extension itself to be r.c. If a recursive decision
procedure explicitly constructs an extension, then this extension will be r.c. by na-
ture. However, it is conceivable that some recursive decision procedure might exist
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which demonstrates the existence of an extension by “nonconstructive” means. It is
conceivable that, although we can recursively decide that µU is extendible, no r.c.
extension exists.

A subset S ⊂ MeasG
† [AU] is called recursively decidable (r.d.) if there is a Turing

machine M, so that, when given any µ ∈ MeasG
† [AU] as input, M halts after some

finite number of steps, and outputs either “yes” or “no”, depending upon whether or
not µ is an element of S.

A subset S ⊂ MeasG
† [AU] is called recursively enumerable (r.e.) if there is a Turing

machine M, so that, when given any integer n ∈ N as input, M halts after a finite
number of steps, and produces as output some measure FM[n] ∈ S, and so that the
function FM : N → S instantiated by M is surjective. In other words, M provides a
mechanism to systematically “list” all elements of S.

Equivalently, S ⊂ MeasG
† [AU] is recursively enumerable if there is a Turing ma-

chine M, so that, when given any µ ∈ MeasG
† [AU] as input, M halts after some finite

number of steps unless µ is not in S, in which case M never halts.
The following facts are easy to verify: Any r.d. set is r.e., but the converse is not

true. However, if both S and its complement are r.e., then S is r.d. Finally, although
a countable union of r.d. sets is not necessarily itself r.d., it is still r.e. [7].

Theorem 17 Let U ⊂ ZD be a finite subset. Then

1. For any P ∈ ND, MeasP
†[AU] is r.d.

2. Measper
† [AU] is r.e.

3. Measstat
† [AU] \Measext

† [AU] is r.e.

Proof of Part 1 If µU ∈ Measstat
† [AU], we want to know whether the set S := {µ ∈

MeasP[AZD
] ; pr∗U[µ] = µU} is nonempty.

Suppose P := (P1, . . . , PD). Let M̃ := (Z/P1) ⊕ · · · ⊕ (Z/PD), and suppose that
U maps bijectively into the subset Ũ ⊂ M via the quotient map from ZD → M̃. Let
µ̃Ũ ∈ Measstat [AŨ] be the projected image of µU.

The vector space of P-periodic, signed measures on AZD

is linearly isomorphic
to the finite dimensional vector space Meas[AM̃ ; R]. The image of S under this
isomorphism is the affine set

S̃ := {µ ∈ Meas[AM̃ ; R] ; µ a stationary probability measure, and pr∗
Ũ

[µ] = µ̃Ũ}.

S̃ is the solution set of a finite system of linear equations and linear inequalities in µ:

• µ[AM̃] = 1.
• For all n ∈ ZD, Shiftn

∗ µ = µ.
• pr∗

Ũ
[µ] = µ̃Ũ.

• For all a ∈ AM, µ[a] ≥ 0.

Thus, it is r.d. whether S̃ is nonempty, and thus, whether µU has a P-periodic
extension.
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Proof of Part 2 Measper
† [AU] is a countable union of recursively decidable sets, and

thus, r.e.

Proof of Part 3 Suppose µ ∈ Meas[AZD
; C] has Fourier transform [µ̂χ|

χ∈̂AZD
], let

V ⊂ ZD be a finite subset, and let a ∈ AV. It is easy to verify:

µ[a] =
∑
χ∈ÂV

µ̂χ · χ(a)

Thus, if µU ∈ Measstat [AU], then by Theorems 4 and 5, µ is an extension of µU if
and only if:

• For all χ ∈ ÂU, µ̂χ = 〈µU, χ〉

• For all n ∈ ZD, and all χ ∈ ÂZD , if ξ := χ ◦ Shiftn then µ̂χ = µ̂ξ .
• For all finite V ⊂ ZD and a ∈ AV,

∑
χ∈ÂV µ̂χ · χ(a) > 0.

Thus, an extension for µU is equivalent to a set of Fourier coefficients satisfying a
countable collection of linear equations and inequalities.

For all N ∈ N, let B(N) := [0 · · ·N]D, and let ΞN := ÂB(N). If N is large enough
that U ⊂ B(N), then we can start by trying to define all the Fourier Coefficients in
the set {µχ ; χ ∈ ΞN}. The three sets of linear constraints listed above now become
a finite system of linear equations and inequalities—if the solution set is nonempty,
call it SN .

Claim 1 Suppose that, for all N ∈ N, the set SN is nonempty. Then µU is extendible.

Proof SN is a compact subset of the finite dimensional vector space CΞN . Further-
more, if SN+1 is also nonempty, then any vector in SN+1, when projected to CΞN ,
determines an element in SN . Call this projection map prN .

Fix N , and, for all M > N , let S̃M
N := prN ◦ prN+1 ◦ · · · ◦ prM−1(SM), a nonempty

compact subset of SN . Also, S̃M+1
N ⊃ S̃M+2

N ⊃ S̃M+3
N ⊃ · · · . Thus, S̃N := ∩M>N S̃M

N is a
nonempty compact subset. Further, prN (S̃N+1) = S̃N . Thus, any element of S̃N can
be “extended” to an element of S̃N+1, which can then be “extended” to S̃N+1, etc.

Pick any element µ̂N ∈ S̃N , and inductively extend it in this fashion, producing
µ̂M ∈ S̃M , for every M > N . Once this is done, the collection of vectors {µ̂M |M>N}

defines a single element µ̂ ∈ C
̂
AZD

. µ̂ is the Fourier transform of some measure µ,
and by construction, µ is a stationary probability measure, and an extension of µU.

Hence, if µU is not extendible, then, by contradiction, there must be some N ∈ N
so that SN is empty. Since SN is the solution set of a finite system of linear equations
and inequalities, it is r.d. whether SN is empty.

Hence, by successively checking the nonemptiness of SN for each N ∈ N, we have a
recursive procedure which will halt if µU is not extendible, and tell us so. (If µU is ex-
tendible, however, the procedure will never halt). Thus we can recursively enumerate
the elements of Measstat

† [AU] \Measext
† [AU].

Theorem 18 Let U ⊂ ZD be finite. The set Measext
† [AU] is not r.e.
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Proof Recall that, if T ⊂ AU, then 〈T〉 is the associated subshift of finite type (see
Section 2.1). Let N := {T ; 〈T〉is not trivial}, and let T := {T ; 〈T〉is trivial}. Recall
that N is not r.d. (see [19], [2], or [9]).

Claim 1 Suppose T ⊂ AU. If T ∈ T, then there is some N ∈ N so that no configuration
in AB(N) is T-admissible.

Proof Suppose that, for every N ∈ N, there was a configuration a[N] ∈ AB(N) that
was T-admissible, that is: for all n ∈ B(N), if n + U ⊂ B(N), then a[N]

n+U ∈ T.

Extend a[N] to an element of AZD

by filling all the remaining entries in some arbitrary
fashion—call the extended configuration b[N]

Since AZD

is compact, the sequence [b[N]|N∈N] has a convergent subsequence—

call it [b[Nk]|k∈N]—which converges to some limit b ∈ AZD

.

For any M ∈ N, there is some K ∈ N so that, for all k > K, b[Nk]
B(M) = bB(M).

Hence, the central “B(M)-block” of b is T-admissible. This is true for every M; we
conclude that b is T-admissible. Thus, the set 〈T〉 is nonempty, since it contains b.

Claim 2 The set T is r.e.

Proof Fix T ⊂ AU. For any finite N , it is r.d. whether or not AB(N) contains a T-
admissible configuration (there are only a finite number of cases to check). Suppose
we perform this procedure for every N ∈ N. By Claim 1, if T ∈ T, then we will
eventually find an N where no T-admissible configuration exists. Thus, we have a
procedure which will halt if T ∈ T, and tell us so.

As a consequence, since N is not r.d., we conclude that N is not even r.e.

Claim 3 Suppose that Measext
† [AU] was r.e. Then N is also r.e.

Proof Clearly, N = {T ⊂ AU ; for some µ ∈ Measext
† [AU], supp[µ] = T}. Hence,

any recursive procedure for enumerating the elements of Measext
† [AU] would also

provide a means for enumerating the elements of N.

By contradiction, Measext
† [AU] cannot be r.e.

10 Conclusion

Although Measext[AU] itself is not recursively denumerable, both its complement
and topological interior are (Section 9). As yet, however, no efficient procedure ex-
ists for determining when a locally stationary measure is extendible. So far the only
substantive result in this direction is Theorem 12, which says, loosely, that if µU is
“sufficiently close” to a periodically extendible measure with full support, then µU

itself is periodically extendible.
The existence of mixing, ergodic, etc. extensions is well-characterized in Sec-

tion 8.6. However, as yet, no useful work has been done characterizing the entropy
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of these extensions. In particular, we might ask: given that µU is extendible, what do
the maximal-entropy extensions of µU look like? Is the maximal-entropy extension
unique? Does it possess some kind of “Markov” property, analogous to the Markov
Extension in Z? Perhaps it is some kind of Markov Random Field [20]. Indeed, in
general, what would a “Markov extension” of a locally stationary measure look like,
if anything? In the nonprobabilistic, purely symbolic setting, the construction anal-
ogous to a Markov extension is a ZD-subshift of finite type, but these are still poorly
understood. Even topological Markov shifts—the simplest subshifts of finite type—
do not generalize easily to higher dimensions [16]. The maximal entropy measures
for such subshifts have been studied in [15]; perhaps similar techniques can be ap-
plied to maximal-entropy extensions of probability measures.
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