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ON LADDER HEIGHT DENSITIES AND
LAGUERRE SERIES IN THE STUDY
OF STOCHASTIC FUNCTIONALS.
II. EXPONENTIAL FUNCTIONALS
OF BROWNIAN MOTION AND
ASIAN OPTION VALUES

MICHAEL SCHRÖDER ∗

Abstract

In this paper we develop a constructive structure theory for a class of exponential
functionals of Brownian motion which includes Asian option values. This is done in two
stages of differing natures. As a first step, the functionals are represented as Laguerre
reduction series obtained from main results of Schröder (2006), this paper’s companion
paper. These reduction series are new and given in terms of the negative moments of the
integral of geometric Brownian motion, whose structure theory is developed in a second
step. Providing a new angle on these processes, this is done by establishing connections
with theta functions. Integral representations and computable formulae for the negative
moments are thus derived and then shown to furnish highly efficient ways for computing
the negative moments. Application of this paper’s Laguerre reduction series in numerical
examples suggests that one of the most efficient methods for the explicit valuation of
Asian options is obtained. The paper also provides mathematical background results
referred to in Schröder (2005c).
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1. Introduction

In this paper we develop an explicit structure theory for exponential functionals of Brownian
motion which is constructive and enables their numerical computation. Such functionals are
mappings on spaces of functions f that send any such f to the expectation of its image of the
value of a process at time h. We thus consider functionals of the form

E[f (A(ν)h )], where A(ν)h =
∫ h

0
e2(νu+Wu) du,

ν is any real drift, W is Brownian motion, and the processes A(ν) so obtained are integrals of
geometric Brownian motion. The motivation for studying these functionals of Brownian motion
has its origins in areas as diverse as the physics of random media and mathematical finance;
see, for instance, Yor (2001) and the references there. From the perspective of mathematical
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finance, these functionals can be interpreted as values of contingent claims on averages of
prices or of rates. As such, they in particular include values of Asian options, a notion reviewed
in Section 6.1 which has in fact motivated much of the development in this area; see, for
instance, Dufresne (2000), (2005). For these applications in particular, computability of the
above functionals becomes a problem which does not seem to be well addressed even today.
Therefore, one of the motivations for the present paper is to show how the Laguerre reduction
series results of Schröder (2006) can be developed into such methods.

In Schröder (2006), the author focused on two principal ways of applying Laguerre expan-
sions to stochastic functionals. The first goes back to the Asian option valuation context of
Dufresne (2000), and the idea is as follows: construct these functionals as probability densities,
Laguerre expand the latter, and reconstruct the coefficients of these expansions in terms of the
moments of the pertinent process. The idea of the second approach is to expand the densities of
the pertinent processes as Laguerre series whose coefficients are then in terms of the moments of
those processes, thus obtaining the functionals as integrals of these series, and then to compute
these integrals term by term. While in general there are obvious obstructions to both approaches,
a framework of sufficient conditions for their validity was developed in Schröder (2006). The
first basic idea of the present paper is to put all this to work in the case of stochastic functionals
of the integral of geometric Brownian motion.

The first step of our resulting two-step approach is explained in Section 5. Noteworthy here
seems, in particular, to be how and from where we obtain the information our framework of
sufficient conditions for Laguerre expandability needs: from a study of the asymptotics of the
law of the integral of geometric Brownian motion, in which any of the integral representations
derived in Yor (1992a), Dufresne (2001), and Schröder (2003) is instrumental. This seems to
be a first, but a typical, application of these explicit integral representations, and with hindsight
their availability is essential for implementing this part of our approach. This is because,
in particular, it is not functionals of the integral of geometric Brownian motion that we find
thus amenable to Laguerre expansion but rather those of its reciprocals. Hence, we are led
to Laguerre reduction series in the negative moments of the integral of geometric Brownian
motion A(ν).

While the moments of time-integrated exponential processes such as the integral of geometric
Brownian motion are well understood even at the level of Lévy processes, such an understanding
is lacking for their negative moments. Developing a structure theory for the negative moments of
the integral of geometric Brownian motion may thus qualify as the second principal contribution
of this paper, and furnishes the second step of our approach to Laguerre expansion of stochastic
functionals of these processes. Referring to Section 7.1 for more details, the idea is as follows.
In Dufresne (2000), a functional recurrence rule has been derived for these moments, which we
solve. A first type of integral representation for the negative moments ofA(ν) results, which we
interpret in terms of theta functions. This seems to be a novel point of view on A(ν) and may
qualify as a main contribution of this paper. For the negative moments of A(ν), a second type
of integral representation is thus obtained, and shown to be representable as series in terms of
error functions. Structural considerations suggest the rapid convergence of these series, and
they turn out to be most effective tools for numerical computation in Section 8.1.

To illustrate the numerical properties of our two-step approach to Laguerre expansion of
stochastic functionals of A(ν), we focus on valuing Asian options. This has in fact become
an active area of research, pertinent notions of which are recalled in Section 6.1. Referring to
Rogers and Shi (1995) for a ‘first generation’survey, we here single out four principal approaches
that have been developed in recent years. First, using methods from optimal control theory, very
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interesting formulations of the boundary value problem characterizing Asian option prices have
been derived by Vecer (2001), (2002) and Vecer and Xu (2004). Second, the most traditional
approach to the integral of geometric Brownian motion is based on a spectral analysis of its
infinitesimal generator, along the lines of McKean (1956). Eigenfunction integral representa-
tions for the law of A(ν) have been thus obtained in Monthus and Comtet (1994), Alili (1995),
and Comtet and Monthus (1996), and further references can be found in Linetsky (2004). A
procedure for approximating Asian option values by series of eigenfunctions was also proposed
there, and could provide an interesting perspective. Third, the Hartman–Watson approach of
Yor was developed into a constructive method of valuingAsian options in Schröder (2002); main
results were summarized in Schröder (2005a). Finally, Schröder (2005c) developed Laguerre
reduction approaches alternative to those of Dufresne (2000) and the present paper, but based
on this paper’s results on negative moments of A(ν).

In Section 8, we in fact combine two concepts: first, the Laguerre reduction series for Asian
option value functionals, obtained in Section 6 as a consequence of the structure theory of
Section 5, and, second, the explicit series for negative moments of A(ν), obtained in Section 7
as a consequence of the structure theory there. By replicating the benchmarks obtained using the
alternative Hartman–Watson approach in Schröder (2002), (2005a), one of the most efficient
numerical methods for explicitly computing the Asian option price functionals thus results.
More precisely, we find that computing such prices to accuracies of ten or more decimal places
now requires some fifteen to twenty series terms and can be computed in times almost in the
millisecond range. This is true even if volatilities or times to maturity are small, situations where
difficulties have been noted with all other methods. We would be more than gratified if the
present paper furnished more starting points for such work connecting finance and stochastics.

2. Preliminaries on Laguerre expansions

2.1. Laguerre series

In this section we recall pertinent properties of Laguerre polynomials from Lebedev (1972,
Section 4), Andrews et al. (1999, Chapter 6), and Sansone (1991). Fixing any real number α >
−1, for any nonnegative integer m the mth α-Laguerre polynomial, Lαm(z), is

Lαm(z) =
m∑
k=0

αm,kz
k, where αm,k = (−1)k

k!
(
m+ α

m− k

)
,

for any complex z. Their structural setting is a generalization of the classical Hilbert spaces
of square-integrable functions. Let L2

α(0,∞) be the Hilbert space of all complex-valued
functions F on the positive reals that are α-square integrable, i.e. that satisfy

‖F‖2
α =

∫ ∞

0
wα(x)|F |2(x) dx < ∞,

with the weight wα on (0,∞) given by

wα(x) = xαe−x.

Then, L2
α(0,∞) carries the sesquilinear form 〈 , 〉α given by

〈F,G〉α =
∫ ∞

0
wα(x)F (x)G(x) dx,
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and has an orthogonal basis furnished by the Lαm, which satisfy ‖Lαm‖2
α = �(m+ α + 1)/m!.

By expressing any F in L2
α(0,∞) in this basis, we obtain its α-Laguerre series,

F =
∞∑
m=0

cmL
α
m, where cm = 〈F,Lαm〉α

〈Lαm,Lαm〉α ,

for any nonnegative integer m. The cm are the α-Laguerre coefficients of this series, whose
convergence to F is in α-mean: limM→∞ ‖F − ∑M

m=0 cmL
α
m‖α = 0.

2.2. Growth measures

In this section we recall the local growth measures, δ and γ , of Schröder (2005c, Section 2.3),
which encode how Laguerre expandability is determined by local data. They apply to any
complex-valued functionf on the positive reals, and the idea of them is to describe the behaviour
of f at any pointA of the extended nonnegative reals, [0,∞], by comparison with that of power
mappings and powers of the exponential function, respectively. The exponential growth order,
δA(f ), of f near A is the supremum over all real δ such that limx→A eδxf (x) = 0:

δA(f ) = sup
{
δ ∈ R : lim

x→A
eδxf (x) = 0

}
.

The polynomial growth order, γA(f ), of f near A is defined as follows: if A is finite it is the
supremum over all real γ such that limx→A f (x)/x

γ = 0, i.e.

γA(f ) = sup
{
γ ∈ R : lim

x→A
f (x)/xγ = 0

}
;

otherwise it is defined as γ∞(f ) = γ0(f
∗), where f ∗(x) = f (1/x). The respective sets of

real numbers δ and γ defining these growth orders may be empty, in which case the respective
suprema both equal −∞.

Basic properties of these growth measures are discussed in Schröder (2005c, Section 2.3).
In particular, we recall the following Laguerre expansion criterion for a function to have an
α-Laguerre series: any continuous function f : (0,∞) → C is in L2

α(0,∞) if it satisfies
2γ0(|f |) > −(α + 1) and 2δ∞(|f |) > −1.

3. Preliminaries on theta functions

3.1. Theta functions

Following Mumford (1983), (1984), (1991), in this section we collect pertinent facts about
the classical theta function, ϑ , given, for any complex z and any positive real w, by

ϑ(z|w) =
∑
m∈Z

χ2(z+m)(w), where χa(w) = 1√
πw

exp

(
− a2

4w

)
,

for any complex a. This series converges absolutely, and uniformly on compact sets. Thus, ϑ
can be seen as a holomorphic function on the product of the complex plane and the complex
upper half-plane. In the theory of modular forms this is usually done such that the above
theta function is considered to be evaluated not at w but at the point iπw. Theta functions
were conceived by Jacobi (1804–1851). Since then they have been developed into a basic
class of holomorphic modular forms interrelated with such diverse areas of mathematics as
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number theory, algebraic geometry, and partial differential equations. Two such interrelations,
essentially going back to Jacobi, are to be described.

To describe the first, recall that w−1/2e−πx2/w is the fundamental solution to the one-
dimensional heat equation with a delta function at x = 0 as initial data at w = 0. Thus,
with real arguments, ϑ can be seen as the superposition of infinitely many such solutions with
delta functions at the integers x = n as initial data.

The second interrelation is with modular forms. From this point of view, theta functions can
be characterized by a periodicity with respect to each of their two variables. The behaviour
with respect to the second variable is deeper and more subtle than that with respect to the first.
It is expressed by a functional equation, the Jacobi transformation formula, with respect to the
second variable. For real arguments, it asserts the following remarkable identity, for any real
numbers w > 0 and x (see Mumford (1983, p. 33, p. 4)):

1 + 2
∞∑
m=1

e−w(πm)2 cos(2πmx) =
∑
m∈Z

1√
πw

exp

(
− (x +m)2

w

)
.

Providing a second series for ϑ(x|w), the left-hand side of this identity is oscillatory and rapidly
convergent for large w, whereas its right-hand side is positive and rapidly convergent for small
w. The Jacobi transformation formula is proved by Fourier analysis, exhibiting ϑ as the Fourier
expansion with respect to its second argument. It furnishes the link to the circle of ideas about
counting quadratic forms over the integers that Jacobi originally set out to study. For us it will
be the property that makes the numerics work.

3.2. Estimates

In this section we collect estimates for the remainder terms, rk,M , of the two series for ϑ of
Section 3.1. For any real x, they are defined by

r1,M(x,w) =
∑

|m|≥M+1

χ2(x+m)(w),

r2,M(x,w) = 2
∑

m≥M+1

e−(πm)2w cos(2πmx),

for any integer M ≥ 0 and any real w > 0. The precise results, making explicit the
complementary convergence properties of the series noted in Section 3.1, are as follows.

Proposition 3.1. For any real x, we have the estimates

2r1,M(x,w) ≤ Erfc((M + x)/w1/2)+ Erfc((M − x)/w1/2)

and
|r2,M(x,w)| ≤ (πw)−1/2Erfc(πw1/2M),

for any integer M ≥ 0 and any real w > 0, where Erfc(z) = (2/
√
π)

∫
[z,∞)

e−u2
du is the

complementary error function.

Proposition 3.2. If
∑
m∈Z

θm is either of the two series for ϑ(x|w) of Section 3.1, then

0 ≤ ϑ(x|w) ≤
∑
m∈Z

|θm| ≤ 1 + min{χ0(w), χ2x(w)}.

Hence, ϑ is bounded, in particular, on R × R≥ε, for any positive real ε.
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The estimates of Proposition 3.1 can be shown using the integral criterion for series conver-
gence. They imply Proposition 3.2 on setting M = 0. See Schröder (2005c, Section 6.9) for
more detail.

4. Preliminary formulae

In this section we collect definitions and basic properties of the main functions to be used in
the sequel. We denote by WErfc(z) = ez

2
Erfc(z) the weighted complementary error function,

where Erfc(z) is as defined in Proposition 3.1 for any complex z. Let (λ)n denote the nth
Pochhammer symbol of any complex λ, which is recursively defined by (λ)0 = 1 and (λ)n+1 =
(λ+ n)(λ)n for any nonnegative integer n.

4.1. Definitions

The functions to be considered are defined on the positive reals h and depend on the real
parameter a. The first two, Aa and Ba , are given by

Aa(h) = √
2/πh−a and Ba(h) = aWErfc((a/2)

√
2h).

Since the latter function computes tails of the normal distribution, Aa and Ba are directly
connected with Brownian motion.

The construction of the remaining two functions mirrors the Jacobi transformation formula
for theta functions. For any B in the extended positives, [0,∞], and any integer m ≥ 1, they
are given by the integrals

Ca,m(B, h) =
∫ B

0
χa(w)Qm(h,w) dw and Da,m(B, h) =

∫ ∞

B

e−a2wQm(h,w) dw,

where χa(w) = e−a2/(4w)/
√
πw from Section 3.1 and

Qm(h,w) = (2w)m−1

(2hw + 1)m+1/2 .

In the limiting case B = ∞, we here let Ca,m(h) = Ca,m(∞, h) to simplify notation. Both
functions are finite linear combinations of weighted truncated moments of half-integral-degree
gamma variables, as we now show.

4.2. Properties

The structure of the functions Ca,m and Da,m is in fact studied in terms of the functions Gn
and G∗

n, for any integer n ≥ 1. For any real x > 0, these are given by

Gn(x) = 2ex E[1[√x,∞)(W1/2)W
−n
1/2] and G∗

n(x) = xnGn(x)

as weighted truncated moments of Brownian motion W at time 1
2 , and have the following two

representations.

Proposition 4.1. For any integer n ≥ 1 and any real x > 0, we have

Gn(x) = ex√
π

∫ ∞

x

e−w

wn+1/2 dw = ex√
π
�

(
1

2
− n, x

)

and

Gn(x) = (−1)n

( 1
2 )n

WErfc(
√
x)+ 1√

π

n−1∑
�=0

(−1)n−1−� (
1
2 )�

( 1
2 )n

1

x�+1/2 .
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Here the first representation is in terms of the complementary incomplete gamma func-
tion, given by �(s, x) = ∫ ∞

x
us−1e−u du for any real x > 0 and s; see Erdélyi et al.

(1953, Chapter IX) or Press et al. (1992, Section 6.2). It follows immediately from the
definitions. The second representation follows from the first using partial integration: in
�( 1

2 − n, x) = ∫ ∞
x
w−(n+1/2)e−w dw we interpret w−(n+1/2) as the nth derivative of w−1/2

according to the relation (w−1/2)(n) = (−1)n(1/2)nw−(n+1/2), and then use partial integration
to successively lower the order from n to 0. This representation shows how Gn is built up by
adding power functions to the weighted complementary error function, WErfc.

The functionsGn are the building blocks of the functionsCa,m andDa,m. With the definitions

ba = a2

2
and βm,k = (−1)k

(
m− 1

k

)
, k ∈ {0, . . . , m− 1},

the following two results make this precise.

Proposition 4.2. We have Ca,m(0, h) = 0 and, letting ξB(h) = h+ 1/(2B) for B �= 0,

C0,m(B, h) = ξB(h)
1/2−m

(m− 1
2 )

√
2π

and, for nonzero a,

Ca,m(B, h) = 1

|a|
bma

eba/(2B)
Gm(baξB(h)).

Proposition 4.3. We have Da,n(∞, h) = 0 and, letting ηB(h) = 1 + 2Bh for finite B,

hmD0,m(B, h) =
m−1∑
k=0

βm,k

2k + 1
ηB(h)

−(k+1/2)

and, for nonzero a,

hmDa,m(B, h) =
√
π

2

m−1∑
k=0

βm,k
(ba/h)

k+1/2

e2Bba
Gk+1

(
ba

h
ηB(h)

)
.

Proof of Proposition 4.2. The vanishing property for B = 0 is clear by construction, so
assume that B �= 0. In the defining integral for Ca,m(B, h), then change variable according to
y(w) = h+ 1/(2w), to obtain

Ca,m(B, h) = 1

2
√

2π

∫ ∞

y(B)

e−ba(y−h) dy

ym+1/2 .

The formula for C0,m follows by direct integration. For a �= 0, change variable according to
x = bay, to obtain

Ca,m(B, h) = 1√
2
(ba)

m−1/2ebah
∫ ∞

LB

e−x

xm+1/2

dx√
π
,

where LB = ba(h+ 1/(2B)) = baξB(h). The exponentially weighted integral factor is equal
to e−ba/(2B)Gm(LB), and the proof of Proposition 4.2 is thus complete.
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Proof of Proposition 4.3. The vanishing property forB = ∞ is clear by construction. Thus,
assume that B is finite. For a = 0, computing Da,m(B, h) reduces to integrating Qm(h,w) =
(2w)m−1/(2hw+1)m+1/2. Thus, change variable according to x(w) = 2wh+1 and binomially
expand the numerator, (x− 1)m−1, of the resulting integrand. The required formula follows on
integration of the result,

D0,m(B, h) = 1

2hm

m−1∑
k=0

βm,k

∫ ∞

x(B)

dx

xk+3/2 .

For a �= 0, change variable according to x(w) = a2(w + 1/(2h)) in the defining integral for
Da,m and binomially expand the numerator of the rational factor, (x/a2 − 1/(2h))m−1, which
results, to obtain

Da,m(B, h) = ea
2/(2h)

2
√

2

m−1∑
k=0

βm,k

(2h)k

∫ ∞

x(B)

e−x
(
x

a2

)m−1−k(
hx

a2

)−(m+1/2) dx

a2 .

Collecting terms then completes the proof of Proposition 4.3.

5. Reduction series for exponential functionals of Brownian motion

Exemplifying main results of Schröder (2006), in this section we develop Laguerre reduction
series for a class of exponential functionals of Brownian motion which includes option values.

5.1. Basic setting

This paper focuses on stochastic functionals of two processes: the integral of geometric
Brownian motion,A(ν), for any real ν, and the reciprocals of the integral of geometric Brownian
motion, Yd , for any positive real d . They are given by

A
(ν)
h =

∫ h

0
e2(νu+Wu) du and Yd,h = d

A
(ν)
h

,

for any real h > 0. Adopting the setting introduced in Schröder (2006, Sections 4.1, 4.2,
and 5.1), we then consider expectations

E[ρ(Y )], where Y = Yd,h.

Here ρ is any function on the positive reals such that ρ(Y ) is FT -integrable and the following
holds: we have a factorization

ρ(x) = ψ(x)ϕ(a, x), x ∈ (0,∞),

with functions ψ , on the positive reals, and ϕ, on two copies of the positive reals, such that the
triple (ψ, ϕ, Y ) is admissible in the sense of Schröder (2006, Definition 4.1). Thus, we moreover
assume that E[ψ(Y ) | Ft ] is finite and positive, and that there are functions χ and L from the
positive reals into themselves such that, for any real c > 0, we have ϕ(c, (0, L(c)]) = {0} and
ϕ(λc, λx) = χ(λ)ϕ(c, x) for any reals λ, x > 0. While Schröder (2006, Section 4.3) gave a
systematic construction of such functions ϕ, immediate examples are furnished by the pay-off
functions of call options; see Schröder (2006, Example 4.2) for a discussion.

For convenience, we in addition assume ψ to be a continuous function on the positive reals,
with the growth measures of Section 2.2 satisfying γ0(ψ), δ∞(ψ) > −∞, and for any real
c > 0 denote by ϕc the function given by ϕc(x) ≡ ϕ(c, x), for any real x > 0.
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5.2. The first type of reduction series

Developing reduction series is the first principal step of our approach to Laguerre expansion
of stochastic functionals. In continuation of Section 5.1, this is exemplified in the present section
by making explicit the first of the two types of Laguerre reduction series of Schröder (2006,
Section 6) for the above stochastic functionals of Yd,h. With the proof postponed to Section 5.5,
the precise form of the first of these Laguerre reduction series is as follows.

Theorem 5.1. In the setting of Section 5.1, let c > 0, α > −1, and β be any reals such that
(wβ/wα)ϕc is in L2

α(0,∞) and the following inequality in terms of the Section 2.2 growth
measure δ∞ holds:

c

a
< 2δ∞(ψ)+ 1

d
.

Then we have the absolutely convergent Laguerre reduction series representation

E[ρ(Yd,h)] = χ

(
a

c

) ∞∑
n=0

an

〈
wβ

wα
ϕc, L

α
n

〉
α

,

whose remainder terms, RN = χ(a/c)
∑∞
n=N an〈(wβ/wα)ϕc, Lαn〉α , satisfy

R2
N ≤

∥∥∥∥wβwα ϕc
∥∥∥∥

2

α

χ2
(
a

c

) ∞∑
n=N

a2
n‖Lαn‖2

α,

recalling that ‖Lαn‖2
α = �(n+ α + 1)/n!.

Here the wα are the weight functions of Section 2.1, given by wα(x) = xαe−x , and the
coefficients an are given in terms of α, β, a, and c as linear combinations ofψ-twisted moments
E[Y κψ(Y )] of Y ≡ Yd,h, as follows, setting δk = α − β + k:

an =
n∑
k=0

(−1)k

�(k + α + 1)

(
n

k

)(
c

a

)δk
E[Y δkψ(Y )].

Briefly, the relevance of this result is that it reduces the computation of E[ρ(Y )] to the
computation of the scalar products 〈(wβ/wα)ϕc, Lαn〉α and theψ-twisted moments E[Y κψ(Y )].
From Section 2.1, the scalar products are integrals of ϕc. Together with theψ-twisted moments
they may therefore be considered primitives of the problem.

5.3. The second type of reduction series

Working in the setting of Sections 5.1 and 5.2, we make explicit the second of the two types
of Laguerre reduction series of Schröder (2006, Section 6) for the above stochastic functionals
of Yd,h. Recall that this series is in the spirit of Dufresne (2000) and constructs stochastic
functionals as elements of Hilbert spaces using ladder height reduction series. For this we have
to amend the setting of Section 5.1.

For any positive integer N , we make the following three additional assumptions. First,
for some, and thus any, positive real c, let ϕc be (N − 1)-fold continuously differentiable on
(L(c),∞). Second, assume that the (N−1)th derivative, ϕc(N−1), is a nonzero constant. Third,
let c be such that the inequalities

0 < γA(ϕ
(�)
c )+ �+ 1 + γA(ψ)(a/c), A ∈ {L(c),∞},
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hold for any � in {0, 1, . . . , N − 2}. With the proof postponed to Section 5.5, our precise result
is then as follows.

Theorem 5.2. In the above setting, let the reals α > −1 and β be such that the following
inequality in terms of the Section 2.2 growth measure δ∞ holds:

c

a
< 2δ∞(ψ)+ 1

d
.

Then we have the ladder height reduction series representation

E[ρ(Yd,h)] = wβ(L(c))

∞∑
n=0

bN,nL
α
n(L(c)),

which is the evaluation at the point L(c) of the element
∑∞
n=0 bN,nL

α
n of the Hilbert space

L2
α(0,∞) and, furthermore, is absolutely convergent as a series of complex numbers.

Here wβ is the weight function from Section 2.1 given by wβ(x) = xβe−x , and the
coefficients bN,n are given in terms of α, β, a, c, and N by linear combinations of ψ-twisted
moments E[Y κψ(Y )] of Y = Yd,h, as follows:

bN,n =
n∑
k=0

ϕ(N−1)
c (x0)

αn,k

‖Lαn‖2
α

χ

(
a

c

)
(c/a)N+δk
(δk + 1)N

E[YN+δkψ(Y )].

In this expression, x0 is any element of (L(c),∞), the quotients αn,k/‖Lαn‖2
α are as in Sec-

tion 2.1, the Pochhammer symbols (λ)N are as in Section 4, and we set δk = α − β + k.

5.4. Determining the growth measures

A principal first step towards establishing the reduction series of Sections 5.2 and 5.3 consists
of determining the local growth measures of Section 2.2 for the densities, fd,h, of Yd,h. This is
taken care of by the following result of Schröder (2005c), which may be regarded as a first, but
typical, application of any of the available explicit representations of the law of the integral of
geometric Brownian motion.

Theorem 5.3. Any density fd,h is an analytic function on the positive reals with growth orders
γ0(fd,h) = ∞, γA(fd,h) = 0 for A in (0,∞], and δ∞(fd,h) = 1/(2d).

Since this result is instrumental in implementing the general results of Schröder (2006) in
the present situation, we sketch the key ideas of its proof from Schröder (2005c, Sections 5.3
and 5.4). We first reduce to the case d = 1, where f ≡ f1,h is the density of 1/A(ν)(h). From
Schröder (2003) we have

f (x) = �(−µν)c(x)
π

eπ
2/(2h)I

(√
x

2

)

for any positive real x, where µν = −(ν + 1) and

c(x) = 2ν/2√
πh

e−ν2h/2xµν/2e−x/2,

I (ξ) =
∫ ∞

0
e−w2/(2h) sinh(w) sin

(
π

h
w

)
Hµν (ξ cosh(w)) dw.
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Here Hµν is the Hermite function of degree µν ; see Lebedev (1972, Chapter 10). Using the
analyticity of this density in ν, now reduce to ν �= −1.

To prove that δ∞(f ) = 1
2 it is then sufficient to show that I (

√
x/2) can be bounded by

a rational function in x for x ≥ x0, where x0  0. To this end, the continuity of Hermite
functions implies the existence of a constant, C0, such that |Hµν (z)| ≤ C0 for all complex z in
the closed disc of radius w0  0 centred at 0. On the other hand, enlarging C0 if necessary,
|Hµν (z)| ≤ C0|z|µν for |z| ≥ w0, using the asymptotic expansion for Hermite functions of
Lebedev (1972, Section 10.6). Breaking the integral I (

√
x/2) at w0 thus gives

0 ≤ I

(√
x

2

)
≤ C0

∫ w0

0
e−w2/(2h) sinh(w) dw

+ C0

(
x

2

)µν/2 ∫ ∞

w0

e−w2/(2h) sinh(w) coshµν (w) dw

and, hence, the desired majorizing rational function of x  0.
Proving that γ0(f ) = ∞ reduces to showing that, for any nonnegative integer k, the kth

derivative of I is 0 at ξ = 0. Taking derivatives of I means taking them under the integral
sign. Using the derivative rule (d/dz)H−µ(z) = −2µH−(µ+1)(z) for Hermite functions of
Lebedev (1972, Equation (10.4.4)), the problem therefore reduces on inspection to showing
that

0 =
∫

R

e−y2/2 coshk(
√
hy)(e

√
hy+iyπ/

√
h − e

√
hy−iyπ/

√
h) dy

for any nonnegative integer k. This can now be seen by an argument essentially along the lines
of that in Yor (1992a, p. 529).

Since f is continuous and nonzero on the positive reals, we finally have γA(f ) = 0 at anyA
in (0,∞], and the proof of Theorem 5.3 is complete.

5.5. Proofs of Theorems 5.1 and 5.2

We establish the two reduction series of Theorems 5.1 and 5.2 together. Instrumental in
this is the Theorem 5.3 determination of the growth measures of the density, fd,h, of any Yd,h.
With this information, Theorem 5.1 is obtained by specializing Schröder (2006, Theorem 6.1)
to Y = Yd,h and Theorem 5.2 is obtained by specializing Schröder (2006, Theorem 6.2) to this
situation.

To exemplify the arguments, we establish the second of these results. Letting f ≡ fd,h, first
consider the additional inequalities to be satisfied for Schröder (2006, Theorem 6.2) to hold,
namely

0 < γA(ϕ
(�)
c )+ �+ 1 + (γA(ψ)+ γA(f ))(a/c), A ∈ {L(c),∞},

for all � in {0, 1, . . . , N−2}. They simplify to those required for Theorem 5.2 to hold, recalling
from Theorem 5.3 that γA(f ) = 0 for A in (0,∞]. The second of the two inequalities to be
satisfied in Schröder (2006, Theorem 6.2), namely

max{2β − (2N + α + 1),−2} < 2(γ0(ψ)+ γ0(f ))(a/c),

holds without restriction because of the Theorem 5.3 result γ0(f ) = ∞. Upon substitution
of the Theorem 5.3 result δ∞(f ) = 1/(2d), the first of the inequalities of Schröder (2006,
Theorem 6.2), on the other hand, is just the single inequality of Theorem 5.2, and the proof is
complete.
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6. Laguerre reduction series for the Asian option value functionals

In this section we illustrate the ladder height Laguerre reduction series of Section 5 in the
option valuation context. The focus is on Asian option valuation in Brownian motion models,
an issue which has motivated much of the development in this area. The discussion proceeds
in two steps, leading to the reduction series of Section 6.2 as its main results.

6.1. Asian options

There is by now a standard framework for the analysis of Asian options; see Carr and
Schröder (2004), following Geman and Yor (1993). However, it needs to be modified in order
to apply to this paper’s Laguerre reduction approaches. We address these modifications in this
section, with Lemmas 6.2 and 6.3 below as the key results. Using risk-neutral valuation, we
work in the Black–Scholes framework with two securities. First, there is a riskless security,
a bond, whose price grows at the continuously compounding positive interest rate r . Second,
there is a risky security, whose price process, S, is modelled as follows. Consider a complete
probability space equipped with the standard filtration of a standard Brownian motion on the
time set [0,∞). On this filtered space, we have the risk-neutral measure Q, the probability
measure in use in the sequel, and a standard Q-Brownian motion W such that

St = S0e2ξt , where 2ξt = µt + σWt ,

for any real t ≥ 0. Here S0 and the volatility σ are positive reals and µ = � − 1
2σ

2 for any
real� . The specific form of the otherwise arbitrary risk-neutral drift� depends on the nature
of the security modelled. For example, if S is a stock it is the interest rate r minus the pertinent
dividend rate.

The European-style arithmetic-average Asian option written at time t0, with maturity T and
fixed strike price K , is then the contingent claim on the closed time interval [t0, T ] with the
following pay-off at time T : the maximum of 0 and the excess over K of the average price,
(1/(T − t0))

∫
[t0,T ] Su du, over the period [t0, T ]. The price, Ct , of the Asian option at any

time t between t0 and T is thus given by the risk-neutral expectation

Ct = e−r(T−t) E

[(
1

T − t0

∫ T

t0

Su du−K

)+ ∣∣∣∣ Ft

]
,

which is conditional on the information Ft available at time t . Elaborating on the modification
in Carr and Schröder (2004, Part I) of a technique of Geman and Yor (1993), the idea is to
construct stochastic functionals C(ν)(h) which afford a factorization

Ct = e−r(T−t)

T − t0

4St
σ 2 C

(ν)(h)

and each take the role of a normalized price. They depend on the dimensionless parameters

ν = 2�

σ 2 − 1 and h = σ 2

4
(T − t),

where ν is the normalized adjusted interest rate and h is the normalized time to maturity, which
is nonnegative. The functionals are in terms of the integral of geometric Brownian motionA(ν)h ;
recall from Section 5.1 that these processes are given by A(ν)x = ∫ x

0 exp(2(νu+Wu)) du for
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any real x > 0, with W denoting Brownian motion. The exact form of the functionals is then
determined by a parameter q which is given, as a function of h in particular, by

q = T − t0

(2/σ)2St

(
K − 1

T − t0

∫ t

t0

Su du

)
,

and can be thought of as a normalized strike price. If q is nonpositive, Asian options lose their
option feature and, as has already been observed in Geman and Yor (1993, p. 361), we have the
following lemma, which is almost tautological.

Lemma 6.1. If q ≤ 0 thenC(ν)(h) = E[A(ν)h ]−q, where E[A(ν)h ] = (e2h(ν+1)−1)/(2(ν+1)),
as an analytic function of ν.

Valuation of Asian options thus reduces to the case q > 0. It is in this situation that the
results of Sections 5.2 and 5.3 are to be applied, to compute Ct . However, since the latter is
an expectation in A(ν), it must be re-expressed in terms of the reciprocal of such processes for
the Laguerre reduction approaches to be applicable. A principal renormalization technique to
address this problem was developed in Schröder (2005c, Section 4), and here Schröder (2005c,
Lemma 7.2) gives the following result.

Lemma 6.2. If q > 0 then C(ν)(h) = E[A(ν)h ] − q + E[(ψhc)(Ycq,h)], with the functions
ψ(x) = qx−1 and hc(x) = (x − c)+ defined on the positive real line.

Here, recall from Section 5 that Yd , for any positive real d, is the reciprocal of the integral
of geometric Brownian motion, the process given by Yd,h = d/A(ν)(h) for any real h > 0.

Valuing any Asian option is thus reduced to computing a single function, the normalized
price functional C(ν). Referring to Schröder (2005c, Section 7.2), this enables a one-price-
for-all valuation of Asian options as a practical consequence. Since we have C(ν)(h) =
E[(A(ν)(h) − q)+], irrespective of the sign of q, this reduction is also in accordance with
that of Carr and Schröder (2004, Part I), following Geman and Yor (1993). The point is that
this representation now enables us to apply the results of Section 5. The basis of this is the
following observation.

Lemma 6.3. For any positive reals d and c, the triple (ψ, hc, Yd,h) is admissible in the sense
of Section 5.1 with χ and L there equal to the identity mapping on the positive reals.

In fact, the first moment of A(ν)(h) is finite and positive as a consequence of the explicit
formula for it in Lemma 6.1. The properties in terms of the functions χ and L to be checked
are clear on inspection, so the proof of Lemma 6.3 is complete.

6.2. Ladder height reduction series for valuing Asian options

Working in the setting of Section 6.1, analysing the normalized call price functionals C(ν)

of Asian options reduces to analysing the put price functionals P (ν) via the identities

C(ν)(h) = E[A(ν)h ] − q + P (ν)(h),

where, for any real c > 0,
P (ν)(h) = E[(ψhc)(Ycq,h)]

with ψ(x) = q/x and hc(x) = (x − c)+. Postponing proofs to the end of this section, we
now discuss our reduction series for these functionals. We start with those of the second type,
developed in Section 5.3, which replicate Dufresne (2000, Theorem 7.1) under less restrictive
conditions.
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Theorem 6.1. For any reals α > −1 and β and any positive real c such that 0 < cq < 1, we
have the absolutely convergent ladder height reduction series representation

P (ν)(h) = cβe−c
∞∑
n=0

c2,nL
α
n(c),

whose α-Laguerre coefficients c2,n, on setting δk = α − β + k, are given by

c2,n = q

n∑
k=0

(−1)k

�(k + α + 1)

(
n

k

)(
cq

h

)δk+1 E[Y δk+1
h,h ]

(δk + 1)(δk + 2)
.

Notice how this reduction series is obtained by ‘linear combination’ of the moments of Yh,h,
with coefficients in terms of elementary functions and the gamma function only.

Providing workable estimates for the approximation errors of this series, as would be highly
desirable, seems to be highly problematic, however. For the first type of reduction series, in
contrast, such an explicit error analysis can be established as a new feature, as follows.

Theorem 6.2. For any reals α > −1 and β and any positive real c such that 0 < cq < 1, we
have the absolutely convergent ladder height Laguerre reduction series representation

P (ν)(h) =
N∑
n=0

c0,n

n∑
k=0

(�(βk+2, c)− c�(βk+1, c))αn,k + RN,

where βm = β +m, whose α-Laguerre coefficients are given by

c0,n = q

n∑
k=0

(−1)k

�(k + α + 1)

(
n

k

)(
cq

h

)δk−1

E[Y δk−1
h,h ],

where δk = α − β + k. Its error terms, RN , satisfy

R2
N ≤ Dα(β)

∞∑
n=N+1

c2
0,n‖Lαn‖2

α,

where Dα(β) = �(b + 1, c) − 2c�(b, c) + c2�(b − 1, c) with b = 2(β + 1) − α, recalling
that ‖Lαn‖2

α = �(n+ α + 1)/n!.
Here the αn,k = (−1)k

(
n+α
n−k

)
/k! (from Section 2.1) are the coefficients of the α-Laguerre

polynomials Lαn and the reduction series is in terms of the complementary incomplete gamma
function, �(s, x). The above Laguerre reduction series is thus also obtained by ‘linear combi-
nation’ of the moments of Yh,h.

Proofs of Theorems 6.1 and 6.2. We prove the theorems by reduction to the results of Sec-
tion 5. These are to be applied with the parameters d = cq and a = c, with the functions
ϕc = hc and ψ(x) = q/x, and with both χ and L the identity mapping on the positive reals.

The proof of Theorem 6.1 is then obtained by specializing Theorem 5.2 to N = 2, and
essentially reduces to checking three inequalities. Indeed, the γA-growth measure inequalities
for Theorem 5.2 now amount to 0 < γA(hc)+ 1 + γA(ψ) for A in {c,∞}. The inequality for
A = c is true since hc(c) = 0, and that for A = ∞ holds because the γ∞s cancel. Next, using
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δ∞(ψ) = 0, the inequality 1 < 2δ∞(ψ)+ 1/(cq) of Theorem 5.2 is seen to specialize to that
of Theorem 6.1. With ϕc having support away from 0, the map (wβ/wα)ϕc is in L2

α(0,∞) for
any choice of α > −1 and β. Now specialize the coefficients in Theorem 5.2, recalling that χ
is the identity mapping and that N = 2. The proof of Theorem 6.1 is thus complete.

The proof of Theorem 6.2 is obtained by further specializing Theorem 5.1 to N = 0. Then
any coefficient integral 〈(wβ/wα)ϕc, Lαn〉α can be checked to be equal to

n∑
k=0

αn,k(�(βk+2, c)− c�(βk+1, c))

there, which completes the proof of Theorem 6.2.

7. Moments of the integral of geometric Brownian motion

In the previous two sections we have exemplified how the general theory of Schröder (2006)
is principally able to reduce the study of the Section 5.1 stochastic functionals to that of the
moments of the pertinent processes: the integral of geometric Brownian motion A(ν), for any
real ν, and its reciprocals Ya , for any positive real a. From Section 5.1, for any real h these
processes are given by

Ya,h = a

A
(ν)
h

, where A(ν)h =
∫ h

0
e2(νu+Wu) du,

and for this first step of the reduction we require additional information specific to the processes,
namely that of the explicit asymptotics of the law of A(ν).

As the final step of our two-step approach, in this section we develop the structure of the
integral moments of A(ν). Our results were referred to in Schröder (2005c), where they were
shown to provide most efficient methods for numerical computation. Our approach can thus
be considered constructive, and it seems apt to precede the structure theory with a summary of
the results slanted towards this theme.

7.1. Statement and discussion of main results with a view to computability

In this section we state and put into perspective one of this paper’s main results, our explicit
formulae for the negative moments ofA(ν). Indeed, the moments ofA(ν) have been thoroughly
studied; see, for instance, Dufresne (1989), Yor (1997), and the references therein. They are
stated explicity in the following theorem.

Theorem 7.1. For any positive real h and any nonnegative integer n, we have

E[(A(ν)h )n] = n!
22n

n∑
k=0

ck

(
ν

2

)
e2hk(k+ν),

where

ck(µ) =
∏
��=k

2

(µ+ �)2 − (µ+ k)2
,

the product running over all nonnegative integers � less than or equal to n.
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This is Yor (1992a, Equation (4.d′)) with a direct proof in Yor (1992a, pp. 519f.). Further
comments on its history can be found in Yor (2001, Postscript #3b), p. 54).

The negative moments of A(ν) are of a different nature. Determining their structure and
giving explicitly computable formulae for them are main contributions of the paper. Our
characterization is in two steps, which are explained in Theorems 7.2 and 7.3 below. The first
step reduces the computation of negative moments to that of functions �k , as follows.

Theorem 7.2. For any positive integer n, we have

E[Ynh,h] = exp

(
−ν

2h

2

) n∑
k=1

a∗
n,k

(
2hk�k(h)+

�ν−1∑
�=0

�∗
k(a�, h)

)
,

where �ν is the smallest nonnegative integer � such that a� = 2�+ 1 − |ν − 1| is nonnegative
and �∗

k is given by

�∗
k(a, h) = 1

k − 1
2

A−1/2(h)− h|a|
k − 1

2

G∗
k−1(bah)− 2ha

(−bah)k−1

( 1
2 )k

ebah − 2

|a|G
∗
k(bah)

for any negative real a and any positive real h, on setting ba = a2/2.

To explain the notation here, first recall the Pochhammer symbol (λ)k of any complex λ,
defined by (λ)0 = 1 and (λ)k+1 = (λ− k)(λ)k for any integer k ≥ 0. Then we have

a∗
n,k = (−1)k−1( 1

2 )kh
n−kan,k,

where an,k are reals recursively defined by a1,1 = 1 and, for any integer n ≥ 1, by

an+1,1 = βnan,1, an+1,n+1 = αnan,n, an+1,k = βnan,k + αnan,k−1

for any integer k in {2, . . . , n}, setting αn = −1/n and βn = 2(n− ν)+ ν2/(2n). They have
the combinatorial description

an+1,k+1 =
∑
Jk

αJkβJ c
k

for any nonnegative integers n and k ≤ n. Here the sum is over all k-tuples Jk = (j1, . . . , jk) of
strictly increasingly ordered integers j� in {1, . . . , n}, andJ c

k = (�1, . . . �n−k) is the complement
of Jk defined by {�1, . . . , �n−k, j1, . . . , jk} = {1, . . . , n}. We will use subindexing by a k-tuple
to indicate products as follows: αJk = αj1αj2 · · ·αjk . The empty product is equal to 1.

The functionsAa , for any real a, andG∗
k , for any integer k ≥ 1, are those defined in Section 4;

in particular, recall how the latter functions are given, as weighted complementary incomplete
gamma functions, by G∗

k(x) = (1/
√
π)xkex�( 1

2 − k, x) for any real x > 0.
With an explicit formula for�k in Theorem 7.3, we postpone a discussion of these functions

in favour of a broad outline of the ideas upon which Theorem 7.2 is based. In fact, the line of
reasoning leading to this last result proceeds in two steps as well. As recalled in Section 7.2,
functional recurrence rules have been derived for negative moments in Dufresne (2000). Study-
ing a somewhat more general problem, we solve them in Section 7.3 as a first step, and thus
express any −nth moment of A(ν) as a linear combination of the first n derivatives of the
−1th moment of A(ν) considered as a function in time. These are studied in Sections 7.4
to 7.7 as a second step, and, in combination with the results of the first step, enable us to
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prove Theorem 7.2 in Section 7.8. From a more structural point of view, we thus in fact find
two integral representations for the negative moments of A(ν); an obvious one, described in
Theorem 7.6, and an unexpected one, described in Theorem 7.2. To develop the latter we
proceed by interpreting negative moments in terms of theta functions, reviewed in Section 3.1.
This may qualify as a novel point of view, and the general idea of this ‘modular interpretation’ is
that negative moments ofA(ν) are linear combinations of particular integrals of theta functions,
namely the functions �k for any integer k ≥ 1. More precisely, any of these theta integrals is,
for any positive real h, given by

�k(h) =
∫ ∞

0
ϑ

(
ν

2

∣∣∣∣ w
)
Qk(h,w) dw,

where, from Section 4.1,

Qk(h,w) = (2w)k−1

(2hw + 1)k+1/2 .

However, depending on ν, only a part of the negative moments can in general be identified in
this way, and correcting functions are needed. The particular case where no such correcting
functions are needed is the subject of the first of the two remarks to follow.

Remark 7.1. For |ν−1| ≤ 1, Theorem 7.2 asserts that any negative moment ofA(ν) is obtained
from theta integrals only:

E[(A(ν)h )−n] = exp

(
−ν

2h

2

) n∑
k=1

(−1)k−1
(

3

2

)
k−1
an,k�k(h).

Note that in the zero-drift case, ν = 0, a different representation for the above expectations has
been obtained in Donati-Martin et al. (2000a, Section 5):

E[(A(0)h )−n] = 2n+1

�(n)

∫ ∞

0
e−w2h/2Pn(w)

dw

w
,

where

Pn(w) =
n−1∏
k=0

(k2 + (w/2)2).

The integrals of Theorem 7.6 can be checked to replicate this representation, but it is a theorem
that, for ν = 0, the formula in Theorem 7.2 specializes to it as well. In this sense, the alternative
approach developed in this paper enables us, in particular, to handle the effects of nonzero drift
terms: increasing ν in absolute value will introduce the correction terms �∗

k in Theorem 7.2.

Remark 7.2. The occurrence of theta functions is well known in connection with studying
Brownian motion on a finite interval; see, for instance, Karatzas and Shreve (1991, Sec-
tion 2.8C). As a modification of Exercise 8.9 there, consider, for any positive real a, the
function ϕa , on the reals, that satisfies ϕa(na) = a for any integer n and linearly connects 0
with this value on the open interval (na, (n + 1)a), in the sense that ϕa(x) = x − na there.
The law of the doubly reflected Brownian motion ϕa(W) at any time t can then be checked to
be given in terms of theta functions as follows, for any real x:

law(ϕa(W))(t, x) = 1

a
1[0,a](x)ϑ

(
x

a

∣∣∣∣ 2t

a2

)
.
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From the heat equation perspective of Section 3.1, these are representations in terms of the
state space variable x, whereas in the present context it is time which becomes a variable in the
theta integrals. Moreover, as Remark 7.1 clearly shows, Theorem 7.2 affords a representation
of a quantity involving integration over a finite time interval by finitely many integrals over the
whole (infinite) time interval from time 0 to time ∞.

Taking up the computational aspects of Theorem 7.2, the �∗
k are given in terms of standard

functions. Thus, the question that remains is that of how to compute the theta integrals�k . This
is the second main step of our analysis of the negative moments of A(ν), and we here discuss
three of our series in this context. The first of these is in terms of elementary functions and the
error integral. It is also uniformly applicable and can be optimized with respect to convergence
speed as follows.

Theorem 7.3. For any B in the extended nonnegative reals, [0,∞], we have the representa-
tion �n = FB + IB , where the functions FB and IB are given by the absolutely convergent
series

FB(h) =
∑
m∈Z

C|2m+ν|,n(B, h),

IB(h) =
∞∑
m=0

εm cos(πmν)Dπm,n(B, h),

for any positive real h, where ε0 = 1 and εm = 2 for any positive integer m.

Here the functions Ca,n and Da,n are those defined in Section 4.1 and shown in Section 4.2
to be finite linear combinations of weighted complementary incomplete gamma functions.

The structural properties of theta functions are essential for this result, whose proof is given
in Section 7.10. From a computational point of view, introducing the parameter B enables us
to optimize the convergence speed of these series. In fact, by defining error terms Rk,M(B, h)
via

FB(h) =
∑

|m|≤M
C|2m+ν|,n(B, h)+ R1,M(B, h),

IB(h) =
M∑
m=0

εm cos(πmν)Dπm,n(B, h)+ R2,M(B, h),

for any integer M ≥ 1, from Schröder (2005c, Section 6.10) we have the following result.

Proposition 7.1. For any positive real B,

0 < R1,M(B, h) ≤ 2−1/2

hn+1/2

(
e−ν2

M/B

νM
√
π

− 1√
B

Erfc

(
νM√
B

))
,

if M is such that νM = M − |ν/2| �= 0, and

|R2,M(B, h)| ≤ 1

hn−1

2√
π

(
e−(πM)2B

πM
√
π

− √
BErfc(πM

√
B)

)
.

These majorizations show that as M tends to ∞ the error terms R1,M(B, h) tend to 0 with
at least the squared exponential rate (M − |ν/2|)2/B, and that the error terms R2,M(B, h) tend
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to 0 with at least the squared exponential rate (πM)2B. In the extreme cases F∞ and I0, in
contrast, we have polynomial-order convergence to 0 only. As we will show in Section 7.10,
the two series thus obtained are expressible in terms of Kummer’s confluent hypergeometric
function � (see Lebedev (1972, Chapter 9)), as follows.

Theorem 7.4. We have the absolutely convergent series

hn�n(h) = 1√
2πh−1

∑
m∈Z

�

(
1,

3

2
− n; 2h

(
m+ ν

2

)2)
,

with good convergence behaviour for small values of n, and

hn�n(h) = �(n)
1

2
�

(
n,

1

2
; 0

)
+ �(n)

∞∑
m=1

cos(πmν)�

(
n,

1

2
; (πm)

2

2h

)
,

with good convergence behaviour for large values of n.

While these representations are very pleasing from an aesthetical point of view, the com-
plexity of the confluent hypergeometric functions may however render the last two series not
best suited for actual computation. Moreover, we must be very careful in choosing which of
the two series is appropriate for the problem. Series similar to the first one of Theorem 7.4
have been derived in Donati-Martin et al. (2002, Section 4) in the zero-drift case, ν = 0, in a
different context and for apparently different purposes.

7.2. Preliminaries and recollections about negative moments

In this section we collect preliminaries about the negative moments m+
n given, for any

positive integer n, by

m+
n (h) = exp

(
ν2h

2

)
E[(A(ν)h )−n], h ∈ (0,∞).

They have their origins in the idea of studying the structure ofA(ν) in terms of beta and gamma
variables. The generalized moments, the expectations EQ[(A(ν)(h))r ] with r any nonnegative
real, have received much attention. Yor found their Laplace transforms with respect to time h
to be quotients of gamma values; see Yor (1992b, Equation (6.3), p. 69). In Dufresne (2000,
Section 4), this result ofYor was extended to negative moments. The precise result of Dufresne,
the proof of which is given below, is as follows.

Lemma 7.1. For any real ν, we have the integral representation

m+
1 (h) = 2√

2πh3

∫ ∞

0
ye−y2/(2h) cosh((ν − 1)y)

sinh(y)
dy, h ∈ (0,∞).

The higher negative moments of A(ν) are determined recursively from this. Considering
them as functions in time h > 0, the precise result of Dufresne is as follows.

Lemma 7.2. For any positive integern, we havem+
n+1 = βnm

+
n +αn(m+

n )
′, settingαn = −1/n

and βn = 2(n− ν)+ ν2/(2n).

This is proved using the Itô lemma and applying time reversal. Different angles on these
results of Dufresne have been developed in Donati-Martin et al. (2000a), (2000b), (2002).
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Proof of Lemma 7.1. We give a proof of Dufresne’s formula for m+
1 of Lemma 7.1 which

is based on ideas of Donati-Martin et al. (2002) and uses the explicit form of the law of A(ν)

derived inYor (1992a, Section 6). Indeed, we apply Girsanov’s theorem such thatBh = νh+Wh

becomes a standard Brownian motion, reduce to the drift-0 processA = A(0), and then condition
on the Brownian motion to obtain

m+
1 (h) = E

[
eνBh

1

Ah

]
=

∫ ∞

−∞
e−x2/(2h)

√
2πh

eνx E

[
1

Ah

∣∣∣∣ Bh = x

]
dx.

By breaking the integral at 0 and expressing the integration over the negative real line from −∞
to 0 as an integral over the positive real line from 0 to ∞, the proof of Dufresne’s formula for
m+

1 is seen to reduce to showing that

E

[
1

Ah

∣∣∣∣ Bh = x

]
= x

h

e−x

sinh(x)
= x

h
(coth(x)− 1)

for any positive real x. Following the ideas leading to Donati-Martin et al. (2002, Proposi-
tion 4.2), for any positive real x we compute, as a first step, the expectations

E(ξ) = e−x2/(2h)

√
2πh

E

[
exp

(
− ξ

Ah

) ∣∣∣∣ Bh = x

]
,

for any nonnegative real ξ . This computation is based on the integral representation of the
conditional law P(Ah ∈ du | Bh = x) derived in Yor (1992a). We use this representation in
the form of Schröder (2003, Lemma 4.1, p. 169), where it was expressed as a multiple of the
Laplace inverse of an I -Bessel function as follows:

P(Ah ∈ du | Bh = x) = 1

u
exp

(
−1 + e2x

2u

)
L−1

(
I√2z

(
ex

u

))
(h) du.

Changing variable according to wu = ex thus gives, on applying Fubini’s theorem,

E(ξ) = L−1
(∫ ∞

0
e−awI√2z(w)

dw

w

)
(h)

for Re(z)  0, where

a ≡ a(x, ξ) = ξ

ex
+ cosh(x).

The integral to be Laplace inverted is a particular case of the Lipschitz–Hankel integrals
discussed in Watson (1944, 13·2), and from Watson (1944, Equation (1), p. 387) it is expressible
in terms of Legendre functions. A direct argument can be given using elementary properties
of the Gauss hypergeometric function 2F1. In fact, expanding the Bessel function factor of the
integrand, a term-by-term integration yields

∫ ∞

0
e−awIµ(w)

dw

w
= 1

µ

1

(2a)µ
2F1

(
µ

2
,
µ+ 1

2
;µ+ 1; 1

a2

)
= 1

µ
exp(−µarccosh(a))

for any real a ≥ 1 and any complex µ with a sufficiently large, positive real part; for the last
equality here use, in particular, Lebedev (1972, Equation (9.8.3)). Hence, we obtain

E(ξ)=L−1
(

1√
2z

exp(−√
2z arccosh(a(x, ξ)))

)
(h) = 1√

2πh
exp

(
−arccosh2(a(x, ξ))

2h

)
,
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on using a standard Laplace transform from Doetsch (1971, Beispiel 8, pp. 50f.) for the
last equality. To finally obtain the expression for the negative conditional moment of Ah,
differentiate this equality with respect to ξ and evaluate the result at ξ = 0. The proof of
Dufresne’s integral representation for m+

1 is then complete.

7.3. Characterizing solutions to Dufresne-type recurrences

In this section we characterize functional recurrences of the same form as those of Dufresne
recalled in Lemma 7.2. The precise result is as follows.

Proposition 7.2. Let (Fn)n∈N be a sequence of differentiable functions on an open subset of
the real line such that, for any integer n ≥ 1, there are reals an and bn for which

Fn+1 = anF
′
n + bnFn.

Any such function is differentiable infinitely often and has the representation

Fn =
n∑
k=1

An,kF
(k−1)
1

in terms of F1 and its derivatives, F (�)1 . Here the realsAn,k are recursively defined byA1,1 = 1,
An+1,1 = bnAn,1, An+1,n+1 = anAn,n, and An+1,k = bnAn,k + anAn,k−1 for any integer k in
{2, . . . , n}.
Addendum 7.1. We have the combinatorial description

An+1,k+1 =
∑
Jk

aJkbJ c
k

for any nonnegative integers n and k ≤ n. Here the sum ranges over all k-tuples Jk =
(j1, . . . , jk) of strictly increasingly ordered integers j� in {1, . . . , n}, and J c

k = (�1, . . . , �n−k)
is the complement of Jk in {1, . . . , n}.

Proof of Proposition 7.2. The proof of Proposition 7.2 is by induction on n. The case n = 1
holds by construction of F1, so we assume the validity of the statement for any fixed, positive
integer n. Using the recurrence for Fn+1, we thus obtain

Fn+1 = bnAn,1F
(0)
1 +

n∑
k=2

(bnAn,k + anAn,k−1)F
(k−1)
1 + anAn,nF

(n)
1 ,

on collecting terms. Using the recurrence for An+1,k stated in the proposition then completes
the induction step and, thus, completes the proof.

Proof of Addendum 7.1. The description of the An+1,k+1 in Addendum 7.1 is proved by
induction. To make explicit some pathological cases, for n = 0 we have k = 0, so the
sum is over a single 0-tuple which, along with its complement, is empty. Hence, we have
A1,1 = a∅b∅ = 1, since products over empty sets are equal to 1 by convention. Proceeding
inductively, on applying the recurrences for An+1,k of Proposition 7.2 we have An+1,1 =
bnAn,1 = bna∅b{1,...,n−1} = a∅b{1,...,n} and, similarly, An+1,n+1 = a{1,...,n}b∅. If k is in
{2, . . . , n}, then

An+1,k+1 =
∑
Jk

aJkbJ c
k∪{n} +

∑
Jk−1∪{n}

aJk−1∪{n}bJ c
k−1

completing the induction step and, thus, completing the proof of Addendum 7.1.
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7.4. The moment decomposition theorem

In this section we collect consequences of the results of Section 7.3, thus furnishing a
first step in establishing Theorem 7.2. First we show how the weighted negative moments
m+
n (h) = eν

2h/2 E[(A(ν)(h))−n] of Section 7.2 are determined by the −1th moment, m+
1 , and

its derivatives. This is made precise in our following moment decomposition theorem.

Theorem 7.5. In the setting of Theorem 7.2, any negative moment functionm+
n is smooth on the

positive real line and, in terms ofm+
1 and its higher derivatives, (m+

1 )
(k), has the representation

m+
n =

n∑
k=1

an,k(m
+
1 )
(k−1).

In fact, the Proposition 7.2 coefficients An,k specialize to the Theorem 7.2 coefficients an,k
when the Proposition 7.2 parameters an and bn are specialized to the Theorem 7.2 parameters
αn and βn, respectively. Given this observation, Theorem 7.5 follows immediately from
Proposition 7.2, whose addendum now describes the combinatorial structure of the an,k .

Thus, a first explicit integral representation for m+
n can be obtained by differentiation of

Dufresne’s integral for m+
1 , recalled in Lemma 7.1, as follows.

Theorem 7.6. For any positive integer n and any positive real h, we have

(m+
1 )
(n)(h) = 2√

2π

∑
|I2|=n

n2−1∑
k=0

cI2,k
M2(n2−k)+1(h)

h3/2+n1+2n2−k .

Here the first sum is over all pairs I2 = (n1, n2) of nonnegative integers with sum |I2| = n1+n2
equal to n.

To explain the additional concepts, the cI2,k are constants given by

cI2,k = (−1)n2

(
n

I2

)(
3

2

)
n2

(
n2

k

)
(n2 − k)!

(n2 − (k + 1))!

and Ma , for any real a ≥ 1, is the function on the positive real line given by

Ma(h) =
∫ ∞

0
ya exp

(
− y

2

2h

)
cosh((ν − 1)y)

sinh(y)
dy.

A further study of the negative momentsm+
n of the integral of geometric Brownian motionA(ν)

which also yields workable numerics for them requires theta functions.

7.5. Theta representation lemma

This section is the second preliminary step in establishing Theorem 7.2, and identifies the
reason for the occurrence of theta functions. We show how the hyperbolic quotient factor of
the integrand of Dufresne’s integral for m+

1 of Lemma 7.1 is the Laplace transform of a theta
function if we admit finitely many correction terms. Adopting the terminology and results about
theta functions presented in Section 3.1, this is made precise in our extension of a classical result
to the following theta representation lemma.
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Lemma 7.3. For any real β, we have, on choosing the principal branch of the logarithm,

cosh((2β − 1)
√
z)√

z sinh(
√
z)

=
∫ ∞

0
e−zwϑ(β|w) dw +

�ν−1∑
�=0

(Xa� − L(χa�))(z)

for any complex number z with positive real part, where �ν is the smallest nonnegative integer
� such that a� = 2�+ 1 − |2β − 1| is nonnegative.

The functions here are, for any complex a, given by

χa(t) = 1√
πt

exp

(
−a

2

4t

)
and Xb(z) = 1√

z
e−b√z

for any positive real t and, respectively, any z in the complex plane with the nonpositive real
line deleted. If Re(a) and Re(a2) are nonnegative, they are related by the Laplace transform
identity, L(χa)(z) = ∫ ∞

0 e−ztχa(t) dt = Xa(z) for any complex z with Re(z) > 0; see, for
example, Doetsch (1971, Beispiel 8, pp. 50f.).

Proof of Lemma 7.3. Notice that sinh(z1/2) = ez
1/2
(1 − e−2z1/2

) in the denominator of the
left-hand side of the identity of Lemma 7.3. With the square root mapping onto the right-hand
half-plane, we thus develop the reciprocal of the second factor of this product into a geometric
series, to obtain

L(z) := cosh(α
√
z)√

z sinh(
√
z)

=
∞∑
�=0

X2�+1−α(z)+
∞∑
�=0

X2�+1+α(z),

setting α = |2β − 1|. As recalled above, the individual summands here are Laplace transforms
of the corresponding functions χa if and only if 2�+ 1 − α is nonnegative. By construction of
�ν , we thus have

L =
∞∑
�=�ν

L(χ2�+1−α)+
∞∑
�=0

L(χ2�+1+α)+
�ν−1∑
�=0

Xa�.

Since this series is absolutely convergent, interchanging the order of the Laplace transform
integrals and the summations is justified, and the result is

L = L

( ∞∑
�=�ν

χ2�+1−α +
∞∑
�=0

χ2�+1+α
)

+
�ν−1∑
�=0

Xa�.

In the first sum in brackets, successively shift the summation index by one, index the resulting
sum by negative integers, and use the symmetry χ−a = χa , to obtain the tautology

L = L

(
ϑ

(
1

2
(α + 1)

∣∣∣∣ ·
))

+
�ν−1∑
�=0

{Xa� − L(χa�)}.

Since we have ϑ((α+ 1)/2|w) = ϑ(β|w), which for 2β ≤ 1 follows from the Jacobi identity,
the proof of Lemma 7.3 is thus complete.
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7.6. Theta decomposition theorem

This section is the third preliminary step in proving Theorem 7.2 and focuses on the
computation of the higher derivatives ofm+

1 , to which the computation of the weighted moments
m+
n has been reduced in the moment decomposition theorem of Section 7.4. Our discussion

proceeds in three stages, from a structural point of view to a more computational one, with
proofs of the results deferred to the end of the section. We use the functions Aa , Ba , Ca,m,
and χa from Section 4.1. As a first step, the structure of the derivatives is described. This we
do by identifying the exact contribution of the theta integrals �n from Section 7.1, which are
given by

�n(h) =
∫ ∞

0
ϑ

(
ν

2

∣∣∣∣ w
)
Qn(h,w) dw, where Qn(h,w) = (2w)n−1

(2hw + 1)n+1/2 ,

for any integer n ≥ 1. The precise result to be proved, our theta decomposition theorem, takes
the following form.

Theorem 7.7. For any nonnegative integer k, the kth derivative, (m+
1 )
(k), of m+

1 has the
representation

(m+
1 )
(k) = �

(k)
1 +�(k),

with a correction term, �, given, for any real h > 0, by

�(h) =
�ν−1∑
�=0

2

h
E[Whe−a�Wh ] − Ca�,1(h),

where �ν is the smallest nonnegative integer � such that a� = 2�+ 1 − |ν − 1| is nonnegative.

The constituents of the correction terms are identified as a second step. This identification
runs in two directions, giving the nonprobabilistically defined functions of Section 4.1 a
probabilistic interpretation, and vice versa. Our two results here are as follows.

Proposition 7.3. We have (2/h)E[Whe−aWh ] = (A1/2 − Ba)(h) for any real h > 0.

Proposition 7.4. For any real a �= 0 and any integer n ≥ 1, we have

Ca,n(B, h) = 4

|a| E

[
1
(1/

√
B,∞)

(W2/a2)
1

W 2
2/a2

Qn

(
h,

1

W 2
2/a2

)]
,

where B is any nonnegative (possibly infinite) real.

The last result can be checked by direct computation. Taken together, the last three results
enable the following description of the derivatives of the Theorem 7.7 correction term �.

Theorem 7.8. For any nonnegative integer k, the kth derivative, �(k), of the correction term
function � is given as the sum of kth derivatives by

�(k) =
�ν−1∑
�=0

(A1/2)
(k) − (Ba�)

(k) − (Ca�,1)
(k),

where �ν is the smallest nonnegative integer � such that a� = 2�+ 1 − |ν − 1| is nonnegative.

https://doi.org/10.1017/S0001867800001427 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001427


On ladder height densities and Laguerre series. II. 1019

The point of these results is that they reduce the computation of derivatives of m+
1 to the

computation of those of four explicitly given functions, which issue is to be addressed in the
next sections. We now turn to proving this section’s results, beginning with a preliminary
lemma.

Lemma 7.4. All theta integrals �n are well defined.

Proof. Let fn = ϑ(ν/2|·)Qn be the integrand of any�n. Majorize the theta function factor
of fn by the appropriate majorizing function of Proposition 3.2. Then multiply the latter byQn

to obtain the majorizing function, gn, of fn. Integrability of gn on the positive real line is clear
for n ≥ 2 and is seen for n = 1 on partial integration. The proof of Lemma 7.4 is thus complete.

Proofs of Theorem 7.7 and Proposition 7.3. The proof of Theorem 7.7 reduces to the case
k = 0, which we show while proving Proposition 7.3. First apply Lemma 7.3 with β = ν/2
and z = y2 to the Lemma 7.1 integral for m+

1 , obtaining the representation

m+
1 (h) = M1(h)+

�ν−1∑
�=0

(M2,� −M3,�)(h),

a sum of double integrals which we now define and identify. First, we have

M1(h) =
∫ ∞

0

2y2

√
2πh3

exp

(
− y

2

2h

) ∫ ∞

0
e−y2wϑ

(
ν

2

∣∣∣∣ w
)

dw dy

=
∫ ∞

0
ϑ

(
ν

2

∣∣∣∣ w
)

dw

(2hw + 1)3/2
= �1(h).

In the first double integral apply Tonelli’s theorem and interchange the order of integration,
noting that the integrands here are positive functions. The resulting inner integral is computed
using

∫
(0,∞)

y2e−cy2
dy = (π1/2/4)c−3/2 for any c = w+1/(2h), whence the second equality

is obtained. This last integral is equal to �1(h) by definition, so all the integrals are finite
a posteriori, by Lemma 7.4. Analogously, the identity

M3,�(h) =
∫ ∞

0

2y2

√
2πh3

exp

(
− y

2

2h

) ∫ ∞

0
e−y2wχa�(w) dw dy = Ca�,1(h)

follows by exchanging the theta function in the above for χa .
For M2,� we have two identities:

M2,�(h) = 2

h

∫ ∞

0

y2

√
2πh

exp

(
− y

2

2h

)
Xa�(y

2) dy = 2

h
E[Whe−a�Wh ],

M2,�(h) = 2
√

2h√
2πh3

exp

(
a2
�h

2

) ∫ ∞

(a�/2)
√

2h
(
√

2hx − a�h)e
−x2

dx = (A1/2 − Ba�)(h).

The first of these is a tautology, recalling that Xa(y2) = y−1e−ay from Section 7.5. To obtain
the second, first change variable according to x = (2h)−1/2(y + a�h) in the defining integral
and then integrate the result. This completes the proofs of Theorem 7.7 and Proposition 7.3.
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7.7. Derivatives

Working in the setting of Section 7.6, in this section we relate the derivatives of the func-
tions �n, Aa , Ba , and Ca,m in Theorems 7.7 and 7.8 to these functions themselves. Recalling
the Pochhammer symbols (λ)k of any complex λ, from Section 4, the precise results here are
as follows.

Lemma 7.5. We have (Aa)(k) = (−1)k(a)kAa+k .

Lemma 7.6. We have (Ba)(k) = bkBa − b
∑k−1
�=0 b

k−1−�(A1/2)
(k), setting b = a2/2.

While the result of Lemma 7.5 is clear, the differentiation rule of Lemma 7.6 follows
inductively from the differentiation ruleB ′

a = bBa−bA1/2. Combined with the representation
of Proposition 4.1 for the functionsGn in terms of the weighted complementary error function,
WErfc, Lemma 7.6 implies the following formula for the kth derivatives of Ba , for negative
real a.

Lemma 7.7. If a < 0 then B(k)a (h) = (−1)k( 1
2 )k|a|bkGk(bh)+ 2abkebh, setting b = a2/2.

Indeed, returning to definitions in the formula of Lemma 7.6 for negative a, the proof of
Lemma 7.7 is reduced to showing that

abkWErfc(−√
bh) = 2abkebh + |a|bkWErfc(

√
bh),

which follows from Erfc(−z) = 2 − Erfc(z).
The derivatives of the remaining two functions are respectively given by the following two

results.

Lemma 7.8. We have Ca,1(B, ·)(k) = (−1)k( 3
2 )kCa,k+1(B, ·).

Lemma 7.9. We have �(k)1 = (−1)k( 3
2 )k�k+1.

These two differentiation rules follow inductively from ∂Qn/∂h = −(n + 1
2 )Qn+1 if

differentiation of�1 andCa,1(B, ·) to any order is effected by differentiating under the defining
integral signs. To justify this way of taking derivatives it is sufficient to show that the integrands
of any �n(h) and Ca,n(B, h) lie below integrable functions independent of h if h ranges over
any bounded subinterval [b, c] of the positive reals. In fact, the integrands of �n(b) and
Ca,n(B, b) can be checked to do the job here. Integrability is clear for the latter, while it has
been established for the former in proving Lemma 7.4. This proves Lemma 7.8 and Lemma 7.9.

7.8. Proof of Theorem 7.2

Summarizing the development up to now, in this section we give a proof of the Theorem 7.2
formula for the nth moment of Yh,h = h/A(ν)(h), for any positive integer n. As a first step, we
apply Theorem 7.5 to obtain the representation

exp

(
ν2h

2

)
E[Ynh,h] = hnm+

n (h) =
n∑
k=1

an,kh
n(m+

1 )
(k−1)(h),

whose first identity is a tautology from Section 7.2. As a second step, we account for the
derivatives of m+

1 by using the Theorem 7.7 theta integral representation, to obtain

exp

(
ν2h

2

)
E[Ynh,h] =

n∑
k=1

an,kh
n(�

(k−1)
1 +�(k−1))(h).
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Using Lemma 7.9, we have �(k−1)
1 = (−1)k−1( 3

2 )k−1�k . Here, using ( 3
2 )k−1 = 2( 1

2 )k gives

exp

(
ν2h

2

)
E[Ynh,h] =

n∑
k=1

a∗
n,k(2h

k�k(h)+ (ck�
(k−1))(h)).

Now introduce ck(h) = (−1)k−1hk/( 1
2 )k as temporary notation, and note that

a∗
n,k = hnan,k/ck(h).

Applying Theorem 7.8, the kth weighted correction term derivative can be written as

(ck�
(k−1))(h) =

�ν−1∑
�−0

�∗
k(a�, h),

where
�∗
k(a, h) = ck(h)((A1/2)

(k−1) − (Ba)
(k−1) − (Ca,1)

(k−1))(h).

Recalling that by construction the a� are negative reals if � < �ν , the problem thus reduces
to computing the derivative summands of any of these last functions when a < 0. Using
Lemma 7.5, we have

ck(h)(A1/2)
(k−1)(h) = 1

k − 1
2

A−1/2(h).

Applying Lemma 7.7, since a is negative, yields

ck(h)(Ba)
(k−1)(h) = 2ah

(−hb)k−1

( 1
2 )k

ehb + |a|h
k − 1

2

(hb)k−1Gk−1(hb),

setting b = ba = a2/2. To compute the last derivative, successively apply Lemma 7.8 and
Proposition 4.2 with a < 0 and B = ∞, to obtain

ck(h)(Ca,1)
(k−1)(h) = −2hkCa,k(h) = −(2/|a|)(hb)kGk(hb).

Rewriting the identities in terms of G∗
m(x) = xmGm(x) completes the proof of Theorem 7.2.

7.9. Basic setting for computing theta integrals

Now we focus on proving the series for theta integrals�n presented in Theorems 7.3 and 7.4.
As a first step, in this section we define a basic framework for doing so. For any real h > 0 and
for any B in [0,∞], we break the defining integrals of �n at B, to obtain the decomposition

�n(h) = FB(h)+ IB(h),

whose finite part, FB(h), and whose improper part, IB(h), are respectively given by

FB(h) =
∫ B

0
ϑ

(
ν

2

∣∣∣∣ w
)
Qn(h,w) dw and IB(h) =

∫ ∞

B

ϑ

(
ν

2

∣∣∣∣ w
)
Qn(h,w) dw,

where Qn(h,w) = (2w)n−1/(2wh + 1)n+1/2 from Section 4.1. Recalling from Section 3.1
the two series representations for ϑ(β|w) and their different convergence characteristics, the
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idea is to choose B to be smaller than 1. Since the defining series for ϑ(β|w) has excellent
convergence properties for small values of w, we use it in the finite part, FB , to obtain

FB(h) =
∫ B

0

∑
m∈Z

χ2γm(w)Qn(h,w) dw,

where χa(w) = (πw)−1/2 exp(−(a/2)2/w) from Section 3.1 and we define γm = ν/2 + m.
Using the functional equation of the theta function, the resulting Jacobi transform, on the other
hand, has excellent convergence properties for large values of w. We thus use this series to
represent the theta function factor in the improper part, IB , to obtain

IB(h) =
∫ ∞

B

∞∑
m=0

εm cos(πmν)e−δ2
mwQn(h,w) dw,

where δm = πm for all nonnegative integers m and the εm are as in Theorem 7.3.

7.10. Proof of the series for theta integrals

In this section we prove Theorems 7.3 and 7.4 together. The first of these summarizes the
development up to now. From Section 7.9 we have the representation �n = FB + IB for
any theta integral as the sum of its finite-part function, FB , and its improper-part function, IB .
Assume for a moment that term-by-term integration of these series is justified. Recalling the
defining integrals of the functions Ca,m and Da,m from Section 4.1, we then have, almost
tautologically, the series representations

FB(h) =
∑
m∈Z

C2γm,n(B, h),

IB(h) =
∞∑
m=0

εm cos(πmν)Dδm,n(B, h),

with 2γm = ν + 2m and δm = πm and with ε0 = 1 and εm = 2 for m ≥ 1, as required for
Theorem 7.3. It thus remains to prove two things: to justify term-by-term integration and to
show absolute convergence of the resulting series. As an application of Lebesgue dominated
convergence, to do so it is sufficient to construct integrable majorizing functions for the absolute
values of the integrands of FB(h) and IB(h). Such majorizing functions were constructed in
proving Lemma 7.4, so the proof of Theorem 7.3 is complete.

To prove Theorem 7.4, notice that the Section 7.9 decomposition of�n implies that�n = F∞
and �n = I0. Using Theorem 7.3, the proof of Theorem 7.4 thus reduces to showing that√

2πh−1hnCa,n(∞, h) = �(1, 3
2 − n; bah) and 2hnDa,n(0, h) = �(n)�(n, 1

2 ; ba/h)
for any real h > 0 and a and any integer n ≥ 1, setting ba = a2/2. This follows from reduction
to the classical integral representation �(a)�(a, c; z) = ∫ ∞

0 e−zxxa−1(1 + x)c−a−1 dx, valid
if a and z both have positive real parts; see Lebedev (1972, Equation (9.11.6)). We exemplify
this by establishing the first identity in the preceding display. To do so, in the defining integral
of Ca,n(∞, h) in Section 4.1, change variable according to w = 1/(2hx) and then extract the
reciprocal of (1/x)n+1/2 from the resulting denominator, to obtain

Ca,n(∞, h) = 1√
2π

h3/2−1

hn

∫ ∞

0
exp

(
−2h

(
a

2

)2

x

)
(x + 1)−(n+1/2) dx.
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On comparison, the integral factor here is equal to �(a, c; z) with a = 1, c = 3/2 − n, and
z = bah, as desired. The proof of Theorem 7.4 is thus also complete.

8. Computational examples

In this section we demonstrate our results by applying our ladder height Laguerre reduction
series in the Asian option valuation framework developed in Section 6. In the setting of
Section 6.1, we address the valuation of Asian options on a non-dividend-paying stock that have
been issued today at time t0 = 0 at the money. Assuming an interest rate of � = r = 0.09,
the two dimensionless magnitudes for normalized valuation, ν and h, depend on the time to
maturity, T , and the volatility, σ .

In all computations we have used the PARI/GP computer algebra system (version 2.1.0) of
C. Batut, K.Belabas, D.Bernardi, H.Cohen, and M.Olivier (see http://pari.math.u-bordeaux.fr/)
on an HP Visualize 200 Workstation.

8.1. Principal remarks on normalized valuation

The point of working with normalized pricesC(ν) is that the computation of the value,Ct , of
any Asian option at time t can be reduced to this dimensionless function of three dimensionless
variables by way of the Section 6.1 factorization

Ct = St normσ,tC
(ν)(h), where normσ,t = e−r(T−t)

(σ/2)2(T − t0)
.

The cost of this simplification, however, is that normalized prices have to be calculated to greater
precision for this reduction to be useful; see Schröder (2005c, Section 7.2) for more details.
Our results now allow the computation of normalized prices to, in principle, any precision, and
thus enable a benchmark valuation of Asian options in the mathematically strict sense. We
demonstrate this point of view in the next three sections.

8.2. Computing theta integrals and negative moments

In this section we illustrate the theta integrals and negative moments which arise in valuing
Asian options, by reference to results of Schröder (2005c, Section 9.1) in situations with h =
0.0225 and ν = 1, values corresponding to σ = 30% and T = 1 yr.

Inspection of the Section 7.1 formulae for theta integrals suggests that they grow poly-
nomially in the reciprocal of h. Thus, we focus on the weighted theta integrals hn�n(h),
recorded in Table 1. They were computed using the Theorem 7.3 series with B = 0.3, a value
obtained using the estimates of Proposition 7.1. We have checked our results using the series
of Theorem 7.4. We look at the numerical properties using the partial sum decomposition of
hn�n(h) for Proposition 7.1 that defines the error terms ρk,M = hnRk,M(B, h). In Table 1

Table 1: Growth of the weighted theta integrals hn�n(h).

n M1,30 M2,30 Mest.
1,30 Mest.

2,30 hn�n(h)

1 4 4 5 4 0.996 279 1864
5 4 4 5 4 0.406 349 2063

11 2 2 5 4 0.270 260 1836
15 1 1 5 4 0.230 737 2767
19 0 1 5 4 0.204 656 2496
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Table 2: Growth of the weighted negative moments hnmn(h).

n hnmn(h)

1 0.985 133 8557
3 1.044 992 9081
5 1.243 771 6541
7 1.654 454 7393
9 2.450 261 7752

11 4.025 741 5110
13 7.312 412 1451
15 14.636 339 9787
17 32.181 337 2115
19 77.496 506 9820

Table 3: Break-off values nk for replicating k decimal digits of C(ν), with λ = 0.65.

σ (%) (ν, h) C(ν) α n5 n10 D150

20 (3.5, 0.01) 0.000 741 559 987 883 45 6 14 37
30 (1, 0.0225) 0.002 173 545 046 250 15 6 15 28
40 (0.125, 0.04) 0.004 781 003 283 417 3 9 23 25
50 (–0.28, 0.0625) 0.008 909 420 452 132 0 10 23 20

we respectively denote by M1,30 and M2,30 the first indices M for which we observe the first
30 decimal digits to be correct in the partial sums for hnFB(h) and hnIB(h). They decrease
with increasing n. The Mest.

k,30, k = 1, 2, on the other hand, are the lowest numbers of terms
necessary to achieve this ‘30D’ precision in the series predicted using the Proposition 7.1
estimates for the error terms ρk,M . They are constant: the estimates become independent of n
on multiplication by hn. Using a crude implementation, computing the first 20 theta integrals
for Table 1 required 2.53 seconds using 50D computing precison, 14.89 seconds using 100D
computing precison, and 133.63 seconds using 200D computing precison. This seems in part
due to PARI/GP’s inability to evaluate the incomplete gamma functions particularly rapidly.
However, precomputing the values ofGk should speed up computation, in particular when n is
large and when higher computing precisions is used.

Using these weighted theta integrals, weighted negative moments of A(ν) have been com-
puted using Theorem 7.2, and recorded in Table 2. Their use in the series of Section 6 is
illustrated in the next two sections.

8.3. Computing with the Theorem 6.2 reduction series

In this section we illustrate the Laguerre reduction series of Theorem 6.2. Benchmark values
for the normalized pricesC(ν)(h) have been computed in Schröder (2002, ChapterV, Section 13)
from a Hartman–Watson approach in the sense of Schröder (2003); see also Schröder (2005a,
Section 8). To replicate these results, let c = λ/q with λ = 0.65, and keep variable the Laguerre
parameters α that determine with which of the kinds of Section 2.1 Laguerre polynomials we
work. Then determine the values nk at which to break off the summation of the Theorem 6.2
Laguerre reduction series in order to replicate the first k decimal digits of ourC(ν)-benchmarks.
Our findings for these break-off values are recorded for four values of the volatility σ in columns
five and six of Table 3.
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Table 4: Estimated break-off values (nest.
5 , nest.

10 ) for correctness of k decimal digits for σ = 30%.

λ
α

0.6 0.65 0.7

0 (19, 27) (24, 35) (31, 45)
5 (14, 25) (18, 29) (24, 37)

10 (9, 25) (13, 23) (17, 30)
15 (6, 24) (9, 20) (12, 24)

These results show that only a very limited number of series terms, in fact not more than 23
for the volatilities considered, are needed to obtain accuracy to at least 10 decimal places. In the
last column of Table 3 we have recorded the number of stable decimal digits, D150, observed
on continuing the summation up to 150 terms. The results are satisfying in two particular
respects. First, because of the small number of series terms and negative moments needed, using
Laguerre reduction series gives a rapid way of computing normalized Asian option values to
higher accuracies. Second, difficulties have been observed in computing them when volatilities
or times to maturity are small in apparently all other approaches to valuing Asian options known
today, including those of Linetsky (2004) and Schröder (2002). These difficulties are absent
from our computations. As shown in the fourth column of Table 3, it is instrumental in this to
vary the structural parameter α and, so, vary the Laguerre polynomial worked with.

For computation, the estimates for the approximation errors, RN , of Theorem 6.2 are vital.
This is because the parameters α and λ strongly influence the convergence of the Laguerre
reduction series. Table 4 illustrates how for σ = 30% we thus arrived at the choices α = 15
and λ = 0.65 in Table 3.

Finally, the parameter β in the Laguerre reduction series of Theorem 6.2 affects the type
of moments required. Choosing L in the parametrization α − β − 1 = −L as a positive
integer thus specifies the number of moments ofA(ν)/h in the series. From Theorem 7.1, these
moments are available explicitly, so we try to replace the negative moments of A(ν) by them.
In our examples, it turns out that for accuracy to five decimal places we can thus dispense
with moments of Yh,h, although they are needed for higher accuracies. Principally, we have
observed a value for L that is maximal with respect to requiring the minimum number of such
negative moments in the computation.

All these results are comparable to the better ones of Schröder (2005c), in which alternative
Laguerre reduction approaches were developed.

8.4. Computing with the Theorem 6.1 reduction series

Working in the setting of Sections 8.2 and 8.3, in this section we address computation with
the ladder height Laguerre reduction series of Theorem 6.1. With no error analysis available,
we resorted to a search based on the results of Section 8.2. Our findings suggested the choice
α = 0 and β = 0, as in Dufresne (2000). The results for the parameter choices of Table 3 are
presented in Table 5.

In comparison with the results of Table 3, here more series terms are required in order to
replicate the C(ν)-benchmarks of Schröder (2002). Still, the computational effort required
seems to be less than that required to establish the benchmarks in Schröder (2002), where
computation times are of the order of CPU minutes. The latter results nevertheless seem to be far
less time consuming and work intensive than the extremely hard-won results of Linetsky (2004),
which are also highly experimental.

https://doi.org/10.1017/S0001867800001427 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001427


1026 M. SCHRÖDER

Table 5: Break-off values nk for replicating k decimal digits of C(ν) with λ = 0.65.

σ (%) (ν, h) C(ν) α n5 n10 D150

20 (3.5, 0.01) 0.000 741 559 987 883 0 47 61 42
30 (1, 0.0225) 0.002 173 545 046 250 0 20 33 32
40 (0.125, 0.04) 0.004 781 003 283 417 0 11 23 25
50 (–0.28, 0.0625) 0.008 909 420 452 132 0 11 24 21

9. Epilogue

In this paper we have focused on stochastic functionals E[ρ(Y )] of a given random variableY ,
the integral of geometric Brownian motion at a fixed time. An explicit structure theory has been
developed for them. In it we have established new interconnections between the integral of
geometric Brownian motion and objects from other parts of mathematics such as theta functions,
and have found these to be instrumental in actual computation. However, we have not been
able to address the idea highlighted in Schröder (2006, Section 6.4) of using ‘pure’ ladder
height density representations as a method of constructing stochastic functionals. This should
become important in discrete-time problems, for instance enabling the construction of discretely
sampled Asian option price functionals from observed ‘plain-vanilla’ option prices, a line of
thought addressed in Schröder (2005b). In this sense the author would be more than gratified
if Schröder (2006) and the present paper furnished starting points for further work connecting
problems from finance, probability, and statistics.
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