
ON QUASI-PERMUTATION REPRESENTATIONS OF FINITE
GROUPS

by J. M. BURNS, B. GOLDSMITH, B. HARTLEY and R. SANDLING

(Received 5 January, 1993)

1. Introduction. In [6], Wong defined a quasi-permutation group of degree n to be
a finite group G of automorphisms of an n -dimensional complex vector space such that
every element of G has non-negative integral trace. The terminology derives from the fact
that if G is a finite group of permutations of a set Q of size n, and we think of G as acting
on the complex vector space with basis £2, then the trace of an element g e G i s equal to
the number of points of Q fixed by g. In [6] and [7], Wong studied the extent to which
some facts about permutation groups generalize to the quasi-permutation group situation.
Here we investigate further the analogy between permutation groups and quasi-
permutation groups by studying the relation between the minimal degree of a faithful
permutation representation of a given finite group G and the minimal degree of a faithful
quasi-permutation representation. We shall often prefer to work over the rational field
rather than the complex field.

By a quasi-permutation matrix we mean a square matrix over the complex field C
with non-negative integral trace. Thus, every permutation matrix over C is a quasi-
permutation matrix. For a given finite group G, let p(G) denote the minimal degree of a
faithful permutation representation of G (or of a faithful representation of G by
permutation matrices), let q(G) denote the minimal degree of a faithful representation of
G by quasi-permutation matrices over the rational field Q, and let c(G) be the minimal
degree of a faithful representation of G by complex quasi-permutation matrices. Thus,

It is easy to see that if G is cyclic of order 6, then c(G) = q(G) = 4 and p{G) = 5, while on
the other hand, if G is the quaternion group of order 8, then c{G) = 4 and q{G) =
p(G) = 8. Thus, both inequalities can be strict. It is not too hard to see that for the group
SL(2,5), both inequalities are strict (see Section 4). Our principal aim in this paper is to
investigate these quantities and inequalities further, and our main theorem characterizes
those finite abelian groups for which equality holds.

THEOREM A. Let G be finite abelian. Then c(G) = q(G), and q(G) = p(G) if and only
if G has no direct factor of order 6.

If G is a finite abelian group and G ~ G, x .. . x Gr, where each factor is a non-trivial
cyclic group of prime power order, then the trace of G is defined by Hoffman [3] to be

T(G) = S |G,|. We modify Hoffman's definition slightly by putting T(l) = 1. It is then

not hard to see that T(G) = p(G) [3]. It does not seem completely straightforward to find
groups G of odd order for which q(G)<p(G). We show how to calculate these quantities
for groups of the form G = AB, where A is an elementary abelian minimal normal
p -subgroup of G and B is a cyclic subgroup of prime order q. In order to show that this
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gives rise to a group G of odd order for which q{G) differs from p{G), we have had to use
CAYLEY [1], though in a somewhat indirect manner.

Part of this work is the result of a visit of the middle two authors to the Dipartimento
di Matematica Pura ed Applicata, Universita di Padova. They express their gratitude to
Professors Menegazzo, Salce and Zacher in particular, as well as numerous other
colleagues in Padova, for splendid hospitality.

2. Transitivity. If G is any group and K any field of characteristic zero, we call a
/CG-module V a permutation module if it affords a representation by permutation
matrices, and a quasi-permutation module if it affords a representation by quasi-
permutation matrices, that is, matrices of non-negative integral trace. We write %v for the
character of a /CG-module V. A simple property of permutation modules is that they
contain the trivial module; this extends to the quasi-permutation situation.

LEMMA 2.1. If G is a finite group and V is a quasi-permutation module for G over K,
then V contains a trivial KG-module of dimension at least one.

Proof. We may take V to be faithful for G and identify G with a group of linear
transformations of V. Let a = 2 g. Since the identity has trace n and the trace Trig) of

gsC

each element g e G is non-negative, we have Tr(a)>n. In particular, a ¥=0. Choosing
v E.V such that av ¥=• 0, we have that av generates a trivial module.

If G is a finite permutation group with t transitive constituents and we form the
corresponding permutation module V, then a well known theorem of Burnside asserts
that V contains the trivial module with multiplicity exactly t. Otherwise stated,
2 Trig) = t \G\. We call a quasi-permutation module indecomposable if it cannot be

written as the direct sum of two non-zero quasi-permutation submodules. We may
consider these to be somewhat analogous to transitive permutation representations,
though it is not clear how good the analogy is. As an immediate consequence of Lemma
2.1, we have the following.

LEMMA 2.2. Let V be a quasi-permutation module for G and suppose that V =
V{(B. . .©V,, where the V, are quasi-permutation submodules of V. Then V contains the
trivial module with multiplicity at least t.

The following simple example shows that equality need not occur. Let G be cyclic of
order pq, where p and q are distinct primes. Let V be a faithful irreducible module for G
over the rationals. Then (see Lemma 3.4) dim V = (p - \){q - 1 ) , and if %v is the
character of V and x sG, then Xv(x) = (p - 1)(<7 - 1), ~{q - 1), ~{p - 1), 1 according as
the order of x is 1, p,q, pq respectively. Suppose that p>q and let T be a trivial
G-module of dimension p-1. Then V@T is an indecomposable quasi-permutation
module containing the trivial module with multiplicity p — \.

COROLLARY 2.3. Let V be a permutation module corresponding to a transitive
permutation representation. Then V is indecomposable as quasi-permutation module.

Proof. This is because V contains the trivial module with multiplicity one.
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3. The minimal degree of a faithful quasi-permutation representation of an abelian
group. We begin with the only positive result we have in the non-abelian case.

PROPOSITION 3.1. Let G be a finite p-group, let K be a field of characteristic zero, and
let V be a faithful quasi-permutation module for G of minimal dimension. Then p | dim V.

Proof. By Lemma 2.1 and Maschke's Theorem, we have V = W © T, where T is a
one-dimensional trivial module and W is a /CG-module which is clearly faithful. Hence, by
the minimality, W is not a quasi-permutation module, and so Xw(x) < 0 for some x e G.
Since Xv(x) = 1 + Xw(x) is a non-negative integer, we must have Xv(x) = 0. But if
dim V = n, then Xv(x) is a sum of npa-th roots of 1, where \G\ = pa- By [6, Lemma l(iv)],
we have Xv{x) — n (modp), which gives the claimed result.

Now we prepare for the proof of our main theorem on finite abelian groups. First we
note the following well known fact about the Schur index.

LEMMA 3.2. Suppose that G has the property that the Schur index over the rationals of
every irreducible character of G is 1, and let X be any rational valued character of G. Then
X is the character of a representation of G over Q. In particular, c(G) = q(G).

Proof. Let £ be a primitive |G|-th root of 1, let K = Q(£), and F be the Galois group
of K over <Q. If 9 is any irreducible complex character of G, then 9 takes its values in K,
and our hypothesis implies that the sum of the distinct r-conjugates of 9 is the character
of a representation of G over <Q> [4, Corollary 10.2]. If {0 , : l< /<m} is the set of

m

irreducible characters of G and x = 2 rfi; with non-negative integral coefficients rh then

because of the F-invariance of x, w^ have r, = rt whenever 0, and 0, are F-conjugate. In
other words, x is a non-negative integral combination of F-orbit sums of irreducible
characters, and so it is the character of a rational representation.

COROLLARY 3.3. If G is finite abelian, then c(G) = q(G).

Proof. This is because G satisfies the hypothesis of Lemma 3.2 [4, Lemma 10.8].

Now we recall some well known facts about irreducible representations of finite
abelian groups over Q. Let A be finite abelian, let V be an irreducible CM-module, and
let K = CA{V) be the kernel of the representation of A on V. Then A/K is cyclic, and so
for many purposes we only need to consider irreducible representations of cyclic groups.
Suppose then that A = (a) is cyclic of order m. Then for each d\m, there is an irreducible
Q/1-module V(d) of dimension <f>(d), where 0 is the Euler totient function. We can take
V(d) to be Q(£d), where frf is a primitive d-th root of unity, and a acts on V(d) as
multiplication by £,. Since 2 <j>(d) = m, the modules V(d) are, up to isomorphism, all the

irreducible QA -modules. Thus, there is exactly one for each divisor d of m. Let Xa denote
the character of V(d), for brevity. Then x<t(a) IS t n e s u m °f the primitive d-th roots of
unity, and so is equal to n(d), where \x is the Mobius function.

LEMMA 3.4. Let A be cyclic of order m, and let b be an element of A of order d \ m.
Then Xm(b) = {4>{m)l<t>{d))>L{d).

Proof. As a module for (b), V(m) is a direct sum of faithful irreducible modules. By
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the above remarks, these have dimension 4>{d), and b has trace /x(d) on each of them.
Further, dim V(m) = <f>(m). From these statements the result follows.

Now we need some inequalities involving the Euler totient function. If n is a natural

number and n = p\'... pr;, where the p, are distinct primes, we write n* = 2 p?. Thus, if
G is a finite cyclic group, then \G\* = T(G).

LEMMA 3.5.(() Let m be a positive integer. Then 2</>(m)sra*, unless m = 6, when

(ii) Let m = 2an, where a^O and n is odd. Then {pip - \)(j>{m) >n* for each prime
divisor p of n.

k

Proof, (i) If m = II pf, where a, > 0, then
; i

24>{m) =

unless some p"'~\Pi - 1) = 1. Since 2(/?, - 1) >pf, this gives the result unless some pf is
A:

2. In this case, taking pf = 2, we have 2</>(m)>2£ pf'~\pi-\). Now 2(p,,- \)>p,+ 2
/=2

if p,: >5 , and this gives the result unless m has the form 2.3", when it is easily checked.
(ii) In this case, if a>2, then <f>{m) = 2"']<t>(n) = 2"~2(2(f)(n))>n*, by (i). Suppose

then that a < 1. Then </>(ra) = </>(«)• We check explicitly that the result holds in the cases
n =pr, 3pr, where p is a prime. Otherwise we can write n =xy, where (x,y) = 1 and both
<f>(x) and 4>{y) are at least 4. Using the inequality uv >2(u + v), which holds if u, v >4,
we obtain

by (i).

The next result is the core of our proof of Theorem A.

LEMMA 3.6. Let G be a finite abelian group having no direct factor of order 6, and let
V be a QG -module. Suppose that V is faithful for G, but no proper submodule of V is
faithful for G. Then G contains an element g such that Xv(g)<® and dim V -Xv(g) —
Tr(G).

Proof. Let V = V, © . . . © Vs, where each V, is an irreducible QG-module, and let

K, = CG(Vi), Kf = D Kj. Then, by hypothesis, f l Kt = 1, but /Cf ̂  1 if 1 < / <s. Let Gp be

the Sylow p -subgroup of G, and Ki4, = Kt D Gp. Among the subgroups Ki2, choose a
subset of minimal size with respect to having trivial intersection, and renumber the V) so

that these are the first t. Then f] Ki2 = 1, and f] Kyi2 # 1 if * <= { 1 , . . . , s} and \X\<t. We

interpret the case t = 0 as corresponding to G2 = 1.
Let Xj be an involution in fli^/,2 • i = l,. •. ,t, i¥=j) and x = JC, . . .x, . Then x is an

involution and acts as an involution on each of V,, . . . , V,; therefore it acts as - 1 on each
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of these modules. Now renumber the V, so that VU...,VU are precisely those on which x
acts as - 1 . Then x acts trivially on V11+1,... ,VS. For j = u + 1 , . . . ,s, choose x, of prime
order py in Kf, and let g = xxu+i... xs = *, . . . x,xu+1... xs. Thus, g acts as - 1 on each of
VI,. . . , Vu and as an element of order Pj on Vy if u + l < / < 5 . By Lemma 3.4,
Xv,{g) = -dim V,- if 1 < i < u, and ^.(g) = - l/(p, - l)dim V, if u + 1 := * s s. Hence we
have Xv{g) < 0, and

dim V - ,*v(g) = 2 £ dim V, + Y f 1 + )dim V,. (1)

For ;" = 1, . . . , u , let Mj = Kj if |G//Cy| 5^6, and Mj = G3Kj if |G//Cy| = 6. Also, for
; = M + 1 , . . . , S , let Mj = G2Kj. If |G//Cy| = 6 and 1 < ; < M , then K, contains Q,(G3) =
{z E G3:z

3 = 1}- Otherwise, as the involution x lies outside Kt, there is a cyclic subgroup of
G of order 6 intersecting /Cy trivially and so complementing it, contrary to hypothesis. It
follows that P) Kj3 = 1, where we intersect over all j between 1 and s but omitting those

for which l < y < « and |G//Cy| = 6. Hence, (^\ (Mj H G3) = 1. Since r\Kja = l, we also
y=i y=i

have Pi (A/y D G2) = 1. Hence

Let |G/A:,| = n,. We have dim V, = (/>(«,). By Lemma 3.5(i), 2 dim V, > nf if «,- 7s6, and if
n,=6, then < (̂n,) = 2. Thus, if m, = |G/M,|, then 2 dim V,>m? for 1 < / < M . For
u + 1 < i < s, we have, from Lemma 3.5(ii), that (1 + l/(p, - l))dim V, > m*. Thus, from
(1),

From (2), G is a subgroup of a direct product of cyclic groups of orders mu... , ms. The
trace of this direct product is the right hand side of (3). But the trace of a subgroup of a
finite abelian group does not exceed the trace of the whole group, as can easily be seen
directly, or from [3]. Therefore, the lemma follows from (3).

Proof of Theorem A. Since the equality c{G) = q(G) follows from Lemma 3.2, we
may restrict attention to q(G) and p(G). Suppose that G has no direct factor of order 6,
and let T be a QG-module affording a faithful quasi-permutation representation of
minimal degree of G. Write T = V®W, where V is faithful for G, but no proper
submodule of V is faithful for G, and let g be as in Lemma 3.6. Now by the remark
following the statement of Theorem A, p(G) = T(G), and so Lemma 3.6 gives

dim V -

and Xv{g) < 0- Since %T(g) — 0, we have

0 ̂ Xrig) = Xv(g) + Xw(g) ^ dim V - p(G) + dim W,

whence p{G) ̂  dim V + dim W = dim T = q(G). The reverse inequality is clear, and so
Theorem A is established.
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4. Some non-abelian examples. The main aim of this section is to construct finite
groups G of odd order for which q(G) <p(G). First we show how to calculate c(G), q(G)
and p(G) for G = 5L(2,5). Since G has a unique minimal normal subgroup, p(G) is the
smallest index of a subgroup with trivial core (that is, containing no non-trivial normal
subgroup), and this is 120/5 = 24. Note that G contains exactly one involution z, which is
therefore central and lies in every subgroup of even order.

We claim that c(G) = 8 and q(G) = 16. Thus, for this group,

c(G)<q(G)<p(G).

To see these values, note that the smallest degree d of a faithful rational character of G is
the smallest value of ^(1) +^ a ( l ) + . . . , where ^ is a faithful complex character of G and
{x,Xa> • • •} is its orbit under the Galois group of Q(x) over <Q>. From the character table of
G, (see [2]), we see that d = A. The involution z acts as - 1 on this module, and we
convert it to a quasi-permutation module by adding a trivial module of dimension 4. This
gives c(G) = 8. The smallest degree e of a faithful rational representation of G is the
smallest value of m(%(l) + #"(1) + •••), where the notation is as above and m is the Schur
index of % over Q. From [5], where these Schur indices were calculated, we see that e = 8.
For the same reason as before we obtain a quasi-permutation module by adding a trivial
module of dimension 8, and find that q(G) = 16.

Now let G = AB, where B = (b) is of prime order q, and A is an elementary abelian
normal /^-subgroup of G transformed faithfully and irreducibly by B. Thus, p ¥= q. We
show how to calculate p(G) and q(G) for groups of this type. We can think of A as an
FpB-module, with B acting by conjugation. Let n be the order of p mod q and let F be the
field with p" elements. We can identify A with the additive group of F, on which b acts as
multiplication by a primitive 17-th root of 1, say £. First consider p(G). If Q. is a G-set of
minimal order on which G acts faithfully, then A acts non-trivially on some orbit of Q.,
and since A is the unique minimal normal subgroup of G, that orbit is faithful. Thus, Q is
transitive. If 5 is the stabilizer of some point of Q, then S does not contain A. Since A is a
maximal subgroup of G, we have either SA = G or S ̂  A In the former case we find that
\S\ = q, and in the latter, \A:S\ = p, by the minimality. Since both possibilities give rise to
faithful transitive permutation representations of G, we find that

= min(pn,pq).

We consider the two possibilities separately.

Case 1. q <p"~\ Then p(G) = pq. This occurs for example when q = 5, p = 3, n = 4.
Case 2. q >p"'\ Then p(G)=p". We subdivide this into
Case 2a. n = 1.
Case 2b. n > 1. Then we claim that q = (/?" - l)/(p - 1). For certainly q \

(pn - \)/(p - 1). Suppose that q<(p"~ l)l(p - 1). Then (p" - l)/(p - 1) > 2q. Hence

p"-l>2q(p-l)>2p"-\p-l).

so 2p"~l-l>p" and pn-l>p", a contradiction. So here, q = (pn - l)/(p - 1). An
example is p = 3, n = 3, q = 13.

Now we consider q(G). By Lemma 3.4 and the remarks preceding it, a cyclic group
(c) of order p has, up to isomorphism, precisely one faithful irreducible module M over
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Q. We have XM{C') — — 1 if 1 s i ^p — 1 and XMQ)
 = P ~ 1- We consider the various cases

above.
Suppose that n = 1, which clearly can occur only in Case 2a. Let V be a faithful

quasi-permutation module over <Q> for G. It contains a faithful irreducible module and a
trivial module, so by the above, q(G)>(p - 1) + 1 =p =p(G). Therefore q{G)=p{G)
in this case.

Now assume that n > 1, and again let V be a faithful quasi-permutation module over
Q of dimension g(G). We have V = U®W for some faithful irreducible submodule U
and submodule W. If -k = minxu(x), then dim W >k. Let £/, be an irreducible ,4-sub-

xeC

module of U, and let £ = <:„(£/,). Then A/K is cyclic, so AT ^l. Hence JVG(/0 = y4,
and /C, Kb,... ,Kh"~' are all distinct. Therefore the /1-modules i/,, £/,£,... , f/̂ ""1 are
pairwise non-isomorphic, and we find easily that

£/ = £/ ,©. . . ©t/,6'"1.

Thus dim U = {p - \)q. Any maximal subgroup of A can occur as K in this situation.
The case n > 1 subdivides into two subcases, of which the second subdivides further.

Suppose first that q = (p" - l)l{p - 1), so that we are in Case 2b. Here, dim U = p" - 1,
and asW^O, we have q(G) = dim V>p" =p(G). Thus, q(G) = p(G) in this case.

Finally, suppose that q </?""'. This is Case 1, and p{G)=pq. We have Xu(x) = 0 if
x £ J4, and if JC e /4, then

;=0

Now C^IAft') = **', and so
- i

In particular, if JC e A, then Xu(x) — "<?•
We distinguish two possibilities. The first is that there exists x <= A such that xb' $ K

for all 0<i<<7 - 1. Then ^ ( x ) = - g , and we find that q{G) = d\mV>{p -\)q +q =
pq = p(G). Therefore q(G) = p(G) in this case. If n = 2, then \K\ =p, and the number of
conjugates of the elements of K is 1 + (p - \)q <p2, so this possibility arises here.

The second possibility is that, for all JC e.A, there exists i such that xb' e K. Then for
all x E A, we have ^^(JC)> - (g - 1) + (p - 1)> - 9 . We find that U®W, where IV is a
trivial module of dimension q - 1, is a faithful quasi-permutation module of dimension
less than pq, so q(G)<p(G) in this case. We have verified using CAYLEY that this case
arises for p = 7, n = 3, q = 19, p = 13, rc = 3, q = 61, and a few others with n = 3. Some
others were examined with n > 3, and for those this situation did not arise. The
verification amounts to showing that there is a maximal Fp-subspace K of F such that, with
I acting by multiplication, every £-orbit intersects K non-trivially.
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