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1. Introduction

Frequently in infinite-dimensional convex optimization problems the usual methods fail
because, for instance, the interior of the positive cone in Lp,

C = {u ∈ Lp(T, µ) : u(t) � 0 a.e.},

is empty. For this reason, Borwein and Lewis [2] developed the notion of quasi-relative
interior of a convex set, which is an extension of the relative interior in finite dimension.

In this paper we wish to establish two separation theorems involving the quasi-relative
interior of a convex set.

Before proceeding with the discussion, we present the definitions and the properties
that we need for our purposes. In the sequel, X will denote a real locally convex Hausdorff
topological vector space and X∗ will denote the topological dual space of all continuous
linear functionals on X, whose neutral element will be denoted by θX∗ , with C̄ being the
closure of C.

Given C ⊆ X, we define the cone generated by C as cone(C) = {λx : x ∈ C, λ ∈
R, λ � 0}.

Definition 1.1. A subset C of X is said to be a cone if λx ∈ C, for all x ∈ C and all
λ � 0.

∗ Because of a surprising coincidence of names within our department, we have to point out that the
author was born on 4 August 1968.
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Definition 1.2. A convex cone C of X is said to be pointed if C ∩ (−C) = {θX}.

Definition 1.3. A convex cone C of X is said to be acute if C̄ is pointed.

Definition 1.4. Let C be a convex subset of X. The quasi-relative interior of C,
denoted by qriC, is the set of those x ∈ C for which cone(C − x) is a linear subspace
of X.

If C is a convex subset of X with IntC �= ∅, then qriC = IntC [2]. Moreover, it is easy
to note that in R

n the notions of relative interior and quasi-relative interior coincide.
Now, we wish to recall some useful properties concerning the quasi-relative interior of

sets.

Definition 1.5. Let C be a convex subset of X. The normal cone to C at x̄ ∈ C is
the set

NC(x̄) := {φ ∈ X∗ : φ(x − x̄) � 0, ∀x ∈ C}.

Proposition 1.6 (Proposition 2.8 of [2]). Let C be a convex subset of X and
x̄ ∈ C. Then x̄ ∈ qriC if and only if NC(x̄) is a linear subspace of X∗.

Proposition 1.7 (Proposition 2.12 of [2]). Let C be a convex subset of X. If
qriC �= ∅, then

qriC = C̄.

Proposition 1.8 (Lemma 2.9 of [2]). Let C be a convex subset of X and suppose
that x̄ ∈ qriC and x ∈ C. Then (1 − λ)x̄ + λx ∈ qriC, for all λ ∈ [0, 1[.

Proposition 1.9 (Lemma 3.6 of [1]). Let C and D be two convex subsets of X

such that qriC �= ∅ and qriD �= ∅, and let λ ∈ R. Then

qriC + qriD ⊆ qri(C + D), (1.1)

λ qriC = qri(λC), (1.2)

qri(C × D) = qriC × qriD. (1.3)

Proposition 1.10 (Theorem 3.4 of [1]). Let C be a convex subset of X such that
qriC �= ∅, and let Φ ∈ X∗. If IntΦ(C) �= ∅, then

Φ(qriC) = IntΦ(C).

Proposition 1.11. Let C be a convex subset of X. Then

qriC = qri(qriC).

Proof. Obviously, qriC ⊇ qri(qriC). Let x0 ∈ qriC. We show that cone(C − x0) =
cone(qriC − x0). For this purpose, let z ∈ cone(C − x0); then z = α(x − x0) with x ∈ C

and α � 0. After choosing λ > 1 it is easy to observe that

z = αλ

[(
1 − 1

λ

)
x0 +

1
λ

x − x0

]
.
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By Proposition 1.8 we have
(

1 − 1
λ

)
x0 +

1
λ

x ∈ qriC

and then we obtain z ∈ cone(qriC − x0). Thus,

cone(C − x0) = cone(qriC − x0) (1.4)

and then x0 ∈ qri(qriC). �

Before proceeding, we point out that, by (1.4), if y0 ∈ X, trivially one has

qriC − y0 = qri(qriC − y0)

and it is also easy to prove that

qriC − y0 = qri(C − y0).

In particular, if C is an affine set, then qri C = C.

Proposition 1.12. Let C and D be two convex subsets of X such that aff C = aff D.
Then, if C ⊆ D, qriC ⊆ qriD.

Proof. Let x0 ∈ qriC, then cone(C − x0) is a linear subspace of X and so
cone(C − x0) = span(C − x0). It is easy to observe that

cone(C − x0) ⊆ cone(D − x0) ⊆ span(D − x0).

As aff C = aff D, one easily obtains span(C − x0) = span(D − x0). This implies that
span(C − x0) = span(D − x0) and then x0 ∈ qriD. �

Proposition 1.13. If C is a non-trivial convex acute cone, then θX /∈ qriC.

Proof. Arguing by contradiction, let us suppose that θX ∈ qriC. Then coneC is a
linear subspace of X and then, C̄ is also a linear subspace of X. Therefore, C̄ ∩(−C̄) = C̄

and this contradicts the fact that C is acute and non-trivial. �

2. Separation theorems

Before proceeding, we point out that, generally, separation between sets can be hard in
the infinite-dimensional case working only with the quasi-relative interior. We show two
examples.

Example 2.1. Let X be an infinite-dimensional normed vector space and let ϕ : X →
R be a non-continuous linear functional. Consider the affine set S := {x ∈ X : ϕ(x) = 1}.
In this case qri S = S and θX /∈ qriS. Anyway θX cannot be separated from S; in fact, if
there exists g ∈ X∗ such that g(x) � 0 for each x ∈ S, then g(x) � 0 for each x ∈ S̄ = X,
and so g = θX∗ .
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Example 2.2. Let X be an infinite-dimensional normed vector space and let V �= X

be a dense linear subspace. Let x0 /∈ V = qriV . Also in this case x0 cannot be separated
from V ; in fact, if there exists g ∈ X∗ such that g(x) � g(x0) for each x ∈ V , then
g(x) � g(x0) for each x ∈ V̄ = X, and so g = θX∗ .

Before proving the main results, we need to establish the following two propositions.

Proposition 2.3. Let C be a convex subset of X such that qriC �= ∅ and x0 ∈ X

such that cone[qriC −x0] is not a linear subspace of X. Then ∃g ∈ X∗ \{θX∗} such that
g(x) � g(x0) for all x ∈ C.

Proof. First, if x0 ∈ C, x0 ∈ C \ qriC. Hence, Proposition 1.6 ensures that NC(x0)
is not a linear subspace of X∗, which means that NC(x0) �= {θX∗}. Then ∃g ∈ NC(x0)
such that g �= θX∗ ; this ensures that g(x) � g(x0) for all x ∈ C.

Instead, if x0 ∈ X \ C, we take A = C − x0 and B = conv[qriA ∪ {θX}]. It is easy
to prove that coneB = cone[qriC − x0]. This ensures that θX ∈ B \ qriB and for the
previous case we find that ∃g ∈ X∗ \ {θX∗} such that g(x) � 0 for all x ∈ B and then
g(x) � g(x0) for all x ∈ C. �

Proposition 2.4. Let C be a convex subset of X such that qriC �= ∅ and x0 ∈ X

such that cone[qriC − x0] is acute. Then ∃g ∈ X∗ \ {θX∗} such that g(x) � g(x0) for all
x ∈ C.

Proof. First, if C = {x0}, then the conclusion holds, taking as g any non-zero con-
tinuous linear functional. If C �= {x0}, it is easy to observe that Proposition 1.8 ensures
that qriC �= {x0} and then the set V = cone[qriC − x0] is a non-trivial acute cone.
Obviously, θX ∈ V and, by Proposition 1.13, θX /∈ qriV . Therefore, cone[qriC − x0] is
not a linear subspace of X and the conclusion follows by Proposition 2.3. �

Now we are able to prove our main result.

Theorem 2.5. Let S and T be non-empty convex subsets of X with qriS �= ∅,
qriT �= ∅ and such that cone(qriS − qriT ) is not a linear subspace of X. Then there
exists Φ ∈ X∗ \ {θX∗} such that Φ(s) � Φ(t) for all s ∈ S, t ∈ T .

Proof. Let us consider the convex set qri S − qriT . By Proposition 1.11 and (1.1),
one has

qriS − qriT = qri(qriS) − qri(qriT ) ⊆ qri(qriS − qriT ) ⊆ qriS − qriT

and then qri(qriS − qriT ) �= ∅. Since cone[qri(qriS − qriT )] is not a linear subspace of
X, by Proposition 2.3, taking x0 = θX , there exists Φ ∈ X∗ \ {θX∗} such that Φ(z) � 0
for all z ∈ qriS − qriT .

It is easy to observe that the previous fact implies that

sup
qri S

Φ � inf
qri T

Φ. (2.1)
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Now we note that

qriS ⊆ S ⊆ S̄ = qriS,

qriT ⊆ T ⊆ T̄ = qriT ,

where we have also made use of Proposition 1.7. So, by a general property of the
continuous functions, one has supqri S Φ = supS Φ, and infqri T Φ = infT Φ. Therefore,
(2.1) ensures that

sup
S

Φ � inf
T

Φ.

Then Φ is the continuous linear functional that separates S and T . �

Remark 2.6. We observe that, by Proposition 2.4, the previous result continues to
hold if we replace the condition that cone(qriS − qriT ) is not a linear subspace of X

with the condition that cone(qriS − qriT ) is acute.

Remark 2.7. Now we want to observe that it is not generally true that, if there exists
Φ ∈ X∗ \ {θX∗} separating S and T , then cone(qriS − qriT ) is not a linear subspace of
X (or cone(qriS − qriT ) is acute). To show this, we can consider the following simple
example.

Let X = R
2, S = {(x, y) ∈ R

2 : 2x+3y � 0} and T = {(0, 0)}. Obviously, S and T are
convex and qriT = {(0, 0)}. Moreover, the continuous linear functional Φ(x, y) = 2x+3y

for all (x, y) ∈ R
2 separates S and T , but in this case cone(qriS − qriT ) = S is not a

linear subspace of R
2 (and cone(qriS − qriT ) = S is not acute).

We note that the sets in Examples 2.1 and 2.2 do not satisfy the hypotheses of Theo-
rem 2.5. In fact the sets cone(S) in Example 2.1 and cone(V −x0) in Example 2.2 coincide
with the entire space X. Moreover, the sets cone(S) and cone(V −x0) are pointed but not
acute (and so the hypothesis that the cone is acute cannot be weakened by the hypothesis
that the cone is pointed).

Now we wish to state a strict separation theorem.

Theorem 2.8. Let S and T be non-empty disjoint convex subsets of X such that
qriS �= ∅ and qriT �= ∅. Suppose that there exists a convex set V ⊆ X such that
V − V = X, θX ∈ qriV , and cone(qri(S −T )−qriV ) is not a linear subspace of X. Then
there exists Φ ∈ X∗ \ {θX∗} such that supS Φ < infT Φ.

Proof. We apply Theorem 2.5 to the sets S − T and V . In particular, by (1.1) and
(1.2), we obtain

qriS − qriT ⊆ qri(S − T )

and then qri(S − T ) �= ∅. Moreover, by hypothesis, cone(qri(S − T ) − qriV ) is not a
linear subspace of X. Therefore, there exists Φ ∈ X∗ \ {θX∗} such that Φ(x − y) � Φ(v)
for each x ∈ S, y ∈ T , v ∈ V . Certainly, we can find v̄ ∈ V such that Φ(v̄) �= 0. In fact
if Φ(V ) = {0}, we obtain Φ(V − V ) = {0}, that is Φ = θX∗ . This ensures that Φ(V )
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is a real non-degenerate interval and consequently IntΦ(V ) �= ∅. By Proposition 1.10,
0 ∈ IntΦ(V ), and hence there exists ṽ ∈ V such that Φ(ṽ) < 0. Therefore,

sup
S

Φ − inf
T

Φ � Φ(ṽ) < 0,

and this completes the proof. �

Remark 2.9. Also in this case, we observe that Theorem 2.8 continues to hold if we
replace the condition that cone(qri(S − T ) − qriV ) is not a linear subspace of X with
the condition that cone(qri(S − T ) − qriV ) is acute.
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