THE ROOT SYSTEM OF PRIMES OF A HAHN GROUP

MARLOW ANDERSON and OTIS KENNY

(Received 18 April 1979)

Communicated by J. B. Miller

Abstract

Let Δ be a root system and let V be the Hahn group of real-valued functions on Δ . Then Δ can be order-embedded into $P(\Delta)$, the root system of prime *l*-ideals of V. In this note we identify $P(\Delta)$ in terms of Δ without explicit reference to V, up to the convex subgroup structure of the additive groups of real closed η_1 -fields. In particular, we characterize the minimal prime *l*-ideals of V in terms of Δ by an ultrafilter construction which generalizes the well-known method when Δ is trivially ordered.

1980 Mathematics subject classification (Amer. Math. Soc.): 06 F 20.

1. Introduction

Throughout this introduction let G be an abelian *l*-group. Let $\mathscr{C}(G)$ denote the set of all convex *l*-subgroups of G (or *l*-ideals, since they are normal). If G is an *l*-subgroup of an *l*-group H, and the map $C \rightarrow C \cap G$ is a lattice isomorphism of $\mathscr{C}(H)$ onto $\mathscr{C}(G)$, then H is an *a*-extension of G. Those elements P of $\mathscr{C}(G)$ for which G/P is totally ordered are called prime; equivalently, the set of elements of $\mathscr{C}(G)$ larger than P is a chain. Thus, the set of primes forms a root system, that is, a partially ordered set in which no two incomparable elements have a lower bound. Each prime exceeds at least one minimal prime; a prime P is minimal if and only if for each $g \in P^+$ there exists $h \notin P^+$ such that $h \wedge g = 0$. If the intersection P^* of all elements of $\mathscr{C}(G)$ larger than a prime P covers P, then P is called a value; it is maximal with respect to not containing each element $g \in P^* \setminus P$. The root system of all values of G is denoted by $\Gamma(G)$. If Δ is any root system, then

$$V = V(\Delta, \mathbf{R}) = \{f: \Delta \rightarrow \mathbf{R}: \text{ the support of } f \text{ has } ACC\}$$

is an abelian *l*-group, called a *Hahn group*. Each abelian *l*-group G may be *l*-embedded into $V(\Gamma(G), \mathbf{R})$ (Conrad, Harvey and Holland (1963)). For further information about *l*-groups, the reader may consult Conrad (1970), or Bigard, Keimel and Wolfenstein (1977).

If Δ is a trivially ordered set, then it is well known that the set of minimal primes of $V(\Delta, \mathbf{R})$ are in a one-to-one correspondence with the ultrafilters on Δ (see Conrad and McAlister (1969) and Gillman and Jerison (1960)). In the next section we generalize this to the case where Δ is any root system. In the third section, we identify the set $P(\Delta)$ of the prime *l*-ideals of *V* in two steps. First, we identify $S(\Delta) = P(\Delta)/\approx$, where $P \approx Q$ if they contain the same set of minimal primes. (For a discussion of this equivalence relation in a more general context, see Conrad (1978).) Then, each \approx -equivalence class is described in terms of the convex subgroup structure of the additive groups of certain real closed η_1 -fields.

2. The minimal prime *l*-ideals of V

Throughout Δ will be a fixed root system and $V = V(\Delta, \mathbb{R})$. Let \mathfrak{A} be the set of all maximal trivially ordered subsets of Δ . We partially order \mathfrak{A} by declaring $A \leq B$ if $\delta \in A$ implies that there exists $\gamma \in B$ with $\delta \leq \gamma$. This is a lattice order with

and

and

 $A \lor B = \{ \text{maximal elements of } A \cup B \}$

 $A \wedge B = \{ \text{minimal elements of } A \cup B \}.$

We will occasionally abuse this notation by speaking of $A \lor B$ where at most one of A and B is trivially ordered but not maximal. If $A, B \in \mathfrak{A}$ and $X \subseteq A \cap (B \land A)$, let

$$B^{\leftarrow}(X) = \{ \delta \in B : \text{ there exists } \gamma \in X \text{ with } \gamma \leq \delta \}.$$

LEMMA 2.1. Let $A, B \in \mathfrak{A}$ with $A \leq B$ and let \mathscr{U} be an ultrafilter on A. Let $B^{\leftarrow}(\mathscr{U}) = \{B^{\leftarrow}(X): X \in \mathscr{U}\}$. Then $B^{\leftarrow}(\mathscr{U})$ is an ultrafilter on B.

PROOF. Clearly $B^{\leftarrow}(X) \neq \emptyset$ for each $X \in \mathcal{U}$. Suppose X, $Y \in \mathcal{U}$ and let

$$U = \bigcup \{ W \subseteq A \colon B^{\leftarrow}(W) = B^{\leftarrow}(X) \}$$

$$Z = \bigcup \{ W \subseteq A \colon B^{\leftarrow}(W) = B^{\leftarrow}(Y) \}$$

Then, $U, Z \in \mathcal{U}, B^{\leftarrow}(U) = B^{\leftarrow}(X), B^{\leftarrow}(Z) = B^{\leftarrow}(Y)$, and $B^{\leftarrow}(U) \cap B^{\leftarrow}(Z) = B^{\leftarrow}(U \cap Z)$. Since $U \cap Z \in \mathcal{U}, B^{\leftarrow}(X) \cap B^{\leftarrow}(Y) = B^{\leftarrow}(U \cap Z)$, which is an element of $B^{\leftarrow}(\mathcal{U})$. Therefore, $B^{\leftarrow}(\mathscr{U})$ has the finite intersection property. Similarly, if $X \subseteq B$, then $X \in B^{\leftarrow}(\mathscr{U})$ or $B \setminus X \in B^{\leftarrow}(\mathscr{U})$. Therefore $B^{\leftarrow}(\mathscr{U})$ is an ultrafilter.

If $A(\mathcal{U})$ and $B(\mathcal{U})$ are ultrafilters on $A, B \in \mathfrak{A}$ respectively, then $A(\mathcal{U})$ and $B(\mathcal{U})$ are said to be *compatible* if

$$(A \lor B)^{\leftarrow} (A(\mathscr{U})) = (A \lor B)^{\leftarrow} (B(\mathscr{U})).$$

If for each $A \in \mathfrak{A}$, $A(\mathcal{U})$ is an ultrafilter on A, and for each A, $B \in \mathfrak{A}$, $A(\mathcal{U})$ and $B(\mathcal{U})$ are compatible, then $\{A(\mathcal{U}): A \in \mathfrak{A}\}$ is called a *compatible system of ultrafilters on* \mathfrak{A} .

For each $v \in V$, let $S(v) = \{\alpha \in \Delta : v(\alpha) \neq 0\}$ and let

 $M(v) = \{ \text{maximal elements of } S(v) \}.$

Since $v \in V$, S(v) satisfies the ascending chain condition and so $\delta \in S(v)$ implies that there exists $\alpha \in M(v)$ such that $\alpha \ge \delta$. Clearly M(v) is a trivially ordered set.

THEOREM 2.2. There is a one-to-one correspondence between minimal prime l-ideals of V and compatible systems of ultrafilters on \mathfrak{A} given as follows:

Let P be a minimal prime l-ideal of V. For each $A \in \mathfrak{A}$, let $A(\mathcal{U}) = \{A \setminus M(v) : v \in P\}$. Then $\mathscr{C}_P = \{A(\mathcal{U}) : A \in \mathfrak{A}\}$ is a compatible system of ultrafilters on A.

Let $\mathscr{C} = \{A(\mathscr{U}): A \in \mathfrak{A}\}$ be a compatible system of ultrafilters on \mathfrak{A} and let

$$P_{\mathscr{C}} = \{ v \in V \colon A \setminus M(v) \in A(\mathscr{U}), \text{ for all } A \in \mathfrak{A} \}.$$

Then $P_{\mathscr{C}}$ is a minimal prime l-ideal of V.

PROOF. Let P be a minimal prime; we first show that each element $A(\mathcal{U})$ of \mathcal{C}_P is an ultrafilter on A. Suppose $\emptyset \in A(\mathcal{U})$. Then there exists $v \in P^+$ so that $M(v) \supseteq A$. Since A is a maximal trivially ordered set, M(v) = A. But then $w \land v = 0$ implies that w = 0, which is impossible since v is an element of the minimal prime P. Therefore, each element of $A(\mathcal{U})$ is non-empty. Now let $X, Y \in A(\mathcal{U})$ and choose $u, v \in P^+$ such that $A \setminus M(u) = X$ and $A \setminus M(v) = Y$. Let $s = \chi(A \setminus X)$ and $t = \chi(A \setminus Y)$ where $\chi(T)$ is the characteristic function on T. Then $x = s \land u$ and $y = t \land v$ are both elements of P. Moreover, $M(x) = A \cap M(u)$ and $M(y) = A \cap M(v)$ and so $M(x \lor y) = M(x) \cup M(y)$. Therefore,

$$X \cap Y = (A \setminus M(u)) \cap (A \setminus M(v)) = (A \setminus M(x)) \cap (A \setminus M(y))$$
$$= A \setminus (M(x) \cup M(y)) = A \setminus M(x \lor y).$$

Since $x \lor y \in P$, $X \cap Y \in A(\mathcal{U})$ and so $A(\mathcal{U})$ has the finite intersection property. Finally, let $X \subseteq A$, and suppose that $u = \chi(X)$ and $v = \chi(A \setminus X)$. Then $u \land v = 0$; so $u \in P$ or $v \in P$. Therefore $A \setminus X \in A(\mathcal{U})$ or $X \in A(\mathcal{U})$ and so $A(\mathcal{U})$ is an ultrafilter on A.

Next, we show that \mathscr{C}_P is a compatible system of ultrafilters on \mathfrak{A} . Let $A, B \in \mathfrak{A}$ with $A \leq B$. We need to show that $B(\mathscr{U}) = B^{\leftarrow}(A(\mathscr{U}))$. Suppose (by way of contradiction) that there is $B \setminus X \in B(\mathscr{U})$ with $X \in B^{\leftarrow}(A(\mathscr{U}))$. Let $u = \chi(X)$ and $v = \chi(B \setminus X)$. Then $u \wedge v = 0$ and so we may assume that $u \in P$. Let

$$U = \bigcup \{ W \in A(\mathscr{U}) \colon B^{\leftarrow}(W) = X \}.$$

Then $U \in A(\mathcal{U})$ and if $W = \chi(U)$, then $0 < w \le u$ and so $w \in P$. Since $U \in A(\mathcal{U})$, by the argument above there exists $x \in P^+$ so that $A \setminus U = M(x)$. But then $x \lor w \in P$ and $M(x \lor w) = A$, which is impossible, since P is a minimal prime. Therefore, \mathscr{C}_P is a compatible system of ultrafilters on \mathfrak{A} .

Now, let $\mathscr{C} = \{A(\mathscr{U}) : A \in \mathfrak{A}\}$ be a compatible system of ultrafilters on \mathfrak{A} ; we shall show that $P_{\mathscr{C}}$ is a minimal prime. Let

 $Q = \{v \in V: \text{ for all } A \in \mathfrak{A} \text{ with } M(v) \subseteq A, A \setminus M(v) \in A(\mathscr{U})\}.$

We will simplify the computations which follow by first showing that P = Q. Clearly $P \subseteq Q$. Suppose by way of contradiction that $v \in Q^+ \setminus P$. Then there is a $B \in \mathfrak{A}$ with $B \setminus M(v) \notin B(\mathfrak{A})$. Since $B(\mathfrak{A})$ is an ultrafilter, $B \cap M(v) \in B(\mathfrak{A})$. Let $A \in \mathfrak{A}$ be such that $M(v) \subseteq A$. Therefore $B \cap M(v) \subseteq A$ and so $B \cap M(v) \in (A \lor B)(\mathfrak{A})$. Since $v \in Q$, $X = A \setminus M(v) \in A(\mathfrak{A})$; so $(A \lor B)^{\leftarrow}(X) \in (A \lor B)(\mathfrak{A})$. However,

$$(B \cap M(v)) \cap ((A \lor B)^{\leftarrow}(X)) = \emptyset,$$

which is impossible since $(A \lor B)(\mathcal{U})$ is an ultrafilter. Therefore, Q = P. Since \mathcal{C} is a compatible system of ultrafilters,

$$P = \{v \in V: \text{ there exists } A \in \mathfrak{A} \text{ with } A \supseteq M(v) \text{ and } A \setminus M(v) \in A(\mathscr{U}) \}.$$

With this simplification of the definition of P, we will proceed with the proof.

P is a subgroup. Let $u, v \in P$ and let x = u+v. Let $A, B, C \in \mathscr{U}$ be such that $M(x) \subseteq A, M(u) \subseteq B$ and $M(v) \subseteq C$. By replacing *A* by $A \land (B \lor C)$ we may assume that $A \leq B \lor C$. Since $u, v \in P, (B \lor C) \setminus M(u) \in (B \lor C) (\mathscr{U})$ and $(B \lor C) \setminus M(v) \in (B \lor C) (\mathscr{U})$. Therefore,

$$(B \vee C) \setminus (M(u) \cup M(v)) \in (B \vee C)(\mathscr{U}).$$

Let $X = (B \lor C)^{\leftarrow}(M(x))$. Then $X \subseteq M(u) \cup M(v)$ and so $X \notin (B \lor C)(\mathscr{U})$. Therefore $M(x) \notin A(\mathscr{U})$ and thus $x \in P$. Since M(x) = M(-x), $x \in P$ implies that $-x \in P$. Therefore P is a subgroup.

P is convex. Suppose 0 < x < u and $u \in P$. Let $A, B \in \mathcal{U}$ be chosen so that $M(x) \subseteq A$ and $M(u) \subseteq B$. Without loss of generality, $A \leq B$. Since $B^{\leftarrow}(M(x)) \subseteq M(u)$, $B^{\leftarrow}(M(x)) \notin B(\mathcal{U})$ and thus $M(x) \notin A(\mathcal{U})$. Therefore $x \in P$.

P is a minimal prime. Since M(u) = M(|u|), *u* in *P* implies that $|u| \in P$. Since *P* is a convex subgroup, this means that *P* is an *l*-subgroup. Let $u, v \in V$ be chosen so that $u \wedge v = 0$. Pick $A \in \mathfrak{A}$ so that $M(u) \cup M(v) \subseteq A$. Since $M(u) \cap M(v) = \emptyset$, $A \setminus M(u)$ or $A \setminus M(v)$ is an element of $A(\mathcal{A})$. Thus *u* or *v* is in *P* and so *P* is prime. A similar argument will show that $v \in P^+$ implies the existence of $u \notin P$ such that $u \wedge v = 0$; thus *P* is a minimal prime.

3. The structure of $P(\Delta)$

Let $P(\Delta)$ be the set of prime *l*-ideals of $V(\Delta, \mathbf{R})$, and $m(\Delta)$ the set of minimal primes of V. From Section 2, we know that $m(\Delta)$ is order-isomorphic to $\overline{m}(\Delta)$, the set of compatible systems of ultrafilters on \mathfrak{A} , and so is completely determined in terms of Δ . For each $P \in P(\Delta)$ let $m(P) = \{Q \in m(\Delta) : Q \subseteq P\}$ and for $P, Q \in P(\Delta)$, let $P \approx Q$ if and only if m(P) = m(Q). This is clearly an equivalence relation on $P(\Delta)$. Let $S(\Delta) = P(\Delta)/\approx$; this root system is called the *skeleton* of $P(\Delta)$.

A branch point of a root system Γ is an element η of Γ so that $\eta = \alpha \lor \beta$ for some pair of incomparable elements α, β of Γ . Therefore, $S(\Delta)$ is obtained from $P(\Delta)$ by identifying all elements of $P(\Delta)$ strictly between two adjacent branch points with the smaller branch point. Consequently, each σ in $S(\Delta)$ is a totally ordered set. We let $P_{\sigma} = \bigcap \{Q : Q \in \sigma\}$. This is the smaller branch point and hence is the minimal element of σ . (Notice that $\bigcup \{Q : Q \in \sigma\}$ need not be an element of σ .) Thus $\sigma \to P_{\sigma}$ is a natural embedding of $S(\Delta)$ into $P(\Delta)$ which takes P to P for each minimal prime P.

Our next step in the identification of $P(\Delta)$ in terms Δ is the identification of the skeleton in those terms. To this end, we need a way to determine when a collection of minimal primes is contained in a proper prime of V. The following theorem gives the technique which we will use:

THEOREM 3.1. Let $\{P_{\varphi}: \varphi \in \Phi\}$ be a collection of minimal prime l-ideals of V. For each φ , let \mathscr{C}_{φ} be the compatible system of ultrafilters corresponding to P_{φ} and denote the ultrafilters on $A \in \mathfrak{A}$ belonging to \mathscr{C}_{φ} by $A(\mathscr{C}_{\varphi})$. Then there exists a proper prime Q containing $\bigcup \{P_{\varphi}: \varphi \in \Phi\}$ if and only if there exists $A \in \mathfrak{A}$ so that $A(\mathscr{C}_{\varphi}) = A(\mathscr{C}_{\eta})$ for all $\varphi, \eta \in \Phi$.

PROOF. First, suppose that $Q \supseteq \bigcup \{P_{\varphi} : \varphi \in \Phi\}$. Choose $x \in V^+ \setminus Q$ and $A \in \mathfrak{A}$ so that $M(x) \subseteq A$. We claim that $A(\mathscr{C}_{\varphi}) = A(\mathscr{C}_{\eta})$ for all $\varphi, \eta \in \mathfrak{A}$. Suppose by way of contradiction that there exist $\varphi, \eta \in \Phi$ so that $A(\mathscr{C}_{\varphi}) \neq A(\mathscr{C}_{\eta})$. Then there exists

.

 $X \subseteq A$ so that $X \in A(\mathscr{C}_{\omega})$, while $A \setminus X \in A(\mathscr{C}_{\eta})$. Define $u, v \in V$ as follows:

$$u(\gamma) = \begin{cases} 0, & \gamma \in (\Delta \setminus A) \cup X \\ 2x(\gamma), & \gamma \in M(x) \setminus X \\ 1, & \gamma \in A \setminus (X \cup M(x)), \end{cases}$$
$$v(\gamma) = \begin{cases} 0, & \gamma \in \Delta \setminus X, \\ 2x(\gamma), & \gamma \in M(x) \cap X, \\ 1, & \gamma \in X \setminus M(x). \end{cases}$$

Since $M(u) = X \subseteq A$, $A \setminus M(u) = A \setminus X \in A(\mathscr{C}_{\varphi})$ and so $u \in P_{\varphi}$. Similarly, $v \in P_{\eta}$. But then $u, v \in Q$ and so $u \lor v \in Q$. But $u \lor v \ge x$, which is not an element of Q, which is a contradiction. Thus, $A(\mathscr{C}_{\varphi}) = A(\mathscr{C}_{\eta})$ for all $\varphi, \eta \in \Phi$.

Conversely, suppose that there exists $A \in \mathfrak{A}$ with $A(\mathscr{C}_{\varphi}) = A(\mathscr{C}_{\eta})$ for all $\varphi, \eta \in \Phi$. Let

 $S = \{v \in V : \gamma \in M(v) \text{ implies that there exists } \delta \in A \text{ with } \delta > \gamma\}.$

Then S is a convex *l*-subgroup of V. Let $\varphi \in \Phi$ and let Q be the convex *l*-subgroup of V generated by S and P_{φ} . Since $Q \supseteq P_{\varphi}$, Q is prime. Let $\eta \in \Phi$ with $\eta \neq \varphi$, and choose $x \in P_{\eta}^+$. Pick $B \in \mathfrak{A}$ so that $M(x) \subseteq B$. Since \mathscr{C}_{φ} and \mathscr{C}_{η} are compatible systems of ultrafilters and $A(\mathscr{C}_{\varphi}) = A(\mathscr{C}_{\eta})$, then $(A \lor B)(\mathscr{C}_{\varphi}) = (A \lor B)(\mathscr{C}_{\eta})$. Define $v \in V$ as follows:

$$v(\gamma) = \begin{cases} x(\gamma) & \text{if there exists } \delta \in (A \lor B) \cap M(x) \text{ with } \delta \ge \gamma, \\ 0 & \text{otherwise.} \end{cases}$$

Now

$$M(v) \subseteq (A \lor B) \cap M(x)$$
 and $(A \lor B) \setminus M(v) = (A \lor B) \setminus M(x)$.

Since $(A \lor B) \setminus M(x) \in (A \lor B)(\mathscr{C}_{\varphi})$, $v \in P_{\varphi}$. Clearly, $x - v \in S$. Thus $x \in Q$ and so $P_{\eta} \subseteq Q$. Since $\chi(A) \notin Q$, Q is a proper prime of V which contains $\bigcup \{P_{\varphi} : \varphi \in \Phi\}$.

For $A \in \mathfrak{A}$, $\mathscr{C}_1, \mathscr{C}_2 \in \overline{m}(\Delta)$, we define $\mathscr{C}_1 \sim_A \mathscr{C}_2$ if $A(\mathscr{C}_1) = A(\mathscr{C}_2)$. This is an equivalence relation on $\overline{m}(\Delta)$. Notice that if $B \ge A$, $A, B \in \mathfrak{A}$, then $\mathscr{C}_1 \sim_A \mathscr{C}_2$ implies that $\mathscr{C}_1 \sim_B \mathscr{C}_2$. Given $\mathscr{C} \in \overline{m}(\Delta)$, let $[\mathscr{C}]_A$ denote the equivalence class of \mathscr{C} under \sim_A . Let

$$\overline{S}(\Delta) = \{ \sigma \subseteq \overline{m}(\Delta) \colon \text{for all } \mathscr{C} \in \overline{m}(\Delta) \setminus \sigma, \}$$

there exists $A \in \mathfrak{A}$ and $\mathfrak{D} \in \overline{m}(\Delta)$ so that $[\mathfrak{D}]_A \supseteq \sigma$ and $\mathscr{C} \notin [\mathfrak{D}]_A$.

Partially order $\overline{S}(\Delta)$ by set inclusion. For $[P] \in S(\Delta)$, let

$$f([P]) = \{ \mathscr{C}_Q \in \bar{m}(\Delta) \colon Q \in m(P) \}$$

and if $\sigma \in \overline{S}(\Delta)$, let $g(\sigma) = [P_{\sigma}]$, where $P_{\sigma} = \bigcap \{P \in P(\Delta) : P \supseteq P_{\mathscr{C}}, \text{ for all } \mathscr{C} \in \sigma\}$.

THEOREM 3.2. f is an order isomorphism of $S(\Delta)$ onto $\overline{S}(\Delta)$ with inverse g.

PROOF. We first show that $f([P]) \in \overline{S}(\Delta)$. Let $\mathscr{C} \in \overline{m}(\Delta) \setminus f([P])$. Since $P_{\mathscr{C}} \notin P$, there exists $x \in P_{\mathscr{C}}^+ \setminus P$. Choose $A \in \mathfrak{A}$ so that $M(x) \subseteq A$. By the proof of Theorem 3.1, $[\mathscr{C}_Q]_A \supseteq f([P])$, for each $Q \in m(P)$. Let $Q \in m(P)$. Since $x \notin Q$, there exists $B \in \mathfrak{A}$ so that $B \setminus M(x) \notin B(\mathscr{C}_Q)$. Therefore $M(x) \cap B \in B(\mathscr{C}_Q)$. Since $M(x) \subseteq A$ and

$$M(x) \notin A(\mathscr{C}), \quad A(\mathscr{C}) \neq A(\mathscr{C}_0).$$

Thus, $\mathscr{C} \notin [\mathscr{C}_Q]_A$ and so $f([P]) \in \overline{S}(\Delta)$.

Clearly gf([P]) = [P] and both f and g preserve order; it remains to show that $fg(\sigma) = \sigma$. We need only check that if $\sigma \in \overline{S}(\Delta)$, then $m(P_{\sigma}) = \{P_{\mathscr{C}} : \mathscr{C} \in \sigma\}$. One containment is clear. Suppose (by way of contradiction) that $P_{\sigma} \supseteq Q$ for some $Q \in m(\Delta)$ with $\mathscr{C}_Q \notin \sigma$. Then there is an $A \in \mathfrak{A}$ and $\mathfrak{D} \in \overline{m}(\Delta)$ so that $[\mathfrak{D}]_A \supseteq \sigma$ but $\mathscr{C}_Q \notin [\mathfrak{D}]_A$. By the proof of Theorem 3.1, there is a prime $N \supset \bigcup \{P_{\mathscr{C}} : \mathscr{C} \in \sigma\}$ with $Q \notin N$. Therefore $N \subseteq P_{\sigma}$ which contradicts the definition of

$$P_{\sigma} = \bigcap \{P \colon P \supseteq P_{\mathscr{C}}, \, \mathscr{C} \in \sigma \}.$$

We have now seen that the skeleton $S(\Delta)$ is describable entirely in terms of Δ . It now remains to describe the primes in each $[P] \in S(\Delta)$.

Let $[P] \in S(\Delta)$ and suppose $\sigma = f([P]) \subseteq \overline{m}(\Delta)$. Define

$$B(\sigma) = \{A \in \mathfrak{A} : \mathscr{C}_1 \sim_A \mathscr{C}_2, \text{ for all } \mathscr{C}_1, \mathscr{C}_2 \in \sigma\}.$$

Notice that if $A \in B(\sigma)$ and $B \ge A$, then $B \in B(\sigma)$. For notational convenience, for each $B \in B(\sigma)$, let $B(\mathcal{U}) = B(\mathcal{U}_{P_{\mathcal{U}}})$ where \mathcal{C} is any element of σ . (This is possible by the definition of $B(\sigma)$.) For $A, B \in B(\sigma)$, let $A^B = \{\alpha \in A : \alpha < \beta \in B\}$, and let $A_B = \{\alpha \in A : \alpha > \beta \in B\}$. (Another description of A^B is $A^B = ((A \land B) \cap A) \setminus (A \cap B)$). Now, $A = A^B \cup A_B \cup (A \cap B)$ and precisely one of these sets is in $A(\mathcal{U})$. Define $A \sim B$ if $A \cap B \in A(\mathcal{U})$ ($A, B \in B(\sigma)$). This is an equivalence relation on $B(\sigma)$. If $A^B \in A(\mathcal{U})$, then we write $[A] \prec [B]$, where the brackets denote the equivalence class under \sim . A routine computation shows that this relation is well defined and forms a total order on $B(\sigma)/\sim$.

LEMMA 3.3. If $A, B \in B(\sigma)$ with $[A] \ge [B]$, then $A \lor B \sim A$. Therefore, if $[A] \ge [B]$, we may assume that $A \ge B$.

PROOF. Suppose that $[A] \geq [B]$. Now, $(A \vee B) \cap A \supseteq A_B \cup (A \cap B)$. If [A] > [B], then $A_B \in A(\mathcal{U})$; if [A] = [B], then $A \cap B \in A(\mathcal{U})$. In either case, $(A \vee B) \cap A \in A(\mathcal{U})$ and so $A \vee B \sim A$.

For each $A \in B(\sigma)$, let

$$P_{\mathcal{A}} = \{ v \in V : \text{ for all } B \geq A, B \setminus M(v) \in B(\mathcal{U}) \}.$$

LEMMA 3.4. P_A is a convex l-subgroup of V containing P_{σ} .

PROOF. Let $S = \{v \in V : \gamma \in M(v) \Rightarrow$ there exists $\delta \in A$ with $\delta > \gamma\}$ and let $\mathscr{C} \in \sigma$. A routine argument shows that P_A is the convex *l*-subgroup generated by S and $P_{\mathscr{C}}$, and the proof of Theorem 3.1 shows that $P_A \supseteq \bigcup \{P_{\mathscr{C}} : \mathscr{C} \in \sigma\}$. Since P_{σ} is the intersection of all such $P_{\mathscr{C}}$, $P_A \supseteq P_{\sigma}$.

PROPOSITION 3.5. Let $A, B \in B(\sigma)$. Then (i) $P_B = P_A$ if and only if [B] = [A]. (ii) $P_B \subset P_A$ if and only if $[B] \prec [A]$.

PROOF. We will first show that if [A] = [B] and $B \ge A$, then $P_A = P_B$. By the definition of $P_A, P_A \subseteq P_B$. Let $D \ge A$ and let $x \in V$ be chosen so that

 $D \cap M(x) \in D(\mathscr{U})$

(that is, $x \notin P_A$). Since [A] = [B], $A \cap B \in A(\mathcal{U})$ and since $D \ge A$, $D^{\leftarrow}(A \cap B) \in D(\mathcal{U})$. But then $D^{\leftarrow}(A \cap B) \cap M(x) \in D(\mathcal{U})$. Since

$$D^{\leftarrow}(A \cap B) \subseteq B \lor D, \quad D^{\leftarrow}(A \cap B) \cap M(x) \in (B \lor D)(\mathscr{U}).$$

Therefore $x \notin P_B$, and so $P_A = P_B$.

If $[B] \ge [A]$, we may assume that $B \ge A$, by Lemma 3.3 and the above. Then $P_B \supseteq P_A$, by definition. This shows that if $P_B \subseteq P_A$, then $[B] \prec [A]$. Now, suppose that $[B] \prec [A]$. We may assume that B < A, and so $A = A_B \cup (A \cap B)$. Since $[B] \prec [A]$, $B^A \in B(\mathcal{U})$. Therefore, $\chi(B^A) \notin P_B$. Since $C \setminus M(\chi(B^A)) = C$ for all $C \ge A$, $\chi(B^A) \in P_A \setminus P_B$. Because P_A and P_B are comparable, $P_A \supset P_B$.

Finally, if $[A] \neq [B]$, then without loss of generality $[A] \prec [B]$. Consequently, by part (ii), $P_A \neq P_B$ and so $P_A = P_B$ implies that [A] = [B].

PROPOSITION 3.6. $P_{\sigma} = \bigcap \{P_A : A \in B(\sigma)\}.$

PROOF. Let $0 < v \in \bigcap \{P_A : A \in B(\sigma)\}$. If $M(v) \subseteq A \in B(\sigma)$, then $v \in P$ for all $\mathscr{C} \in \sigma$. Thus $v \in P_{\sigma}$. If $M(v) \subseteq A \notin B(\sigma)$, then there exist $\mathscr{C}_1, \mathscr{C}_2 \in \sigma$ such that $\mathscr{C}_1 \nsim_A \mathscr{C}_2$. Thus, there exists $X \subseteq A$ so that $X \in A(\mathscr{C}_1)$ and $A \setminus X \in A(\mathscr{C}_2)$. Define $w_1, w_2 \in V$ as follows:

$$w_1(\gamma) = \begin{cases} v(\gamma) & \text{if } \gamma \in X, \\ 0 & \text{if } \gamma \in \Delta \setminus X, \end{cases}$$
$$w_2(\gamma) = \begin{cases} v(\gamma) & \text{if } \gamma \in A \setminus X, \\ 0 & \text{if } \gamma \in \Delta \setminus (A \setminus X). \end{cases}$$

Then $A \setminus M(w_1) \supseteq A \setminus X \in A(\mathscr{C}_2)$ and so $w_1 \in P_{\mathscr{C}_2}$; similarly $w_2 \in P_{\mathscr{C}_1}$. Therefore

 $w_1 + w_2 \in P_{\sigma}$. Since $w_1 + w_2 \ge v > 0$, $v \in P_{\sigma}$. Thus $P_{\sigma} \supseteq \bigcap \{P_A : A \in B(\sigma)\}$. The other containment follows from Lemma 3.4.

PROPOSITION 3.7. Suppose $A, B \in B(\sigma)$ and $A \sim B$. Let

$$Q_{A} = \{ f \in \Pi_{A} \mathbf{R} \colon A \setminus S(f) \in A(\mathcal{U}) \}$$
$$Q_{B} = \{ f \in \Pi_{B} \mathbf{R} \colon B \setminus S(f) \in B(\mathcal{U}) \}.$$

and

(These are minimal primes of $\Pi_A \mathbf{R}$ and $\Pi_B \mathbf{R}$ respectively.) Then $\Pi_A \mathbf{R}/Q_A$ and $\Pi_B \mathbf{R}/Q_B$ are isomorphic o-groups.

PROOF. We define $\mu: \prod_A \mathbf{R}/Q_A \to \prod_B \mathbf{R}/Q_B$ as follows: Given $Q_A + v \in \prod_A \mathbf{R}/Q_A$, define $w \in \prod_B \mathbf{R}$ by

$$w(\beta) = \begin{cases} v(\alpha) & \text{if } \beta \leq \alpha \in A, \ \beta \in B^{\mathcal{A}} \cup (A \cap B), \\ 0 & \text{otherwise.} \end{cases}$$

Then let $\mu(Q_A + v) = Q_B + w$.

First we show that μ is well defined: If $v \in Q_A$, then $A \setminus S(v) \in A(\mathcal{U})$. Now,

$$B \setminus S(w) = B \setminus \{\beta \in B : \beta \leq \alpha \in S(v)\}$$

= $\{\beta \in B : \beta > \alpha \in A\} \cup \{\beta \in B : \beta \leq \alpha \in A \setminus S(v)\}$
 $\supseteq \{\beta \in B : \beta > \alpha \in A \setminus S(v)\} \cup \{\beta \in B : \beta \leq \alpha \in A \setminus S(v)\}.$

Since $A(\mathcal{U})$ and $B(\mathcal{U})$ are compatible ultrafilters and $A \setminus S(v) \in A(\mathcal{U})$,

$$\{\beta \in B: \beta > \alpha \in A \setminus S(v)\} \cup \{\beta \in B: \beta \leq \alpha \in A \setminus S(v)\} \in B(\mathscr{U})$$

Hence $w \in Q_B$ and so μ is well defined.

We define $v: \prod_B \mathbf{R}/Q_B \to \prod_A \mathbf{R}/Q_A$ similarly, and claim that $v\mu(Q_A + v) = Q_A + v$. By definition, $v\mu(Q_A + v) = Q_A + v|_{A\cap B}$ where $v|_{A\cap B}(\gamma) = v(\gamma)$ if $\gamma \in A \cap B$ and is 0 if $\gamma \notin A \cap B$. Therefore, we need to show that $A \setminus S(v - v|_{A\cap B}) \in A(\tilde{\mathcal{U}})$. Since $S(v - v|_{A\cap B}) \subseteq A \setminus (A \cap B)$,

$$A \setminus S(v - v|_{A \cap B}) \supseteq A \setminus (A \setminus A \cap B) = A \cap B \in A(\mathcal{U}).$$

Thus $\nu\mu(Q_A + v) = Q_A + v$. Similarly, $\mu\nu$ is the identity on $\prod_B \mathbf{R}/Q_B$. Since μ clearly preserves order, μ is an *o*-isomorphism.

This proposition enables us to define an *o*-group which we will use to analyze the order structure of $[P] \in S(\Delta)$. Let $\sigma = f([P]) \in \overline{S}(\Delta)$. Then set $G_{[A]} = \prod_A \mathbb{R}/Q_A$, for each $[A] \in B(\sigma)/\sim$. This is well defined by Proposition 3.7. Let

$$H_{\sigma} = V(B(\sigma)/\sim, G_{[A]}) = \{k \in \Pi \{G_{[A]}: A \in B(\sigma)/\sim\}: S(k) \text{ satisfies the } ACC\},\$$

where S(k) is given the total order \prec inherited from $B(\sigma)/\sim$, and H has the obvious o-group structure.

THEOREM 3.8. There exists an o-monomorphism

$$\iota: V/P_{\sigma} \to H_{\sigma}$$

so that H_{σ} is an a-extension of $\iota(V/P_{\sigma})$.

PROOF. We define $\iota(P_{\sigma}+v)([A]) = Q_A + v|_A$.

We first show ι is well defined into $\prod G_{[\mathcal{A}]}$. Suppose $v \in P_{\sigma}$ and $A \in B(\sigma)$. Choose $B \ge A$ so that

$$X = \{\beta \in M(v) \colon \beta \ge \alpha \in M(v|_A)\} \subseteq B.$$

If $M(v|_A) \in A(\mathcal{U})$, then $X \in B(\mathcal{U})$ since the $A(\mathcal{U})$ and $B(\mathcal{U})$ are compatible and $B^{\leftarrow}(M(v|_A)) = X$. However, $X \cap (B \setminus M(v)) = \emptyset$ and since $v \in P_{\sigma}$, $B \setminus M(v) \in B(\mathcal{U})$. Consequently, $X \notin B(\mathcal{U})$ and so $M(v|_A) \notin A(\mathcal{U})$. Therefore, $v|_A \in Q_A$ and ι is well defined into $\prod G_{[A]}$.

We claim that ι is one-to-one into H. Suppose $P_{\sigma} + v > 0$ and choose $B \supseteq M(v)$. Since $v \notin P_{\sigma}$, there exists $A \in B(\sigma)$ so that $M(v) \cap A \in A(\mathcal{U})$. Clearly $A \cap M(v) \subseteq B \lor A$ and since $A(\mathcal{U})$ and $(B \lor A)(\mathcal{U})$ are compatible, $M(v) \cap A \in A(\mathcal{U})$ implies that $A \cap M(v) \in (A \lor B)(\mathcal{U})$. Therefore,

$$(A \vee B) \setminus M(v|_{A \vee B}) \notin (A \vee B)(\mathscr{U}),$$

and so $v|_{A \vee B} \notin Q_{A \vee B}$. Therefore $\iota(P_{\sigma} + v)([A \vee B])$ is not zero and so ι is one-to-one. We now claim that $[A \vee B]$ is the maximum element of $S(\iota(P_{\sigma} + v))$ and so $\iota(P_{\sigma} + v) \in H$. Suppose $[C] > [A \vee B]$ where (without loss of generality) $C > A \vee B$. Since $M(v) \subseteq B$, $S(v|_C) \subseteq C \cap (A \vee B)$. Because $[C] > [A \vee B]$,

$$X = \{ \gamma \in C \colon \gamma > \alpha \in A \lor B \} \in C(\mathscr{U}),$$

and because $C \setminus S(v|_C) \supset X$, $C \setminus S(v|_C) \in C(\mathcal{U})$. Therefore $v|_C \in Q_C$ and so

$$\iota(P_{\sigma}+v)([C])=Q_{C}+0.$$

Thus $[C] \notin S(\iota(P_{\sigma}+v)).$

Finally, since $\iota(V/P_{\sigma}) \supseteq \Sigma G_{[\mathcal{A}]}$, H_{σ} is an *a*-extension of $\iota(V/P_{\sigma})$.

REMARK. The map ι is independent of which representative of [A] we choose to define the component maps, because of the nature of the isomorphisms

$$\Pi_{A} \mathbf{R}/Q_{A} \to \Pi_{B} \mathbf{R}/Q_{B}.$$

Now suppose that $\sigma \in \overline{S}(\Delta)$. Let

$$A(\sigma) = B(\sigma) \setminus \bigcup \{ B(\tau) \colon \tau \in \overline{S}(\Delta) \text{ and } \tau \supset \sigma \}$$

Root system of primes of a Hahn group

and let

[11]

$$M_{\sigma} = \bigcap \{ P_A \colon A \in B(\sigma) \setminus A(\sigma) \} = \bigcap \{ P_{\tau} \colon \tau \in \overline{S}(\Delta), \tau \supset \sigma \}.$$

If there exists a smallest τ so that $\tau \supset \sigma$, then $M_{\sigma} = P_{\tau}$ and $M_{\sigma} \notin [P_{\sigma}]$. If no such τ exists, then M_{σ} is the largest element of the chain $[P_{\sigma}]$. In particular, if $A(\sigma) = \emptyset$, then $M_{\sigma} = P_{\sigma}$ and so $[P_{\sigma}]$ is a singleton.

Thus, the elements of $[P_{\sigma}]$ are in a one-to-one correspondence with $\mathscr{C}(M_{\sigma}/P_{\sigma})$, the convex subgroups of M_{σ}/P_{σ} , except possibly for the existence of a largest element as specified above. However, M_{σ}/P_{σ} is the convex subgroup of V/P_{σ} which corresponds to $V(A(\sigma)/\sim, G_{[\mathcal{A}]})$ under the *a*-extension of Theorem 3.8.

Thus, we now need a way of describing the convex subgroup structure of the Hahn group $V(\Gamma, G_{\gamma})$ where Γ is a totally ordered set and each G_{γ} is an *o*-group with $\mathscr{C}(G_{\gamma})$ its set of convex subgroups. Let

$$\mathscr{G} = \bigcup \{ \{ \gamma \} \times \mathscr{C}(G_{\gamma}) \colon \gamma \in \Gamma \}.$$

If $\alpha, \beta \in \Gamma$ with α covering β , we will identify $(\alpha, 0)$ with (β, G_{β}) . Call \mathscr{G} modulo this equivalence relation \mathscr{H} and order it lexicographically with the first component dominating. Clearly $\mathscr{C}(V(\Gamma, G_{\gamma}))$ is order isomorphic to \mathscr{H} .

Thus, we have described $\dot{P}(\Delta)$ up to the convex subgroup structure of the *o*-groups $G_{[A]}$. But $G_{[A]} = \prod_A \mathbb{R}/Q_A$. Now, Q_A is a maximal ring ideal of $\prod_A \mathbb{R}$, considered as the ring of continuous functions on the discrete space A (see Bigard, Keimel and Wolfenstein (1977), p. 179), and so $G_{[A]}$ is a real-closed η_1 -field (see Gillman and Jerison (1960)). Now, we claim that $\Gamma(G_{[A]})$ (the values of $G_{[A]}$) is an η_1 -set. For, if

$$P_1 \subseteq P_2 \subseteq P_3 \dots Q_3 \subseteq Q_2 \subseteq Q_1$$

are all values, choose $g_i, h_j \in G_{[A]}^+$ such that P_i is the value of g_i and Q_j is the value of h_j . Then $\{g_i\} < \{h_j\}$ and so there exists $k \in G_{[A]}^+$ with $\{g_i\} < k < \{h_j\}$. Thus, the value of k lies between the P_i 's and Q_j 's. But $\mathscr{C}(G_{[A]})$ is just the Dedekind-MacNeille completion of $\Gamma(G_{[A]})$, considered as a totally ordered set. Consequently, we have concluded that $\mathscr{C}(G_{[A]})$ is in each case the Dedekind-MacNeille completion of an η_1 -set.

NOTE. Portions of this paper first appeared in the second author's Ph.D. dissertation 'Lattice-ordered groups', written at the University of Kansas in 1976 under the direction of Dr. Paul F. Conrad.

References

- A. Bigard, K. Keimel and S. Wolfenstein (1977), *Groupes et anneaux réticules* (Springer-Verlag, Berlin).
- P. Conrad (1970), Lattice-ordered groups (Tulane Library, New Orleans).

- P. Conrad (1978), 'Minimal prime subgroups of lattice-ordered groups', preprint.
- P. Conrad, J. Harvey and C. Holland (1963), 'The Hahn embedding theorem for latticeordered groups', *Trans. Amer. Math. Soc.* 108, 143-169.
- P. Conrad and D. McAlister (1969), 'The completion of a lattice-ordered group', J. Austral. Math. Soc. 9, 182-208.
- L. Gillman and M. Jerison (1960), Rings of continuous functions (van Nostrand, Princeton).

Department of Mathematical Sciences Indiana University-Purdue University at Fort Wayne 2101 Coliseum Boulevard East Fort Wayne, Indiana 46805 U.S.A. Department of Mathematics Boise State University Boise, Idaho 83725 U.S.A.

[12]