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VANISHING THEOREMS ON COMPLETE
MANIFOLDS WITH WEIGHTED
POINCARE INEQUALITY AND APPLICATIONS

HAI-PING FU anp DENG-YUN YANG

Abstract. Two vanishing theorems for harmonic map and L? harmonic 1-form
on complete noncompact manifolds are proved under certain geometric assump-
tions, which generalize results of [13], [15], [18], [19], and [20]. As applications,
we improve some main results in [2], [4], [6], [9], [12], [20], [22], [24], and [25].

81. Introduction

Let M" be a minimal hypersurface in R"*t!. M is said to be stable if
0< [ (Vo= 1APR). Vo e O,

where |A| is the norm of the second fundamental form of M. For some
number 0 < § < 1, it is defined that M is d-stable if

1) 0< /M<|wr? —B|APp?), Ve C(M).

Obviously, given d1 > d2, d1-stable implies do-stable. So, that M is stable
implies that M is J-stable.

In [20], using harmonic map techniques, Schoen and Yau studied the
fundamental group of a manifold of nonnegative Ricci curvature and of a
stable minimal hypersurface immersed into nonpositively curved ambient
space. Pigola, Rigoli, and Setti ([18], [19]) proved a Liouville-type theorem
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for harmonic maps on complete manifolds with weighted Poincaré inequal-
ity which generalizes, in some respects, classical work due to Schoen and
Yau [20].

On the other hand, Cheng and Zhou [5] proved that if M is an ((n — 2)/n)-
stable complete minimal hypersurface in R”*! and has bounded norm of the
second fundamental form, then M must either have only one end or be a
catenoid. This result for minimal hypersurfaces relies on the study of com-
plete manifolds with weighted Poincaré inequality which is of independent
interest. In [17], Li and Wang studied complete manifolds with satisfying
property (P,) and obtained many theorems on rigidity. Cheng and Zhou [5]
generalized one result of [17]. Li and the first author in [10] recently refined
the main results due to Cheng and Zhou [5].

In this paper, we study an n-dimensional complete noncompact Riemann-
ian manifold with weighted Poincaré inequality. As applications, we study
complete noncompact submanifolds. To state some results, we recall some
notation and definitions.

Let M be an n-dimensional complete oriented submanifold isometrically
immersed in an (n+ p)-dimensional Riemannian manifold N"*?. Fix a point
x € M, and choose a local orthonormal frame {eq,es,...,en4p} such that
{e1,e2,...,e,} are tangent fields. For each a, n+1 < a <n + p, define a
linear map An: T, M — T, M by

(AaX,Y) = (VxY,eq),

where X,Y are tangent fields and where V denotes the Riemannian con-
nection on NP, We denote by H the mean curvature vector of M:

AL
H:E Z (TrAy)eq.
a=n+1

For each a, n+ 1< a <n+p, define a linear map ¢,: T, M — T, M by
<¢aX’Y> = <X7Y><Ha €a> - <AO{X’ Y>7

and a bilinear map ¢: Ty M x TpyM — Tp M+ by

n-+p

S(X,Y)= D ($aX,Y)ea

a=n+1
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It is easy to see that the tensor ¢ is traceless. Denote by A the second
fundamental form of M. We have

[A* = |6 +n|H|*.

For N™*P  we say that the (n — 1)th Ricci curvature of N satisfies
Ric(,—1)(IV) > c if, for all points z € N and for all n-dimensional subspaces
V C T,(N), the curvature tensor R satisfies

n

Z(R(ei,v)v, ei)>c, veV,

i=1

where {e1,...,e,} is an orthonormal basis for V. Then Ric(,,_1)(N) > (n —
1)c implies that Ric, (N) > nec.

Let M be a complete Riemannian manifold, and let ¢: M — R be a
differentiable function. Consider the elliptic operator L = A + ¢ associated
to the quadratic form

(%—ch)——/MsoLsO—/M(!Wplz—qu), Vi € C5°(M).

Here A is the Laplacian, and Vi is the gradient of ¢. The index of L is
defined to be the supremum, over compact domains of M, of the number
of negative eigenvalues of L with Dirichlet boundary condition. If M is an
n-dimensional constant mean curvature hypersurface in N™! of constant
curvature ¢ and if ¢ = nc + |AJ?, then to say that M is strongly stable is
equivalent to saying that the index of L is zero.

Let H'(L?(M)) denote the space of L? harmonic 1-forms on M For
convenience, throughout thls artlcle we assume that (0 — /0% — (n —
(n—1)<B<(0+ /02— (n—2)0)/(n—1).

Now we can mention our results as follows.

THEOREM 1.1. Let M be an n-dimensional complete noncompact Rie-
mannian manifold, and let W be a manifold of nonpositive sectional curva-
ture. If the Ricci curvature of M has the lower bound

(2) Ricy () > —(n—1)71(x), x€ M,

where T(x) satisfies Poincaré inequality

3 5[ < [ V6P, vee g,
M M
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where the constant & is more than (n—2), then any harmonic map f: M —
W is constant, provided that its energy density satisfies fB(R) |df|>° = o(R).

REMARK 1.2. The statement of Theorem 1.1 still holds when 7(z) satis-
fies Poincaré inequality

[ (O gt < [ we, wpecron,

n

for some € > 0. Theorem 1.1 extends [20, Theorem 1], [18, Theorem 2.3],
and [19, Theorem 6.1].

THEOREM 1.3. Let M be an n-dimensional complete noncompact Rie-
mannian manifold. If the Ricci curvature of M has the lower bound

Ricy(z) > —(n—D)71(x), =€ M,

where T(x) satisfies Poincaré inequality

5/ wzé/ IVel?, VeeC5(M),
M M

where the constant § is more than (n —1)?/n, then H'(L?*(M)) = 0.

REMARK 1.4. The statement of Theorem 1.3 still holds when 7(x) satis-
fies Poincaré inequality

—1)2
[ (=< [ 1ver, veecron),
M n M

for some € > 0. Theorem 1.3 is rewritten as follows.

THEOREM 1.3'. Let M be an n-dimensional complete noncompact Rie-
mannian manifold. For some € >0, Yo € M, if one of the following cases
oceurs:

(1) Ricy () = =(n/(n—1) — e)p(x);
(2) Ricpr(z) > —(n/(n—1)p(x)) +¢€, where p(x) satisfies Poincaré inequal-
1ty

/pso2§/ Vo, VpeC5o(M);
M M

then HY(L?(M)) = 0.
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So Theorem 1.3 can be regarded as generalizations of Lam [13, Theo-
rems 0.5, 3.4, 3.5] since the p in Lam’s theorem satisfies some conditions
(see [15, Theorem 4.2], [12, Theorem 1.1]).

As applications of Theorem 1.1 and 1.3, we obtain the following.

THEOREM 1.5. Let M be an n-dimensional complete noncompact sub-
manifold isometrically immersed in an (n + p)-dimensional manifold N™*P
with Ric,—1)(N) = (n — 1)c. Assume that the index of the operator A +
(nc+ |A|?) is zero. If

(62 —4n +4)|A]* < 8n(n —1)(n+d)c,

where the constant ¢ is more than (n — 2), then any harmonic map from
M to a manifold with nonpositive curvature is constant, provided that its
enerqgy density satisfies fB(R) |df|?% = o(R). In particular, if § is more than
(n—1)%/n, then H*(L*(M)) =0 and M has at most one nonparabolic end.

COROLLARY 1.6. Let M™ (n <7) be an n-dimensional complete noncom-
pact submanifold isometrically immersed in an (n+ p)-dimensional manifold
N™P of nonnegative (n — 1)th Ricci curvature. If the index of the opera-
tor A+ |AJ? is zero, then any harmonic map from M to a manifold with
nonpositive curvature is constant, provided that its energy density satisfies

fB(R) |df|2ﬁ =o(R).

82. Proof of main theorems

Proof of Theorem 1.1. In [19, Proposition 1.3], Pigola, Rigoli, and Setti
give a refined Kato inequality,

n 2
(4) |Vdf|22m‘vldf’| :

Combining with (4), by the Bochner-type formula for harmonic maps between
Riemannian manifolds (see [7]) and the nonpositivity of the sectional cur-
vature of W, we have

) AFIAdf| > V1| + Rieas (df, df).
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By using (5) and (2), we compute
|df |*Aldf]*
= df|* (e — 1) |df [*72|V |df [|* + a|df|>~ Aldf])

©) =

a—1 _
IV |df|*[? + aldf |2*~2|df| Aldf|

(07

> 9l + aldf P (2 VI~ 0= V() laf)

> (1= o ) [V = (0= ar(a)

where « is a positive constant.
Let ¢ >0, and let ¢ € C§°(M). Multiplying (6) by |df|??%$? and integrat-
ing over M, we obtain

n—2 290, w2 .9
(1- ) [ Jareivian e
S/ |df|(2q+1)aA|df|a¢2+(n_1)a/ T($)|df|2(q+1)a¢)2
M M
= (n— 1)a/ 7-(;,3)|df|2(q+1)a¢2 _ (2q+ 1)/ |df|2qa‘V|df|O‘|2¢2
M M

‘2/ df| 20D (T, V]df |,
M

which gives

n—2 qa al2
20+ 1)~ iz [ e v o
(7) <(n-1a /MT(x)!deQ(””%Q

) / |df|2atDep(V g, V|df|).
M

Using the Cauchy—Schwarz inequality, we can rewrite (7) as

n

-2
(Q(QJrl)—m—G) /M’df’maﬁﬁZWdf’a‘Q
®) 1 2(g+1) 2 2(g+1)a 12
+1)a e
<1 [ P ToR 4 (0= [ r(@ldrpe g,
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On the other hand, replacing ¢ by \df](H‘I)O‘(;S in inequality (3), we have
5 / () ldf 20+ 02
) <(1+07 / o Va2 + [ a0 v
M M
+2(1+9) [ 1af1CH0(90,1af),
which gives
5/ (z)|df|PITD2g? < <1+q)(1+q+e)/ |df 22|V |df || ¢?
+ (14720 [Pt v,

If 2(g+1)—(n—2)/((n —1)a) — e > 0, then by introducing (10) to (8), we

obtain
(1) B [ (vt <D [ larPasoeop
where
-2
B= (2(q+1)—(nn_71)a—e)é—(n—l)(l-ﬁ-Q)(l—l-q—l-e)a,
D:§+(n—1)a(1+q+e).
€ €
Let (1 + Qo = B, thus, for 2 —-(n-2))/(n-1) < B <

(0++/02—=(n—2)0)/(n—1), it is easy to see that 2(¢ +1) — (n—2)/
(n—1)a)>0 and that (2 (q+ 1)—(n-2)/((n—1)a))é—(n—1)(1+q¢)*a >
0. Then we can choose € > 0 sufficiently small so that 2(¢+1) — (n —2)/
((n—1)a) —e>0and B > 0. It follows from (11) that the following inequal-
ity holds:

(12) /M dfPee |V ldr2e? < © /M df 27|V 6.

where C' is a constant that depends on d,a, ¢, and q. Let ¢ be a smooth
function on [0, 00) such that ¢ >0, =1 on [0, R] and ¢ =0 in [2R, c0) with
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|¢'| <2/R. Then considering ¢ o r, where r is the function in the definition
of B(R), we have from (12)

C
(13) /M df 42|V |df ] < 2 / df 2.

= R Jper\sm)

Let R — 400, by assumption that fB(R) |df|?® = o(R). From (13) we con-
clude that V|df|* =0 and that |df| is constant. Thus, if |df| # 0, from (6)
we get 7(z) > 0. It follows by substituting the above |df| into (9) that

5[ rldrPP<a / i / df28.
) M R /g

B(R 2R)(p)

So we conclude by letting R — 400 that 7(z) =0. Thus, by (2), we have
Ricps(x) > 0. By [21, Theorem 4.1], we get that the volume of B(R) satisfies
vol(B(R)) > C(n)R, and fB(R) |df|*? > C(n)|df|?” R. This is a contradiction
since fB(R) |df|?® = o(R). Consequently, we have |df| =0 and df = 0. This
completes the proof of Theorem 1.1. H

Proof of Theorem 1.3. For each w € H'(L?(M)), we have the following
well-known Bochner formula:

(14) Alw|* =2(|Vw|* + Ricy (w,w)).
On the other hand, we have

2
(15) A|w|2:2(lw|A|w\+}V|w|’ ).

From (14), (15), and the generalized version of Kato’s inequality n/
(n —1)|V|w||? < |[Vwl|? (see [16]), we obtain

1
(16) w|Alw| > Ricy (w,w) + mmwu?.
Combining with (2), we have

1
(17) lw|A|w] zmyv,wH?_(n_l)er

Using the same argument as Theorem 1.1, one can conclude that
HY(L?*(M)) =0. 0
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83. Application to submanifolds
Before proving our results, we list some known facts that we need.

DEFINITION 3.1. Let D C M be a compact subset of M. An end E of M
with respect to D is a connected unbounded component of M\ D. When we
say that F is an end, it is implicitly assumed that F is an end with respect
to some compact subset D C M.

DEFINITION 3.2. A manifold is said to be parabolic if it does not admit a
positive Green’s function. Conversely, a nonparabolic manifold is one which
admits a positive Green’s function. An end FE of a manifold is said to be non-
parabolic if it admits a positive Green’s function with Neumann boundary
condition on OF. Otherwise, it is said to be parabolic.

LEMMA 3.3 ([14, Theorem 2.1]). Let M be a complete manifold. Let
HOD(M) denote the space of bounded harmonic functions with finite Dirich-

let integral. Then the number of nonparabolic ends of M 1is at most the
dimension of H%(M).

LEMMA 3.4 ([1, Section 2], [3, p. 22], [16, Corollary 4]). Let E be an end of
a complete manifold. Suppose that for some v > 1, E satisfies a Sobolev-type
inequality of the form

(/Elflz”)iSC/EIVfﬁ VfeCLE).

Then (1) if v =1, then E must either have finite volume or be nonparabolic;
(2) if v>1, then E must be nonparabolic.

THEOREM 3.5. Let M be an n-dimensional complete noncompact sub-
manifold isometrically immersed in an (n + p)-dimensional Riemannian
manifold N™"*P with Ric(,_1)(N) > (n — 1)c. Assume that the index of the
operator A + (nc+ |A?) is zero. If

0< [VA—1(n—08)|6[2 — (n— 2)v/mole|[H| +nv/m—1(n+6) (| H* + )],

where § is more than (n—2), then any harmonic map from M to a manifold
with nonpositive curvature is constant, provided that its energy density sat-
isfies fB(R) |df |2 = o(R). In particular, if & is more than (n —1)2/n, then
HYL?*(M)) =0 and M has at most one nonparabolic end.
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Proof. Shiohama and Xu [23] proved that the following estimate holds
for Ricci curvature of a submanifold M in a Riemannian manifold N"P
with Ric(,_1)(NV) > (n —1)e:

P02\ TAR = Al - |4P).

Vvn(n—1)

Applying the above inequality to the traceless second fundamental form |¢|
and using the identity |A|? = |¢|? +n|H|?, we get

-1
RiCMZn

<nc +2n|H|* -

Ricyr > (n—1)c+ (n—1)|H|?

_ (n=2)ynn-DP[H| (n=1)|¢]"

n n

(18)

Let us choose 7 = |¢|?/n + ((n — 2)|¢||H|)/\/n(n —1) — ¢ — |H|? in Theo-
rem 1.1; thus, Ricy(z) > —(n —1)7(z).
On the other hand,

/ (nc+ |A[2 — 57')g02
M

_ n c 2 ”_—5 2\ 2 (n—2)d|8|[H]|
= [ (o« ) - | 2R

- /M(Wn—l(n—éw-<n—2>¢ﬁ6|¢||H|
+nvn—1(n+ 5)(\H!2 + c))/(n\/n — 1))@2.

By assumption, from the above inequality we obtain

5 / g < / (ne+ |A%)¢? < / Vgl
M M M

Hence, by Theorems 1.1 and 1.3 and Lemma 3.3, we complete the proof of
Theorem 3.5. {

By Theorem 3.5, and using the Schwarz inequality, we get the following.

COROLLARY 3.6. Let M be an n-dimensional complete noncompact sub-
manifold isometrically immersed in an (n + p)-dimensional Riemannian
manifold N™" P with Ric(,_1)(N) > (n — 1)c. Assume that the index of the
operator A+ (nc+ |A|?) is zero. If one of the following cases occurs:
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(1) n%(62 —4n+4)|H|?> <4(n —1)(n? — §2)c;

(2) (6% —4n +4)|9|?> <4(n —1)(n+6)%c;

where § is more than (n—2), then any harmonic map from M to a manifold
with nonpositive curvature is constant, provided that its energy density sat-
isfies fB(R) |df |2 = o(R). In particular, if & is more than (n —1)2/n, then
HYL?>(M)) =0 and M has at most one nonparabolic end.

COROLLARY 3.7. Let M™ be an n-dimensional complete noncompact min-
imal submanifold isometrically immersed in an (n+ p)-dimensional manifold
N"™tP of nonnegative (n — 1)th Ricci curvature. If the index of the opera-
tor A + |A|? is zero, then any harmonic map with finite energy from M
to a manifold with nonpositive curvature is constant and H'(L*(M)) = 0.
Moreover, M has at most one nonparabolic end.

REMARK 3.8. When M is an n-dimensional constant mean curvature
hypersurface in N"*! with Ric(,,—1)(N) = (n—1)c, that M is strongly stable
implies that the index of the operator A + (nc + |A|?) is zero. Thus, if
M™ in Corollaries 3.6 and 3.7 is a complete strongly stable hypersurface
with constant mean curvature in N"*! with Ric(,_1)(N) > (n — 1)c, then
the statements of Corollaries 3.6 and 3.7 are also true. In particular, when
N"*1is a space form, by Lemma 3.4, M has only one end. So Corollaries 3.6
and 3.7 can be considered as generalizations of some main results in [4], [9],
[12], and [20].

It is easy to see that we get Theorem 1.5 by Corollary 3.6. By Theo-
rems 1.1 and 1.3, we have the following Corollaries 3.9 and 3.11 by using (18)
and Lemmas 3.3 and 3.4.

COROLLARY 3.9. Let M be an n-dimensional complete noncompact min-
imal submanifold isometrically immersed in H"P. If the index of the oper-

ator A+ (—n+ |AJ?) is zero and if
2n(n —1)2
MAD > T

then any harmonic map with finite energy from M to a manifold with non-
positive curvature is constant and H'(L?>(M)) = 0. Moreover, M has only
one end.

REMARK 3.10. Corollary 3.9 is better than the main theorems in [22]
and [11].
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COROLLARY 3.11. Let M be an n-dimensional complete noncompact min-
imal submanifold isometrically immersed in an (n + p)-dimensional Rie-
mannian manifold NP of nonnegative (n — 1)th Ricci curvature. If the
index of the operator A + 0| A|? is zero, where § is more than (n — 1)%/n?,
then HY(L?*(M)) =0. Moreover, M has only one end.

REMARK 3.12. Corollary 3.11 can be regarded as generalizations of [2,
Theorem 1], [24, Theorem 1.2], and [8, Theorem 1.1].

REMARK 3.13. Based on Theorems 1.1 and 1.3, by using the same argu-
ments as before, we can improve the main results of [6], [24], and [25].
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