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Abstract

Let A be a root system and let V be the Hahn group of real-valued functions on A. Then A can
be order-embedded into i*(A), the root system of prime /-ideals of V. In this note we identify
f(A) in terms of A without explicit reference to V, up to the convex subgroup structure of the
additive groups of real closed ijj-fields. In particular, we characterize the minimal prime /-ideals
of Fin terms of A by an ultrafilter construction which generalizes the well-known method when
A is trivially ordered.

1980 Mathematics subject classification (Amer. Math. Soc): 06 F 20.

1. Introduction

Throughout this introduction let G be an abelian /-group. Let #(G) denote the set
of all convex l-subgroups of G (or l-ideals, since they are normal). If G is an /-sub-
group of an /-group H, and the map C->CnG is a lattice isomorphism of ^(H)
onto #(<J), then H is an a-extension of G. Those elements P of ^(G) for which
G/P is totally ordered are called prime; equivalently, the set of elements of ^(G)
larger than P is a chain. Thus, the set of primes forms a root system, that is, a
partially ordered set in which no two incomparable elements have a lower bound.
Each prime exceeds at least one minimal prime; a prime P is minimal if and only if
for each geP+ there exists h$P+ such that hhg = 0. If the intersection P* of all
elements of ^(G) larger than a prime P covers P, then P is called a value; it is
maximal with respect to not containing each element geP* \P. The root system of
all values of G is denoted by T(G). If A is any root system, then

F= F(A,R) = {/: A^R: the support of/has ACC}
17
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18 Marlow Anderson and Otis Kenny [2]

is an abelian /-group, called a Hahn group. Each abelian /-group G may be /-
embedded into V(T(G),R) (Conrad, Harvey and Holland (1963)). For further
information about /-groups, the reader may consult Conrad (1970), or Bigard,
Keimel and Wolfenstein (1977).

If A is a trivially ordered set, then it is well known that the set of minimal primes
of F(A, R) are in a one-to-one correspondence with the ultrafilters on A (see Conrad
and McAlister (1969) and Gillman and Jerison (I960)). In the next section we
generalize this to the case where A is any root system. In the third section, we
identify the set P(A) of the prime /-ideals of V in two steps. First, we identify
S(A) = P(A)/x, where P x Q if they contain the same set of minimal primes.
(For a discussion of this equivalence relation in a more general context, see Conrad
(1978).) Then, each a -equivalence class is described in terms of the convex sub-
group structure of the additive groups of certain real closed ^-fields.

2. The minimal prime /-ideals of V

Throughout A will be a fixed root system and V = F(A,R). Let 3t be the set of
all maximal trivially ordered subsets of A. We partially order 91 by declaring
A ̂ B if 8eA implies that there exists yeB with S^y. This is a lattice order with

AvB = {maximal elements of A uB}
and

AAB = {minimal elements of A uB).

We will occasionally abuse this notation by speaking of A v B where at most one of
A and B is trivially ordered but not maximal. If A,Be% and X^AD(BAA), let

B^{X) = {SeB: there exists yeX with y<8}.

LEMMA 2.1. Let A,BeS& with A^B and let <% be an ultrafilter on A. Let
); Xe%}. Then B^{°W) is an ultrafilter on B.

PROOF. Clearly # - (X)#0 for each l e t . Suppose X, Ye<% and let

U = (J {fF£A:
and

Z =

Then, U,Ze<tt,Br{U) = B*{X),B*(Z) = F(Y), and B*(U)nV(Z) = B*(UnZ).
Since UnZeW, B*-(X)n&-(Y) = B^{UnZ), which is an element of
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[3] Root system of primes of a Hahn group 19

Therefore, BTiQf) has the finite intersection property. Similarly, if X^B, then
Xe&-{<%) or B\ XeB*-{W). Therefore B*-(W) is an ultrafilter.

If A(<%) and B{^) are ultrafilters on A, B e% respectively, then A{%) and B(fy)
are said to be compatible if

(A v By- (A(W)) = (Av BY (B(t)).

If for each A e% A(<%) is an ultrafilter on A, and for each A,Be% A{%) and B{%)
are compatible, then {A(^): A e 91} is called a compatible system of ultrafilters on 91.

For each veV, let S(v) = {<*eA: t>(<*)̂ 0} and let

M(J>) = {maximal elements of S(v)}.

Since i> e V, S(v) satisfies the ascending chain condition and so 8 e S(v) implies
that there exists a e M(v) such that a ^ 8. Clearly M(v) is a trivially ordered set.

THEOREM 2.2. There is a one-to-one correspondence between minimal prime l-ideals
of V and compatible systems of ultrafilters on % given as follows:

Let Pbea minimal prime l-ideal of V. For each Ae% let A{%) = {A \ M(v) :veP}.
Then ftp = {A{%): A e9I} is a compatible system of ultrafilters on A.

Let <£ = {A{tyt): Ae%) be a compatible system of ultrafilters on % and let

Pv = {veV:A\ M(v) e A(W), for all A e %}.

Then P<# is a minimal prime l-ideal of V.

PROOF. Let P be a minimal prime; we first show that each element A{^1) of <gP

is an ultrafilter on A. Suppose 0 e ^ ( f ) , Then there exists veP+ so that M(v)^A.
Since A is a maximal trivially ordered set, M(v) = A. But then H>AD = 0 implies
that w = 0, which is impossible since v is an element of the minimal prime P.
Therefore, each element of A^) is non-empty. Now let X, YeAC%) and choose
u,veP+ such that A\M(u) = X and A\M(v) = Y. Let s = x(A\X) and
t = xO4\ Y) where x(T) is the characteristic function on T. Then x = SAU and
y = / A v are both elements of P. Moreover, M(x) = An M(u) and M(y) = An M(v)
and so M(xvy) = M(x)uM(y). Therefore,

Xn Y = (A \ M(u)) n (A \ M(v)) = (A \ M(x)) n {A \ M(y))

= A \ (M(x) u M(y)) = A \ M{x v y).

Since xvyeP, Xn YeA(<W) and so AC%) has the finite intersection property.
Finally, let X £ A, and suppose that u = x(X) a n d v = x(A \ X). Then w A V = 0; so
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20 Marlow Anderson and Otis Kenny [4]

ueP or veP. Therefore A\XeA(W) or XeA(W) and so A(<%) is an ultrafilter
on A.

Next, we show that ^> is a compatible system of ultrafihers on 31. Let A, Be%
with A ̂  B. We need to show that £(*) = B*-(A(<W)). Suppose (by way of contra-
diction) that there is B\ XeB(%) with Xe B^(A(<%)). Let u = x(X) and i; = X(B\ X).
Then UAV = 0 and so we may assume that we P. Let

U= \J{WeA(<&): B~(W)=X}.

Then UeA(<%) and if W = x(£/), then 0 < w ^ u and so weP. Since \JeA(<¥), by
the argument above there exists x eP+ so that .4 \ U = M{x). But then xvweP and
M(xvw) = yi, which is impossible, since P is a minimal prime. Therefore, ^P is a
compatible system of ultrafilters on 31.

Now, let <€ = {A(f^): Ae^i} be a compatible system of ultrafilters on 31; we
shall show that P% is a minimal prime. Let

Q = {veV: for all Ae31 with Af(v)c A, A \ M(v) eA(W)}.

We will simplify the computations which follow by first showing that P = Q.
Clearly P^Q. Suppose by way of contradiction that veQ+\P. Then there is a
Be% with B\M(v)$B{<%). Since B(%) is an ultrafilter, BnM(v)eB(W). Let
A e31 be such that M(v)£,4. Therefore 5 n M ( r ) £ ^ and so BnM(J>)e(Av
Since veQ, X = A\M(v)eA(<%); so (A vB)<-(X)e(AvB)(<%). However,

(B n M(v)) n ((^ v 5r(Z)) = 0,

which is impossible since {A v 5) (" )̂ is an ultrafilter. Therefore, Q = P. Since ^ is
a compatible system of ultrafilters,

P = {veV: there exists A e 31 with A 2 M(u) and A \ M(v) e A($t)}.

With this simplification of the definition of P, we will proceed with the proof.
P is a subgroup. Let u,veP and let x = u+v. Let A,B,Ce^ be such that

M(;c) £ A, M(u) £ £ and M(v) £ C. By replacing A by ̂ 4 A (B V C) we may assume that
^ < 5 v C . SinceM!Dei),(Bvg\M(u)e(5vC)(t)and(BvC)\M(v)e(BvC)(^).
Therefore,

(5 v C) \ (Af (M) U M(U) ) 6 (B v

Let J = (5vC)^(¥W). Then Z£Af(M)UM(t>) and so X$(BvC)(qt). Therefore
M(x)^A{^l) and thus xeP. Since M(x) = M(-A: ) , x e P implies that -xeP.
Therefore P is a subgroup.
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[5] Root system of primes of a Hahn group 21

P is convex. Suppose 0<x<u and we P. Let A,BeW be chosen so that
)c A and M(«)s B. Without loss of generality, A s£ B. Since 5^(M(x))£ M(w),

B(W) and thus ilf(jc)^^(«). Therefore xeP.
P is a minimal prime. Since M(u) = M{\ u\), w in P implies that j M| GP. Since P

is a convex subgroup, this means that P is an /-subgroup. Let u, v e V be chosen so
that HAI; = 0. Pick ^e?I so that M(u)uM(v)^A. Since M(»)nM(i)) = 0,
/I \M(u) or A\M(v) is an element of A{Qt). Thus w or v is in P and so P is prime.
A similar argument will show that veP+ implies the existence of u$P such that
u A v = 0; thus P is a minimal prime.

3. The structure of P(A)

Let P(A) be the set of prime /-ideals of F(A,R), and w(A) the set of minimal
primes of V. From Section 2, we know that m(A) is order-isomorphic to «i(A),
the set of compatible systems of ultrafilters on 91, and so is completely determined
in terms of A. For each PeP(A) let m(P) = {Qew(A): g s P } and for P, Q eP(A),
let P a 2 if and only if m(P) — m(Q). This is clearly an equivalence relation on
P(A). Let S(A) = P(A)/ a ; this root system is called the skeleton of P(A).

A branch point of a root system F is an element rj of V so that 17 = a. v )3 for some
pair of incomparable elements a, )3 of F. Therefore, S(A) is obtained from P(A) by
identifying all elements of P(A) strictly between two adjacent branch points with
the smaller branch point. Consequently, each a in S(A) is a totally ordered set.
We let Pff = n {Q '• Q e <*}• This is the smaller branch point and hence is the minimal
element of a. (Notice that \J{Q: Qe&} need not be an element of CT.) Thus a-^-P^
is a natural embedding of 5(A) into P(A) which takes P to P for each minimal
prime P.

Our next step in the identification of P(A) in terms A is the identification of the
skeleton in those terms. To this end, we need a way to determine when a collection
of minimal primes is contained in a proper prime of V. The following theorem gives
the technique which we will use:

THEOREM 3.1. Let {Pv: <pe<S>} be a collection of minimal prime l-ideals of V. For
each <p, let ^p be the compatible system of ultrafilters corresponding to Pv and denote
the ultrafilters onAs% belonging to <#9 by A(&X Then there exists a proper prime Q
containing U {P^: peO} if and only if there exists A ety. so that
all <p,

PROOF. First, suppose that g 2 \J{p,'- ?>e<D}. Choose xeV+\Q and Ae% so
that M(x)cA. We claim that A(%) = A(^v) for all <p,-q£%. Suppose by way of
contradiction that there exist p .^eO so that A(&J^A(<gX Then there exists
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22 Marlow Anderson and Otis Kenny [6]

so that XeAC&9), while A\XeA(<G?v). Define u,veVas follows:

(0,

u(y) = .

Since M(u) = X s ^ , ^ \ M ( M ) = ^ \ Ie i fg ' ( , ) and so KGP,,. Similarly, vePr But
then u,veQ and so « v t> 6 Q. But HVP^X, which is not an element of Q, which is a
contradiction. Thus, A(&J = y4(<̂ ) for all <p,r)e®.

Conversely, suppose that there exists A e% with A(<&^ = A^) for all <p,r)e®.
Let

S = {ve V: yeM(v) imphes that there exists be A with 8>y}.

Then S is a convex /-subgroup of V. Let <p e O and let Q be the convex /-subgroup
of V generated by S and Pr Since Q^P^, Q is prime. Let 17 eO with r)^<p, and
choose xeP+. Pick 5 e 51 so that M(x)£ JJ. Since "^ and ^ are compatible systems
of ultrafilters and A(&9) = A(^v), then (AvB)(<&J = (AvB)(%). Define ueKas
follows:

fx(y) if there exists 8e(AvB)n M{x) with S Js y,

IP otherwise.
Now

and (AvB)\M(v) = (Av B)\M(x).

Since ( ivS) \M(x)e( ivJ?) (^) , ueP,,. Clearly, x-veS. Thus ^reg and so
PV^Q. Since x(^)^2. S is a proper prime of V which contains U ( ^ : ^eO}.

For Ae % <g>
1,#ae/w(A), we define ^ ^ ^ if ^C^) = A(&J. This is an equi-

valence relation on w(A). Notice that if B ̂  A, A, Be31, then ^ ~ 4 ^ implies that
^1 ~B^a- Given ^em(A), let [^]^ denote the equivalence class of ^ under ~>
Let

= (acm(A): for all

there exists Ae21 and 3>em(&) so that [S]^2CT and

Partially order 5(A) by set inclusion. For [/'JeSXA), let

and if (7e5(A), let g(a) = [PJ, where P,, = f|{i'e^(A): P2P«>, for all
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[7] Root system of primes of a Hahn group 23

THEOREM 3.2. / is an order isomorphism of S(A) onto «§(A) with inverse g.

PROOF. We first show that/([/>]) e S(A). Let «"em(A)\/([?]). Since
there exists xeP+\ P. Choose A e% so that M(x)<^A. By the proof of Theorem 3.1,
[%]A^MP]), for each Qem(P). Let Qem(P). Since x ^ g , there exists BeSS. so
that B\M(x)$B(%). Therefore M(x) n B e B(%). Since M(x)£,4 and

Thus, <£$[%]A and so/([/>])eS(A).
Clearly g/'CfP]) = [P] and both/and # preserve order; it remains to show that

fg(p) = a. We need only check that if CTG5(A), then m{P(r) = {P<#: We a}. One
containment is clear. Suppose (by way of contradiction) that P^ Q for some
<2ew(A) with WQ^a. Then there is an Ae% and ®em(A) so that \_Q)\A~2.a but

By the proof of Theorem 3.1, there is a prime A ^ \J{PV: We a} with
Therefore N<^Pa which contradicts the definition of

We have now seen that the skeleton 5(A) is describable entirely in terms of A.
It now remains to describe the primes in each [P] e S(A).

Let [P]eS(A) and suppose a =/([/»])£ w(A). Define

B{a) = {A e » : «i ~A^, for all ? / 2 e a } .

Notice that if AeB(a) and 2*^.4, then BeB(a). For notational convenience, for
each BeB(a), let 5(^) = B(°UP^ where # is any element of a. (This is possible by
the definition of B(a).) For A,BeB(a), let AB = {<xeA: a<PeB}, and let
^ B = {ae^(:a>j3efi}. (Another description of AB is v4B = {{A A £) n A) \ {A n £)).
Now, /4 = v4B u AB u (/4 n 5) and precisely one of these sets is in A{c¥). Define
A~B if i n B e ^ t ) (A,BeB(a)). This is an equivalence relation on B(a). If
/4Be^(^), then we write [/!]-< [fi], where the brackets denote the equivalence
class under ~ . A routine computation shows that this relation is well defined and
forms a total order on 5(CT)/~.

LEMMA 3.3. IfA,BeB(a) with [A] >= [B], then AvB~A. Therefore, if [A] =̂ [B],
we may assume that

PROOF. Suppose that [A]^[B]. Now, (AvB)nA=>ABu(AnB). If [A]>[B],
then ABeA(%); if [A] = [B], then AnBeA(<%). In either case, (AvB)nAeA(W)
and so AvB~A.

For each A eB(a), let

= {ve K: for aUB^A, B\M(v)eB(<¥)}.
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LEMMA 3.4. PA is a convex l-subgroup of V containing Pa.

PROOF. Let S = {veV: yeM(v) =*•there exists 8eA with 8>y} and let
A routine argument shows that PA is the convex /-subgroup generated by S and
P#, and the proof of Theorem 3.1 shows that P^2 LKA?: ^eo}- Since Pa is the
intersection of all such P<g, Pj^P^.

PROPOSITION 3.5. Let A,BeB(6). Then
(i) PB = PA if and only if [B] = [A].

(ii) PB<= PA if and only if [B] -< [A].

PROOF. We will first show that if [A] = [B] and B^A, then PA = PB. By the
definition of PA, PA^PB. Let D ^ A and let xe V be chosen so that

(that is, x $ PA). Since [A] = [B], An Be A{%) and since D > A, IT(A nB)e
But then D*{A nB)n M(x) e D^U). Since

D^(A nB)cBvD, D^(A nB)n M(x) e (fi v D) (<%).

Therefore x$PB, and so PA = PB.
If [B] ?s [A], we may assume that B^A, by Lemma 3.3 and the above. Then

PB^PA>
 by definition. This shows that if PB^PA, then [B] -< [A], Now, suppose

that [fi]-<[/4]. We may assume that B<A, and so A = ABu(AnB). Since
[B]<[A], BAeB{<%). Therefore, X(BA)$PB- Since C\M(x(BA)) = C for all
C^A, x(BA)ePA\PB. Because PA and PB are comparable, P^PB-

Finally, if [A]^ [B], then without loss of generality [A] -< [B]. Consequently, by
part (ii), PA¥=PB and so PA = PB implies that [A] = [B].

PROPOSITION 3.6. Pa = f| {PA- AeB(a)}.

PROOF. Let 0<veC\{PA- AeB(a)}. If M(v)^AeB(p), then v<=P for all # e o .
Thus !)e?r. If M(v)^A $B{o), then there exist ^lt%ea such that "^ *A^2. Thus,
there exists I c ^ so that Ze.4(<g'l) and ^yXe^ 'gy . Define w^w^eV as follows:

viy) if ye IT,

ifyeA\2T,

Then A\MJ(w1)^A\XeA(<£^ and so WieP^; similarly w2eP¥i. Therefore
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[9] Root system of primes of a Hahn group 25

P,,. Since w1 + w2^v>0, vePa. Thus Pa^ C\{PA: AeB(a)}. The other
containment follows from Lemma 3.4.

PROPOSITION 3.7. Suppose A,BeB(a) and A~B. Let

QA = {feIlAR:A\S(f)eA(®)}
and

(These are minimal primes ofUAR and UBR respectively.) Then IIAR/QA and
UBR/QB are isomorphic o-groups.

PROOF. We define fi: UAR/QA->UBR/QB as follows: Given QA + veUAR/QA,
define weUBR by

v(oc) if

0 otherwise.

Then let KQA+V) = QB+™-
First we show that /A is well defined: If v e QA, then A \ S(v) e A(W). Now,

B \ S(w) = B \ {/3 e B: /3 ̂  a e S(v)}

: p>aeA\S(v)}u{PeB:

Since A(W) and B(<%) are compatible ultrafilters and A\S(v)eA(<%),

: P>oceA\S(v)}u{PeB:

Hence w e QB and so /x is well defined.
We define v: UBR/QB-+HAR/QA similarly, and claim that v^{QA+v) = QA + v.

By definition, vn(QA + v) = QA + v\AnB where v\AnB(y) = v(y) if yeAnB and is 0
if y$AnB. Therefore, we need to show that A\S(v—v\AnB)eA(&). Since
S(.v-v\AnB)^A\(AnB),

Thus vn(QA + v) = QA+v. Similarly, fiv is the identity on UBR/QB. Since /n,
clearly preserves order, fj. is an o-isomorphism.

This proposition enables us to define an o-group which we will use to analyze
the order structure of [PleS^A). Let a = f([P])e5(A). Then set GU] = UAR/QA,
for each [A] eB(a)l~. This is well defined by Proposition 3.7. Let

Ua = V(B(o)l'~,GU]) = {keU{G[A]: AeB(p)/~}: S(k) satisfies the ACC},
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where S(k) is given the total order -< inherited from B{a)j~, and //has the obvious
o-group structure.

THEOREM 3.8. There exists an o-monomorphism

so that Ha is an a-extension of t(F/Po.).

PROOF. We define i(Pa+v)([A]) = QA + v\A.
We first show i is well defined into nG^]. Suppose v&Pa and A eB(a). Choose

so that

If M(v\A)eAC%), then XeB{<%) since the A(<W) and £(*) are compatible and
B*-(M(v\A)) = X. However, Xn(B\M(v)) = 0 and since vePa, B\M(v)eB(<W).
Consequently, X$B{ty) and so M(v\A)$A(<%). Therefore, v\AeQA and i is well
defined into HG[Ay

We claim that i is one-to-one into H. Suppose Pa.+v>0 and choose B~2.M{v).
Since v$Pa, there exists AeB(CT) SO that M{v)nAeA(^). Clearly A nM(v)<=BvA
and since A(<%) and (BvA)(<%) are compatible, M{v)nAeA{^) implies that
^ n M(r) e (^ v B) (<%). Therefore,

and so v \AVB $ QAS/B- Therefore i(Pv+v) ([A v B]) is not zero and so i is one-to-one.
We now claim that [AvB] is the maximum element of S(((P<r+i>)) and so
i(P0. + i>)e//. Suppose [C]>[^vB] where (without loss of generality) C>AvB.
Since Af(i>)cfl, S(!)|c)gCn(^vB). Because [C] >- [/4vfi],

and because C\S(v\c)=>X, C\S(v\c)eC(W). Therefore v\ceQc and so

Thus
Finally, since ((F/PJ^SG^, //„. is an a-extension of i(V/Pa).

REMARK. The map i is independent of which representative of [̂ 4] we choose to
define the component maps, because of the nature of the isomorphisms

Now suppose that oeS(A). Let

A(a) = B(a) \ U {B(T) : T e 5(A) and T=> a)
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and let
Ma= C\{PA- AeB{a)\A{a)}=(\{PT: reS(A),r=a}.

If there exists a smallest T SO that T=> a, then Ma — PT and M,,.^ [PJ. If no such r
exists, then Ma is the largest element of the chain [PJ. In particular, if A(a) = 0 ,
then Mo. = Pa and so [PCT] is a singleton.

Thus, the elements of [/>„.] are in a one-to-one correspondence with ^(MJP,,),
the convex subgroups of MJPa, except possibly for the existence of a largest
element as specified above. However, MJP^ is the convex subgroup of V\Pa which
corresponds to V(A(a)j ~, G[A^) under the a-extension of Theorem 3.8.

Thus, we now need a way of describing the convex subgroup structure of the
Hahn group V(F, Gy) where F is a totally ordered set and each Gy is an o-group
with ^(Gy) its set of convex subgroups. Let

If a, ]8 e F with a covering j8, we will identify (a, 0) with (ft, Gp). Call ^ modulo this
equivalence relation J f and order it lexicographically with the first component
dominating. Clearly ^{ViT, Gy)) is order isomorphic to Jtf'.

Thus, we have described P(A) up to the convex subgroup structure of the
o-groups G[A]. But G[A] = UAR/QA. Now, QA is a maximal ring ideal of 11^R,
considered as the ring of continuous functions on the discrete space A (see Bigard,
Keimel and Wolfenstein (1977), p. 179), and so G[A] is a real-closed ^-field (see
Gillman and Jerison (I960)). Now, we claim that T(GiA) (the values of G[A) is an
^-set. For, if

are all values, choose gt, hj e G^j such that Pt is the value of gf and Qj is the value
of hj. Then {gj < {/r,} and so there exists k e GfA] with {gf} < k < {h}). Thus, the value
of k lies between the P/s and Q/s. But ^(GU1) is just the Dedekind-MacNeille
completion of r (G u ] ) , considered as a totally ordered set. Consequently, we have
concluded that ^(G[A^) is in each case the Dedekind-MacNeille completion of an

1?1-set.

NOTE. Portions of this paper first appeared in the second author's Ph.D. dis-
sertation 'Lattice-ordered groups', written at the University of Kansas in 1976
under the direction of Dr. Paul F. Conrad.
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