THE MODULUS OF WEAKLY COMPACT MULTIPLIERS ON THE BANACH ALGEBRA $L^1(\mathcal{G})^{**}$ OF A LOCALLY COMPACT GROUP

MOHAMMAD JAVAD MEHDIPOUR

(Received 23 October 2011)

Abstract

In this paper we give a necessary and sufficient condition under which the answer to the open problem raised by Ghahramani and Lau ('Multipliers and modulus on Banach algebras related to locally compact groups', *J. Funct. Anal.* **150** (1997), 478–497) is positive.

2010 *Mathematics subject classification*: primary 43A22; secondary 47B07. *Keywords and phrases*: locally compact group, weakly compact multiplier, modulus of operator.

1. Introduction

Let \mathcal{G} be a locally compact group with a left Haar measure λ and let $L^1(\mathcal{G})$ be the Banach space of complex-valued integrable functions with respect to left Haar measure λ . With the norm $\|\cdot\|_1$ and with convolution

$$\vartheta * \omega(x) = \int_{\mathcal{G}} \vartheta(y) \omega(y^{-1}x) \, d\lambda(y) \quad (x \in \mathcal{G})$$

as product, $L^1(\mathcal{G})$ becomes a Banach algebra [9]. Let $M(\mathcal{G})$ be the Banach algebra of all bounded complex-valued regular Borel measures on \mathcal{G} equipped with the convolution product * and the total variation norm. The other Banach algebras we shall consider are defined as follows. Let $C(\mathcal{G})$ be the space of all bounded continuous complex-valued functions on \mathcal{G} with the sup-norm, and let RUC(\mathcal{G}) be the Banach space of all $f \in C(\mathcal{G})$ such that the mapping $x \mapsto f_x$ from \mathcal{G} into $C(\mathcal{G})$ is continuous, where $f_x(y) = f(yx)$ for all $x, y \in \mathcal{G}$ [4].

Let \mathfrak{A} be a Banach algebra. We denote the dual of \mathfrak{A} by \mathfrak{A}^* . If $\phi \in \mathfrak{A}^*$, then the value of ϕ at an element $\vartheta \in \mathfrak{A}$ will be written as $\langle \phi, \vartheta \rangle$. For every $n \in \mathfrak{A}^{**}$ and $\phi \in \mathfrak{A}^*$, we define the element $n\phi$ of \mathfrak{A}^* by the formula

$$\langle n\phi, \vartheta \rangle = \langle n, \phi\vartheta \rangle \quad (\vartheta \in \mathfrak{A}),$$

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

where

$$\langle \phi \vartheta, \omega \rangle = \langle \phi, \vartheta \omega \rangle \quad (\omega \in \mathfrak{A}).$$

In this paper we always endow the second dual \mathfrak{A}^{**} with the first Arens product '.', defined by

$$\langle m \cdot n, \phi \rangle = \langle m, n\phi \rangle$$

for all $m, n \in \mathfrak{A}^{**}$ and $\phi \in \mathfrak{A}^*$. This product turns \mathfrak{A}^{**} into a Banach algebra [10].

Let \mathfrak{A} be a Banach algebra; a bounded operator $T : \mathfrak{A} \to \mathfrak{A}$ is called a *left multiplier* if $T(\vartheta \omega) = T(\vartheta)\omega$ for all $\vartheta, \omega \in \mathfrak{A}$. An element $\vartheta \in \mathfrak{A}$ is said to be a *left weakly completely continuous element* of \mathfrak{A} if the left multiplier $\vartheta \Gamma : \omega \mapsto \vartheta \omega$ is a weakly compact operator on \mathfrak{A} .

A Banach lattice \mathfrak{A} is called *complete* if every nonempty subset of \mathfrak{A} bounded from above has a supremum in \mathfrak{A} ; see [3]. Hence for each bounded operator *T* from a complete Banach lattice \mathfrak{A} into a complete Banach lattice \mathfrak{B} , we may define the modulus of *T* by

$$|T|(p) = \sup\{|T(\vartheta)| : \vartheta \in \mathfrak{A}, |\vartheta| \le p\}$$

for all positive elements $p \in \mathfrak{A}$. Then |T| is bounded; indeed,

$$|T(\vartheta)| \le ||T|| \, ||\vartheta|| \le ||T|| \, ||p||$$

for all $\vartheta \in \mathfrak{A}$ and for all positive elements $p \in \mathfrak{A}$ with $|\vartheta| \le p$. It is natural to ask whether the modulus of a left multiplier on a complete Banach lattice is also a left multiplier?

The modulus of left multipliers on group algebras has been studied by Ghahramani and Lau [7]. They proved that if $T = {}_{\mu}\Gamma$ on $L^{1}(\mathcal{G})$ (respectively on $M(\mathcal{G})$) for some $\mu \in M(\mathcal{G})$, then $|T| = {}_{|\mu|}\Gamma$ on $L^{1}(\mathcal{G})$ (respectively on $M(\mathcal{G})$). To put it another way, they showed that the modulus of a left multiplier on $L^{1}(\mathcal{G})$ (respectively on $M(\mathcal{G})$) is also a left multiplier on $L^{1}(\mathcal{G})$ (respectively on $M(\mathcal{G})$). However, they proved that the modulus of a left multiplier on $L^{1}(\mathcal{G})^{**}$ is not necessarily a left multiplier. They also proved that for any $m \in L^{1}(\mathcal{G})^{**}$, $|_{m}\Gamma|$ is a left multiplier on $L^{1}(\mathcal{G})^{**}$ if and only if $|_{m}\Gamma| = |_{m|}\Gamma$. The question comes to mind immediately: under what conditions on a left multiplier $T : L^{1}(\mathcal{G})^{**} \to L^{1}(\mathcal{G})^{**}$ can we assert that |T| is a left multiplier on $L^{1}(\mathcal{G})^{**}$? Ghahramani and Lau in [7] proposed the following open problem.

PROBLEM 1.1. Let *T* be a weakly compact left multiplier on $L^1(\mathcal{G})^{**}$. Is the modulus operator |T| also a multiplier?

Weakly compact multipliers on a group algebra $L^1(\mathcal{G})$ have been studied by Sakai and Akemann. Sakai [13] showed that if \mathcal{G} is a locally compact noncompact group, then zero is the only left weakly compact multiplier on $L^1(\mathcal{G})$. Akemann [2] proved that if \mathcal{G} is compact, then every left multiplier on $L^1(\mathcal{G})$ is compact. Akemann also characterised weakly compact elements of $L^1(\mathcal{G})$. In fact, he showed that any weakly compact left multiplier on $L^1(\mathcal{G})$ is of the form $\vartheta \Gamma$ for some $\vartheta \in L^1(\mathcal{G})$.

Ghahramani and Lau [5–7] obtained some results on the question of the existence of nonzero weakly compact left multipliers on $L^1(\mathcal{G})^{**}$. Losert [11], among other things,

316

proved that the existence of a nonzero weakly compact left multiplier on $L^1(\mathcal{G})^{**}$ is equivalent to compactness of \mathcal{G} ; see also [1].

Our main purpose in this paper is to give a necessary and sufficient condition under which the answer to Problem 1.1 is positive. In fact, we show that the modulus of a weakly compact left multiplier on $L^1(\mathcal{G})^{**}$ is a left multiplier if and only if $|T| = {}_{\vartheta}\Gamma$ for some $\vartheta \in L^1(\mathcal{G})$.

2. The results

We commence this section with the main result of the paper. First, we recall the main definitions and results that we require later. Let \mathfrak{A} be a C^* -algebra. A linear functional $p \in \mathfrak{A}^*$ is called *positive* if $\langle p, \phi \rangle \ge 0$ for all positive elements $\phi \in \mathfrak{A}$. It is well known from [12] that if p is a bounded linear functional on a unital C^* -algebra, then p is positive if and only if $||p|| = \langle p, 1 \rangle$.

THEOREM 2.1. Let \mathcal{G} be a locally compact group and let T be a weakly compact left multiplier on $L^1(\mathcal{G})^{**}$. Then |T| is a left multiplier on $L^1(\mathcal{G})^{**}$ if and only if there exists $\vartheta \in L^1(\mathcal{G})$ such that $|T| = {}_{\vartheta}\Gamma$ on $L^1(\mathcal{G})^{**}$.

PROOF. Let |T| be a nonzero left multiplier on $L^1(\mathcal{G})^{**}$. Since T is weakly compact, |T| is a nonzero weakly compact left multiplier on $L^1(\mathcal{G})^{**}$; see [3]. It follows that \mathcal{G} is compact. So $L^1(\mathcal{G})$ is an ideal in $L^1(\mathcal{G})^{**}$. Hence for every $\omega_1, \omega_2 \in L^1(\mathcal{G})$,

$$|T|(\omega_1 \cdot \omega_2) = |T|(\omega_1) \cdot \omega_2 \in L^1(\mathcal{G}).$$

This shows that |T| restricted to $L^1(\mathcal{G})$ is a weakly compact left multiplier on $L^1(\mathcal{G})$. By [2], there exists $\vartheta \in L^1(\mathcal{G})$ such that $|T| = \vartheta \Gamma$ on $L^1(\mathcal{G})$. Define the function $S : L^1(\mathcal{G})^{**} \to L^1(\mathcal{G})^{**}$ by

$$S(m) = |T|(m) - \partial \Gamma(m)$$

for all $m \in L^1(\mathcal{G})^{**}$. Note that if $\iota \in C(\mathcal{G})$, then $\iota = \omega_J$ for some $\omega \in L^1(\mathcal{G})$ and $J \in C(\mathcal{G})$. Since $m \cdot \omega \in L^1(\mathcal{G})$, we have

$$\langle |T|(m) - {}_{\vartheta}\Gamma(m), \omega_J \rangle = \langle |T|(m \cdot \omega) - {}_{\vartheta}\Gamma(m \cdot \omega), J \rangle = 0.$$

Hence $\langle S(m), \iota \rangle = 0$. This implies that

$$\langle |T|(m), \iota \rangle = \langle_{\vartheta} \Gamma(m), \iota \rangle$$

for all $\iota \in C(\mathcal{G})$. We show that S = 0 on $L^1(\mathcal{G})^{**}$. Suppose that $S(m) \neq 0$ for some $m \in L^1(\mathcal{G})^{**}$. Without loss of generality, we may assume that *m* is hermitian. Let $m = m_+ - m_-$ be the Jordan decomposition of *m*. Hence there exists a positive functional *p* on $L^1(\mathcal{G})^*$ such that $S(p) \neq 0$. Choose a continuous function ψ with compact support *K* such that $||\psi||_{\infty} \leq 1$ and

$$|\langle_{\vartheta} \Gamma(p), \psi \rangle| \ge ||_{\vartheta} \Gamma(p)||_1 - (5/12)||S(p)||.$$

Let *V* be an open set with compact closure for which $K \subseteq V$. Let θ be a continuous function on *G* such that

$$0 \le \theta(\mathcal{G}) \le 1$$
, $\theta(K) = 1$, and $\theta(\mathcal{G} \setminus V) = 0$.

There exists an element ϕ in the unit ball of $L^1(\mathcal{G})^*$ such that

$$|\langle S(p), \phi \rangle| \ge \frac{23}{24} ||S(p)||$$

Define the function $\kappa : \mathcal{G} \to \mathbb{C}$ by

$$\kappa(x) := \phi(x) - \theta(x)\psi(x) + \psi(x)$$

for all $x \in \mathcal{G}$. Then κ is an element in the unit ball of $L^1(\mathcal{G})^*$ and $\langle S(p), \kappa \rangle = \langle S(p), \phi \rangle$. Choose a constant $\eta \in \mathbb{C}$ such that $\|\eta(\phi - \theta\psi) + \psi\|_{\infty} \le 1$ and

$$|\langle_{\vartheta} \Gamma(p), \eta(\phi - \theta \psi) + \psi\rangle| = |\langle_{\vartheta} \Gamma(p), \phi - \theta \psi\rangle| + |\langle_{\vartheta} \Gamma(p), \psi\rangle|.$$

Then

$$\begin{aligned} \|_{\vartheta} \Gamma(p)\|_{1} &\geq |\langle_{\vartheta} \Gamma(p), \phi - \theta \psi\rangle| + |\langle_{\vartheta} \Gamma(p), \psi\rangle| \\ &\geq |\langle_{\vartheta} \Gamma(p), \phi - \theta \psi\rangle| + \|_{\vartheta} \Gamma(p)\|_{1} - \frac{5}{12} \|S(p)\| \end{aligned}$$

This implies that

$$|\langle_{\vartheta}\Gamma(p), \phi - \theta\psi\rangle| \le \frac{5}{12} ||S(p)||.$$

Hence

$$\begin{aligned} |\langle |T|(p),\kappa\rangle| &\geq |\langle S(p),\kappa\rangle| + |\langle_{\vartheta}\Gamma(p),\psi\rangle| - |\langle_{\vartheta}\Gamma(p),\phi-\theta\psi\rangle| \\ &\geq \frac{1}{2}||S(p)|| + ||_{\vartheta}\Gamma(p)||_{1}. \end{aligned}$$

It follows that

$$|||T|(p)|| \ge \frac{1}{8}||S(p)|| + ||_{\vartheta}\Gamma(p)||_1.$$

On the other hand,

$$|||T|(p)|| = \langle |T|(p), 1 \rangle = \langle_{\vartheta} \Gamma(p), 1 \rangle \le ||_{\vartheta} \Gamma(p)||_{1}.$$

Hence that ||S(p)|| = 0 and so S(p) = 0. This contradiction shows

$$|T|(m) = {}_{\vartheta}\Gamma(m)$$

for all $m \in L^1(\mathcal{G})^{**}$. The converse is clear.

As a corollary of this theorem we have the following result.

COROLLARY 2.2. Let \mathcal{G} be a locally compact group and let m be a left weakly completely continuous element of $L^1(\mathcal{G})^{**}$. If $|_m\Gamma|$ is a left multiplier on $L^1(\mathcal{G})^{**}$, then $|m| \in L^1(\mathcal{G})$.

PROOF. Let $|_m\Gamma|$ be a left multiplier on $L^1(\mathcal{G})^{**}$. Then $|_m\Gamma| = |_m|\Gamma$ on $L^1(\mathcal{G})^{**}$; see [7, Lemma 3.6]. Invoke Theorem 2.1 to conclude that there exists $\vartheta \in L^1(\mathcal{G})$ such that $|_m|\Gamma = {}_{\vartheta}\Gamma$ on $L^1(\mathcal{G})^{**}$. Now, choose a right identity *E* of $L^1(\mathcal{G})^{**}$; see [8]. Then

$$_{|m|}\Gamma(E) = {}_{\vartheta}\Gamma(E).$$

Thus $|m| = \vartheta \in L^1(\mathcal{G})$, and the proof is complete.

Another consequence of Theorem 2.1 is the following result due to Ghahramani and Lau [7].

COROLLARY 2.3. Let \mathcal{G} be a locally compact group. If $\vartheta \in L^1(\mathcal{G})$ is a weakly completely continuous element of $L^1(\mathcal{G})^{**}$, then $|\vartheta|$ is also a weakly completely continuous element of $L^1(\mathcal{G})^{**}$. Furthermore, $|_{\vartheta}\Gamma| = |_{\vartheta}|\Gamma$ on $L^1(\mathcal{G})^{**}$.

PROOF. Let $\vartheta \in L^1(\mathcal{G})$ be a weakly completely continuous element of $L^1(\mathcal{G})^{**}$. Let *E* be a positive right identity of $L^1(\mathcal{G})^{**}$. Then

$$\begin{aligned} |_{\vartheta}\Gamma|(E) &= \sup\{|\vartheta \cdot m| : m \in L^{1}(\mathcal{G})^{**}, |m| \leq E\} \\ &\leq \sup\{|\vartheta| \cdot |m| : m \in L^{1}(\mathcal{G})^{**}, |m| \leq E\} \\ &\leq \sup\{|\vartheta| \cdot E : m \in L^{1}(\mathcal{G})^{**}, |m| \leq E\} \\ &= |\vartheta|. \end{aligned}$$

Since $|E| = E \le E$, we have $|_{\vartheta}\Gamma|(E) = |\vartheta|$. By Theorem 2.1, there exists $\omega \in L^1(\mathcal{G})$ such that $|_{\vartheta}\Gamma| = _{\omega}\Gamma$. Thus

$$|_{\vartheta}\Gamma|(E) = {}_{\omega}\Gamma(E) = \omega.$$

So $\omega = |\vartheta|$, and therefore $|\vartheta \Gamma| = |\vartheta| \Gamma$ on $L^1(\mathcal{G})^{**}$. This means that $|\vartheta|$ is a weakly completely continuous element of $L^1(\mathcal{G})^{**}$.

We give a corollary of this result.

COROLLARY 2.4. Let G be a locally compact group and let T be a weakly compact left multiplier on $L^1(G)^{**}$. If the range of T is contained in $L^1(G)$, then |T| is a left multiplier.

PROOF. Let *T* be a weakly compact left multiplier on $L^1(\mathcal{G})^{**}$ with $T(L^1(\mathcal{G})^{**}) \subseteq L^1(\mathcal{G})$. Let *E* be a right identity of $L^1(\mathcal{G})^{**}$. If $m \in L^1(\mathcal{G})^{**}$, then

$$\langle T(m - E \cdot m), \omega_J \rangle = \langle T(m - E \cdot m) \cdot \omega, J \rangle$$

= $\langle T(m \cdot \omega - E \cdot (m \cdot \omega)), J \rangle$
= 0

for all $\omega \in L^1(\mathcal{G})$ and $j \in C(\mathcal{G})$. Hence $\langle T(m - E \cdot m), \iota \rangle = 0$ for all $\iota \in C(\mathcal{G})$. Since $T(m - E \cdot m) \in L^1(\mathcal{G})$, it follows that $T(m - E \cdot m) = 0$. Hence, for any $m \in L^1(\mathcal{G})^{**}$,

$$T(m) = T(E \cdot m) = T(E) \cdot m.$$

Therefore, there exists $\vartheta \in L^1(\mathcal{G})$ such that $T = {}_{\vartheta}\Gamma$ on $L^1(\mathcal{G})^{**}$. In view of Corollary 2.3, we have $|T| = {}_{|\vartheta|}\Gamma$ on $L^1(\mathcal{G})^{**}$, proving the corollary.

[5]

M. J. Mehdipour

By Corollary 2.3, if $\vartheta \in L^1(\mathcal{G})$ is a nonzero weakly completely continuous element of $L^1(\mathcal{G})^{**}$, then $|_{\vartheta}\Gamma|$ is a nonzero weakly compact multiplier on $L^1(\mathcal{G})^{**}$. In the next result, we show that this is not true for all elements $m \in L^1(\mathcal{G})^{**}$ instead of $\vartheta \in L^1(\mathcal{G})$.

In the following, let

$$\operatorname{RUC}(\mathcal{G})^{\perp} = \{ m \in L^{1}(\mathcal{G})^{**} : \langle m, \phi \rangle = 0 \text{ for all } \phi \in \operatorname{RUC}(\mathcal{G}) \}$$

THEOREM 2.5. Let \mathcal{G} be a locally compact group and let ℓ be any element of $\operatorname{RUC}(\mathcal{G})^{\perp}$. Then $|_{\ell}\Gamma|$ is a left multiplier on $L^1(\mathcal{G})^{**}$ if and only if $\ell = 0$.

PROOF. Suppose that ℓ is a nonzero element of $\text{RUC}(\mathcal{G})^{\perp}$. Choose $\phi \in L^1(\mathcal{G})^*$ with $\langle \ell, \phi \rangle \neq 0$. Then, for every positive function ρ in $L^1(\mathcal{G})$,

$$\begin{aligned} \langle |\phi|, \rho \rangle &= \sup\{ |\langle \phi, \vartheta \rangle| : \vartheta \in L^{1}(\mathcal{G}), |\vartheta| \le \rho \} \\ &= \sup\{ \left| \int_{\mathcal{G}} \phi(x) \vartheta(x) \, d\lambda(x) \right| : \vartheta \in L^{1}(\mathcal{G}), |\vartheta| \le \rho \} \\ &\le \sup\{ \int_{\mathcal{G}} |\phi(x)|\rho(x) \, d\lambda(x) : \vartheta \in L^{1}(\mathcal{G}), |\vartheta| \le \rho \} \\ &= ||\phi||_{\infty} \int_{\mathcal{G}} \rho(x) \, d\lambda(x) = ||\phi||_{\infty} \langle 1, \rho \rangle. \end{aligned}$$

Hence $|\phi| \le ||\phi||_{\infty} 1$ and so

$$\begin{split} \rho(\mathcal{G})|\langle \ell, \phi \rangle| &\leq \rho(\mathcal{G}) \sup\{|\langle \ell, \psi \rangle| : \psi \in L^1(\mathcal{G})^*, |\psi| \leq ||\phi||_{\infty} 1\} \\ &\leq \rho(\mathcal{G}) \sup\{\langle |\ell|, |\psi| \rangle : \psi \in L^1(\mathcal{G})^*, |\psi| \leq ||\phi||_{\infty} 1\} \\ &\leq \rho(\mathcal{G}) \sup\{\langle |\ell|, ||\phi||_{\infty} 1\rangle| : \psi \in L^1(\mathcal{G})^*, |\psi| \leq ||\phi||_{\infty} 1\} \\ &= \rho(\mathcal{G}) ||\phi||_{\infty} \langle |\ell|, 1\rangle = ||\phi||_{\infty} \langle |\ell| 1, \rho \rangle. \end{split}$$

This shows that $|\ell| 1 \neq 0$. Fix $\omega \in L^1(\mathcal{G})$ with $\langle |\ell| 1, \omega \rangle \neq 0$. Since

$$\langle |\ell|1, \omega \rangle = \langle |\ell|, 1\omega \rangle = \langle |\ell| \cdot \omega, 1 \rangle,$$

it follows that $|\ell|\Gamma(\omega) \neq 0$. On the other hand we have, for any $\vartheta \in L^1(\mathcal{G})$ and $\phi \in L^1(\mathcal{G})^*$, $\vartheta \phi \in \text{RUC}(\mathcal{G})$. Thus

$$\langle \ell \cdot \vartheta, \phi \rangle = \langle \ell, \vartheta \phi \rangle = 0,$$

and hence $\ell \cdot \vartheta = 0$, which implies that $\ell \cdot m = 0$ for all $m \in L^1(\mathcal{G})^{**}$ with $|m| \le \omega$; see [3, p. 234]. Therefore,

$$|_{\ell}\Gamma|(\omega) = \sup\{|_{\ell}\Gamma(m)| : m \in L^{1}(\mathcal{G})^{**}, |m| \le \omega\} = 0.$$

Now if $|_{\ell}\Gamma|$ is a left multiplier, then from [7] we would have $|_{\ell}\Gamma|(\omega) = |_{\ell|}\Gamma(\omega)$, a contradiction. Therefore, $\ell = 0$. The converse is clear.

As suggested by a referee, it would be worth working on the following open problem: give an example of a weakly compact left multiplier T on $L^1(\mathcal{G})^{**}$ such that |T| is not a left multiplier.

320

Acknowledgement

The author would like to thank this paper's referee for his/her comments.

References

- [1] J. Aguayo and J. Sanchez, 'Weakly compact operators and the strict toplogies', *Bull. Aust. Math. Soc.* **39** (1989), 353–359.
- C. A. Akemann, 'Some mapping properties of the group algebras of a compact group', *Pacific J. Math.* 22 (1967), 1–8.
- [3] C. D. Aliprantis and O. Burkinshaw, *Positive Operator* (Academic Press, New York, London, 1985).
- [4] G. B. Folland, A Course in Abstract Harmonic Analysis (CRC Press, Boca Raton, FL, 1995).
- [5] F. Ghahramani and A. T. Lau, 'Isomorphisms and multipliers on second dual algebras of Banach algebras', *Math. Proc. Cambridge Philos. Soc.* **111** (1992), 161–168.
- [6] F. Ghahramani and A. T. Lau, 'Multipliers and ideals in second conjugate algebras related to locally compact groups', J. Funct. Anal. 132 (1995), 170–191.
- [7] F. Ghahramani and A. T. Lau, 'Multipliers and modulus on Banach algebras related to locally compact groups', J. Funct. Anal. 150 (1997), 478–497.
- [8] F. Ghahramani, A. T. Lau and V. Losert, 'Isometric isomorphisms between Banach algebras related to locally compact groups', *Trans. Amer. Math. Soc.* 321 (1990), 273–283.
- [9] E. Hewitt and K. Ross, *Abstract Harmonic Analysis I* (Springer, New York, 1970).
- [10] E. Kaniuth, A Course in Commutative Banach Algebras (Springer, New York, 2009).
- [11] V. Losert, 'Weakly compact multipliers on group algebras', J. Funct. Anal. 213 (2004), 466-472.
- [12] G. J. Murphy, C*-Algebras and Operator Theory (Academic Press, Boston, 1990).
- [13] S. Sakai, 'Weakly compact operators on operator algebras', Pacific J. Math. 14 (1964), 659–664.

MOHAMMAD JAVAD MEHDIPOUR, Department of Mathematics, Shiraz University of Technology, Shiraz 71555-313, Iran e-mail: mehdipour@sutech.ac.ir