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Distance from Idempotents to Nilpotents

Gordon W. MacDonald

Abstract. We give bounds on the distance from a non-zero idempotent to the set of nilpotents in the

set of n × n matrices in terms of the norm of the idempotent. We construct explicit idempotents and

nilpotents which achieve these distances, and determine exact distances in some special cases.

1 Introduction

Let H be a Hilbert space and let B(H) denote the space of all bounded linear opera-
tors on H with the usual operator norm: for A in B(H), the norm of A is

‖A‖ = sup{‖Ax‖ : x ∈H, ‖x‖ = 1}.

An operator E in B(H) is called idempotent if E2
= E and an operator N in B(H) is

called nilpotent Nk
= 0 for some k ∈ N. If x and y are in H, x ⊗ y denotes the rank

one operator in B(H) defined on z in H by

(x ⊗ y)(z) = 〈z, y〉x,

where 〈 · , · 〉 is the inner product on H.
We shall consider the problem of finding the shortest distance from a non-zero

idempotent to the set of nilpotents (all distances in this paper are with respect to the
operator norm) in B(H). If we denote the set of all nilpotents in B(H) by

Nil = {N ∈ B(H) : Nk
= 0 for some k ∈ N},

then the distance from an operator A to the set of nilpotents is defined to be

dist(A, Nil) = inf{‖A − N‖ : N ∈ Nil}.

We shall mainly consider the problem of computing distance to nilpotents when the
underlying Hilbert space is finite-dimensional, and denote the n-dimensional com-
plex Hilbert space by C

n. Related to this problem are two sequences:

δn = inf{‖P − N‖ : P = P2
= P∗, P 6= 0, N ∈ Nil and P, N ∈ B(C

n)}

and
δ ′

n = inf{‖E − N‖ : E = E2, E 6= 0, N ∈ Nil and E, N ∈ B(C
n)}.
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So δn (resp., δ ′
n) is the distance from the set of non-zero projections (resp., non-

zero idempotents) to the set of nilpotents in B(C
n). The analysis of δ ′ is staightfor-

ward. As shown in [5], if we define

E =
1

n















1
ε

ε2

...
εn−1















[

1 ε−1 ε−2 · · · ε−n+1
]

then E is idempotent and if we let N be the strictly upper triangular part of E (so N

is nilpotent) and take ε arbitrarily small, we have that δ ′
n ≤ 1

n
. Note also that for any

non-zero idempotent E and nilpotent N in B(C
n)

1 ≤ tr(E) = tr(E − N) ≤ ‖tr‖‖E − N‖ = n‖E − N‖,

so it must be that δ ′
n ≥ 1

n
. Hence, δ ′

n =
1
n

so it would seem that there is nothing more

to say about the idempotent case. However, in order to get the idempotent E above
close to within δ ′

n of a nilpotent, you must let its norm increase without bound. Is
this necessary? This leads to the following definition:

Definition 1.1 For n ∈ N and β a real number greater than or equal to one, define

δn(β) = inf{‖E − N‖ : E = E2, 0 < ‖E‖ ≤ β, N ∈ Nil and E, N ∈ B(C
n)}.

Since the zero operator is nilpotent, clearly, δ(β) ≤ β. Also, if a nilpotent N had

norm greater than 2β and an idempotent E had norm less than or equal to β, then

‖N − E‖ ≥ ‖N‖ − ‖E‖ ≥ β.

So when determining δn(β) we can restrict our attention to nilpotents of norm 2β or

less. This is a compact set, as is the set of idempotents with norm less than or equal to
some β, so the shortest distance δn(β) is achieved, so the above infimum is actually a
minimum.

Determination of the value of δn(β) would tell you how large you must choose

the norm of an idempotent to be within a given distance from a nilpotent. Some
properties of δn(β) are easily deduced.

Lemma 1.2 For δn(β) defined as above we have that

(i) δn(1) = δn;

(ii) if n1 ≤ n2 are two natural numbers, then δn1
(β) ≥ δn2

(β);

(iii) if 1 ≤ β1 ≤ β2 < ∞, then δn(β1) ≥ δn(β2);

(iv) as β → ∞, δn(β) → δ ′
n =

1
n

.
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Proof Since idempotents of norm 1 are projections, (i) follows, and since when
n1 ≤ n2, the embedding of B(C

n1 ) into B(C
n2 ) defined by mapping A to A ⊕ 0 is an

isometry which preserves idempotence and nilpotence, (ii) follows. Conditions (iii)
and (iv) follow directly from the definition.

The evaluation of of δn (or δn(1)) is more difficult than that of δ ′
n. The evolution

of information went somewhat as follows: Herrero [2] determined that δn converges
to 1

2
; Salinas [8] showed that

δn ≤ 1

2
+

1

2
√

n
;

Herrero [3, 4] showed that

1

2
≤ δn ≤ 1

2
+ sin

( π
⌊

n−1
2

⌋

+ 1

)

,

where ⌊x⌋ denotes the greatest integer which is less than or equal to x. Finally, this
author [6] improved the upper bound on δn by showing that νn, the distance from
the set of rank-one projections to the set of nilpotents in B(C

n), is exactly

1

2
sec

( π

n + 2

)

.

We also generalize the definition of νn in the same direction as δn.

Definition 1.3 For n ∈ N and β a real number greater than or equal to one, define

νn(β) = inf
{

‖E − N‖ : E = E2, ‖E‖ ≤ β,

rank(E) = 1, N ∈ Nil and E, N ∈ B(C
n)

}

.

The quantities νn(β) have properties analogous to those of δn(β) described in
Lemma 1.2. In addition, it follows from trace considerations (see [6]) that δn(1) =

νn(1) =
1
2

sec
(

π
n+2

)

for n = 2 or 3 and it was conjectured that δn(1) =
1
2

sec
(

π
n+2

)

for all n. Also, if the rank of an idempotent E is 2 or greater, trace considerations give

that the distance from E to the nilpotents is greater than or equal to 2
n

. From this we
obtain that for each n there exists a βn, such that δn(β) = νn(β) for β > βn.

The core technique used to obtain the formula for νn was the Arveson distance
formula (see [7]) which gives an exact formula for the distance from a matrix to

the strictly upper triangular matrices in terms of certain compressions of the matrix.
The key idea in this paper is a refinement of the Arveson distance formula, which
we develop in Section 2. In many cases this refinement, in addition to giving the
distance to upper triangular matrices, also gives information on the “closest pairs”

which achieve that distance. We then show this extension applies, at least in the
case where the matrix under consideration is a rank-one projection or idempotent.
In Section 3, we revisit the problem of determining νn and use different methods to
rediscover the above bounds. With these methods, we are now able to give a complete
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concise description of the closest pairs. We also give some slight advances towards
proving that δn =

1
2

sec
(

π
n+2

)

for all n = 1, 2, 3, . . . .

Finally in Section 4 we determine upper bounds for δn(β) (which we conjecture
are the actual values of δn(β)). These bounds are obtained by applying the new meth-
ods developed in Section 2. We conclude by using the information obtained about
δn(β) to obtain bounds for

inf
{

‖E − N‖ : E = E2, ‖E‖ ≤ β, N ∈ Nil and E, N ∈ B(H)
}

,

the distance from non-zero idempotents of norm less than or equal to β to the nilpo-
tents in the case where H is an infinite dimensional Hilbert space.

2 Extending the Arveson Distance Formula

The Arveson distance formula ([7]) in its full generality gives the distance from an
operator T in B(H) to a given nest algebra. We are interested only in the special case
where the nest algebra is Tn(C), the set of all strictly upper triangular n × n matrices

over C. In that case the distance formula is as follows.

Theorem 2.1 (Arveson Distance Formula) Let {ei}k
i=1 denote the standard basis for

C
n and let P0 = 0 and Pi =

∑i
j=1 e j ⊗ e j for i = 1, . . . , n denote the orthogonal

projection onto the i-dimensional subspace spanned by {e j}i
j=1. Then, for an arbitrary

operator A in B(C
n), the distance from A to the set of operators whose matrix with

respect to the standard basis is strictly upper triangular is

dist(A, Tn(C)) = inf{‖A − T‖ : T ∈ Tn(C)} = max
1≤i≤k

‖P⊥
i−1APi‖.

When, for a given operator A, all the compressions cited in the Arveson distance
formula have equal norm, we would like to show the difference of A and its closest
upper-triangular approximation is a multiple of a unitary. We will need the following

lemma.

Lemma 2.2 Suppose B is an n × n matrix, A is a k × n matrix, y is in C
k and that

(i) the (n + k) × n matrix
[

B

A

]

has orthonormal columns;

(ii) the k × (n + 1) matrix
[

A y
]

has norm one.

Then there exists x in C
n such that the matrix

[

B x

A y

]

has orthonormal columns.
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Proof Since
[

B
A

]

has orthonormal columns, B∗B + A∗A = In so B∗B = In − A∗A.
Hence, for any vector v in C

n,

‖Bv‖2
= 〈B∗Bv, v〉 = 〈(In − A∗A)v, v〉 = ‖(In − A∗A)

1

2 v‖2.

Thus, we can define a linear map L : C
n → C

n by

L(Bv) = (In − A∗A)
1

2 v

and L is an isometry on the range of B and so can be extended to a unitary on C
n

satisfying LB = (In − A∗A)
1

2 . Now

[

L 0
0 Ik

] [

B x

A y

]

=

[

(In − A∗A)
1

2 x ′

A y

]

,

where Lx = x ′, so with no loss of generality we may assume B = (In − A∗A)
1

2 .
Now we also have that

[

A y
]

has norm one, so yy∗ ≤ Ik − AA∗ and the associated quadratic forms are equal at
some unit vector. Thus, similarly to above, the functional ϕ : Ran((Ik −AA∗)

1

2 ) → C

defined by

ϕ((Ik − AA∗)
1

2 v) = 〈v, y〉
has norm one and so, by defining ϕ to be zero on the orthogonal complement of the
range of (Ik − AA∗)

1

2 , we have a norm one functional ϕ defined on C
k. By the Riesz

representation theorem, there exists a vector z of norm one such that ϕ(v) = 〈v, z〉
and so (Ik − AA∗)

1

2 z = y. Let x ′
= −A∗z. Then we claim

Z =

[

(In − A∗A)
1

2 −A∗z

A y

]

has orthonormal columns. This is verified by confirming that Z∗Z = I. Note that

Z∗Z =

[

(In − A∗A)
1

2 A∗

−z∗A y∗

] [

(In − A∗A)
1

2 −A∗z

A y

]

=

[

(In − A∗A) + A∗A −(In − A∗A)
1

2 A∗z + A∗y

−z∗A(In − A∗A)
1

2 + y∗A z∗AA∗z + y∗y

]

.

The (1, 1) entry above clearly equals In and using that z is of norm one and (Ik −
AA∗)

1

2 z = y, the (2, 2) entry simplifies to

z∗AA∗z + z∗(Ik − AA∗)
1

2 (Ik − AA∗)
1

2 z = z∗z = Ik.

Using that A∗(In −AA∗)
1

2 = (In −A∗A)
1

2 A∗, the (1, 2) entry (and hence, similarly
for its adjoint in the (2, 1) entry) simplifies to

−A∗(In − AA∗)
1

2 z + A∗y = −A∗y + A∗y = 0,

so the lemma is established.
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We are now ready to prove our key structural theorem.

Theorem 2.3 Let {ei}k
i=1 denote the standard basis for C

n and let P0 = 0 and Pi =
∑i

j=1 e j ⊗ e j for i = 1, . . . , j denote the orthogonal projection onto the i-dimensional

subspace spanned by {e j}i
j=1. If, for an arbitrary operator A ∈ B(C

n), γ = ‖P⊥
i−1APi‖

is a constant for i = 1, 2, . . . , n, then there is a unitary operator U and a strictly upper

triangular operator T such that A − T = γU .

Proof By scaling A, there is no loss of generality in assuming that γ = 1. The proof
proceeds as follows: Consider the submatrix of A consisting of the first two columns

of A. By Lemma 2.2 we can modify the (1, 2) entry so that the resulting matrix has
two orthonormal columns. Considering the matrix consisting of this matrix and
the third column of A, we can again apply Lemma 2.2 to adjust the (3, 1) and (3, 2)
entries so that resulting matrix has three orthonormal columns. We continue in this

manner, modifying entries above the main diagonal, until we have finished all the
columns and have a unitary matrix which is of the form A − T where T is upper
triangular.

Remark 2.4 Theorem 2.3 may be of independent interest, however it may not be
applicable to many chains of subspaces beyond maximal chains in C

n as in Theorem
2.3. The theorem does not hold for non-maximal chains, as can be seen by consid-
ering the chain

{

{0}, C
2 ⊕ {0}, C

3
}

and choosing a 3 × 3 matrix A whose first two

columns are not orthogonal but are a norm one operator and whose last row has
norm one (for example A = e1 ⊗ e3). The defect to orthogonality is in the second
column and cannot be corrected by adjusting the last column. It also does not hold
for infinite chains as there is an index obstruction, as can be seen on ℓ2(N) by taking

Pi =
∑i

j=1 e j ⊗ e j for i = 1, 2, . . . and taking A to be the forward unilateral shift.

As shown in [6, Lemma 3], in the case of an orthogonal projection P of rank one,
there is a choice of basis for which the compressions in Theorem 2.3 are equal and

so we can assume Theorem 2.3 applies. Hence, [6, Theorem 6] gives all closest pairs
(up to unitary equivalence). It is also a consequence of Theorem 6 that there is only
one closest pair up to unitary equivalence, and that any closest pair {P, N} satisfies

P − N = νnU for some unitary. In the next section we shall provide an alternate
description of these unitaries based on spectral information and use this to give a
new construction of closest pairs, one that can more easily be generalized to other
cases.

First, however we would like a result similar to [6, Lemma 3] which applies to
general idempotents. As with projections, the Arveson distance formula and the fact

that all rank-one idempotents of a given norm are unitarily equivalent gives that

νn(β) = inf
{

max
1≤i≤n

‖P⊥
i−1e‖‖Pif‖ : e, f ∈C

n, ‖e‖ =

√

β, ‖f‖ =

√

β, 〈e, f〉 = 1
}

where Pi is the projection of a vector onto its first i coordinates. Using this we can
prove the following.
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Lemma 2.5 The above infimum is achieved when e and f are chosen so that

‖P⊥
i−1e‖‖Pif‖ are equal for all i = 1, 2, . . . , n.

Proof Let

e =











a1

a2

...
an











and f =











b1

b2

...
bn











.

Then νn(β)2 is the infimum of

max
1≤i≤n

(

n
∑

j=i

|a j |2
)(

i
∑

j=1

|b j |2
)

taken over all {ai}n
i=1 and {b j}n

j=1 where

(

n
∑

j=1

|a j |2
)(

n
∑

j=1

|b j |2
)

= β2 and

n
∑

j=1

a jb j = 1.

Now suppose that we have a sequence

Xi =

(

n
∑

j=i

|a j |2
)(

i
∑

j=1

|b j |2
)

for i = 1, 2, . . . , n

for some
(

n
∑

j=1

|a j |2
)(

n
∑

j=1

|b j |2
)

= β2 and

n
∑

j=1

a jb j = 1

and where not all terms are equal. Step (1) is to let i∗ be an index where: (1) the
maximum is achieved; and (2) the maximum is not achieved at index i∗ + 1. So

(

n
∑

j=i∗

|a j |2
)(

i∗
∑

j=1

|b j |2
)

>
(

n
∑

j=i∗+1

|a j |2
)(

i∗+1
∑

j=1

|b j |2
)

.

(If no such i∗ exists, this means that the maximum is achieved at some i∗ and at all
indices greater than i∗ and so we go immediately to step 2 below.) First suppose that
bi∗ does not equal zero. Then we shall adjust ai∗ , ai∗+1, bi∗ and bi∗+1 to a ′

i∗ , a ′
i∗+1, b ′

i∗

and b ′
i∗+1so that

|ai∗ |2 + |ai∗+1|2 = |a ′
i∗ |2 + |a ′

i∗+1|2,

|bi∗ |2 + |bi∗+1|2 = |b ′
i∗ |2 + |b ′

i∗+1|2,

ai∗bi∗ + ai∗+1bi∗+1 = a ′
i∗b ′

i∗ + a ′
i∗+1b ′

i∗+1,
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so that the new vectors e ′ and f ′ that we create satisfy the above conditions which
guarantee that e ′ ⊗ f ′ is idempotent and so that the maximum of the Xi either de-

creases, or at least is achieved at one less index (namely i∗). Note that the above
adjustments will only change the value of Xi∗ and Xi∗+1 and no other X j . The adjust-
ments we make are best described geometrically in C

2. Let

a =

[

ai∗

ai∗+1

]

and b =

[

bi∗

bi∗+1

]

.

Since bi∗ is not zero, we can rotate a and b by a small fixed angle to

a ′
=

[

a ′
i∗

a ′
i∗+1

]

and b ′
=

[

lb ′
i∗

b ′
i∗+1

]

so that b ′
i∗ is decreased and so the new X ′

i∗ is decreased but still greater than X ′
i∗+1

(which may be slightly increased). If bi∗ does equal zero, then it is clear that we must
have that Xi∗−1 = Xi∗ and ai∗−1 = 0. Applying a similar rotation to the vectors

a =

[

ai∗−1

ai∗

]

=

[

0
ai∗

]

and b =

[

bi∗−1

bi∗

]

=

[

bi∗−1

0

]

we can lower the value of both Xi∗−1 and Xi∗ and keep them equal and leave the
remaining Xi unchanged.

Step (2) is to let i∗ be an index where: (1) the maximum is achieved; and (2) the
maximum is not achieved at index i∗ − 1, and do a similar analysis. The argument is

slightly changed in the case i∗ = 1 or n, but in those cases it is easier to decrease the
value of Xi∗ , since the degenerate cases where a entry is zero cannot occur.

Thus we have either decreased the maximum or decreased the index at which the
maximum occurs. We may repeat this process until all terms are equal, and so the
lemma follows.

From this Lemma and Theorem 2.3, it follows that in the calculation of νn(β) as
well, we may assume that closest pairs {E, N} satisfy E − N = νn(β)U for some
unitary U . In Section 4, we work from unitaries to find bounds for νn(β), which we

conjecture are sharp, and describe all closest pairs {E, N} which achieve this distance.
It is not at all clear what unitaries should be chosen, but the projection case gives us
some hints.

3 Special Case: Projections to Nilpotents

As mentioned in the introduction, it was shown in [6] that the shortest distance from
the set of rank-one projections to nilpotents in Mn(C) is νn =

1
2

sec
(

π
n+2

)

. Explicit

descriptions of some closest pairs which achieve that distance were also given. In
this section we use new methods, based on the analysis of the unitaries arising from
Theorem 2.3, to obtain the values of νn and completely characterize the closest pairs,
i.e., {P, N} where P is a projection and N is a nilpotent in Mn(C), and ‖P−N‖ = νn.
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Let α =
1
2

sec
(

π
n+2

)

, let {ei}n
i=1 denote the standard basis for C

n, and define unit
vectors {xi}n

i=1 in C
n as follows

x1 = e1, xi = cos θiei−1 + sin θiei for i = 2, . . . , n + 1,

where cos θ1 = α and cos θi+1 sin θi = α. (So if f (t) =
α2

1−t2 , then cos(θi) =
√

f (i)(0).) As shown in [6], f (n)(0) = 1, so xn+1 is well defined in C
n by the above

formula, with xn+1 = en. It is clear from the above construction that

〈xi , x j〉 =











1 if i = j,

α if |i − j| = 1,

0 if |i − j| > 1,

for i, j = 1, 2, . . . , n + 1. We shall use these vectors to construct some special unitary
matrices.

Theorem 3.1 Define a linear operator U in B(C
n) by setting U xi = xi+1 for i =

1, 2, . . . , n and extending by linearity. Then U has the following properties:

(i) U is unitary;

(ii) U n+2
= (−1)n+1I;

(iii) the spectrum of U consists of all (n + 2)-th roots of (−1)n+1 except the two closest

to −1.

Proof (i) Given any two vectors u and v in C
n, we can write them as a linear com-

binations of {xi}n
i=1 (since this is a basis for C

n) and if

u =

n
∑

i=1

uixi and v =

n
∑

j=1

v jx j ,

then

〈U u,U v〉 =

n
∑

i=1

n
∑

j=1

uiv j〈U xi,U x j〉 =

n
∑

i=1

n
∑

j=1

uiv j〈xi+1, x j+1〉

=

n
∑

i=1

n
∑

j=1

uiv j〈xi, x j〉 = 〈u, v〉

and so U is unitary.

(ii) We have that U je1 = x j+1 for j = 1, 2, . . . , n. Let us define xn+2 to be U n+1e1.
If

xn+2 =











x1

x2

...

xn











,
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then for j = 1, 2, . . . , n,

〈xn+2, x j+1〉 = x j cos θ j + x j+1 sin θ j ,

and using the fact that U is unitary we have that

〈xn+2, x j+1〉 = 〈U n+1e1,U je1〉 = 〈U ne1,U j−1e1〉

= 〈xn+1, x j〉 =

{

α if j = n,

0 otherwise,

for j = 1, 2, . . . , n. So we get an upper triangular linear system in the coefficients of
xn+2,











cos θ1 sin θ1 0 · · · 0 0
0 cos θ2 sin θ2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1





















x1

x2

...
xn











=











0
...
0

cos θ1











,

which can solved by back-substitution to obtain that

xk = (−1)n−kα

n−1
∏

i=k

tan θi .

Then we define xn+3 to be U n+2e1. If we let its coordinates be

xn+3 =











y1

y2

...
yn











,

then, similarly to above, using the fact that U is unitary, and considering the inner
products 〈xn+3,U je1〉 for j = 2, 3 . . . , n+2, we obtain the linear system in the entries

of xn+3















0 cos θ2 sin θ2 0 · · · 0 0
0 0 cos θ3 sin θ3 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 1

(−1)n+1 cos θ1 · · · · · · · cos θ1





























y0

y1

y2

...
yn















=















0
0
...
0

cos θ1















.

It is clear by inspection that (−1)n+1e1 is the solution, so U n+2e1 = (−1)n+1e1

and hence U n+2U je1 = (−1)n+1U je1 for all j = 0, 1, 2, . . . , n − 1, and so U n+2
=

(−1)n+1I.
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(iii) By (ii), the spectrum of U is contained in the set of (n+2)-th roots of (−1)n+1.
Let ρ be such that ρn+2

= (−1)n+1 and let

vρ =

n+1
∑

j=0

ρ jU je1.

Then

U vρ =

n+1
∑

j=0

ρ jU j+1e1 =

n+1
∑

j=1

ρ j−1U je1 + ρn+1U n+2e1

= ρ

n+1
∑

j=1

ρ jU j e1 + ρn+1(−1)n+1e1 = ρvρ.

We must consider the possibility that vρ = 0. If this were the case, then

0 = 〈vρ, vρ〉 =

n+2
∑

i, j=0

ρiρ− j〈U ie1,U je1〉

=

〈

W











1
ρ
...

ρn+1











,











1
ρ
...

ρn+1











〉

,

where

W =

















1 α 0 0 · · · (−1)n+1α

α 1 α 0 · · · 0

0 α 1 α · · · 0
...

. . .
. . .

...

(−1)n+1α 0 · · · 0 α 1

















So vρ will be zero when

W











1
ρ
...

ρn+1











= 0.

Solving the homogeneous system, we obtain that αρ + 1 + αρ = 0, or equivalently

Re(ρ) = − cos( π
n+2

). These correspond to the two (n + 2)-th roots of (−1)n+1 which
are closest to −1.

With this theorem we can recapture the results on the shortest distance from rank-
one projections to nilpotents, and can classify closest pairs.
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Theorem 3.2 In Mn(C), the shortest distance from a rank-one projection P = e ⊗ e,

where e is a unit vector in C
n, to the set of nilpotents is νn =

1
2

sec
(

π
n+2

)

and the closest

nilpotents to P are of the form P − νnU where U is constructed as in Theorem 3.1, using

any orthonormal basis for C
n whose first element is e.

Proof The first part of the theorem is Theorem 1 of [6]. Also, as shown in [6],

under the assumption that closest pairs {P, N} satisfy P−N = νnU for some unitary
U (which by Theorem 2.3 we now know to be true), all closest pairs are unitarily
equivalent.

If P = e1 ⊗ e1, then take U to be the unitary in Theorem 3.1. To verify that

e1 ⊗ e1 − αU is nilpotent, apply it to the basis {U− je1}n
j=1.

(e1 ⊗ e1 − αU ) U−1e1 = 〈e1,U e1〉e1 − αe1 = 0,

while for j = −2,−3, . . . ,−n,

(e1 ⊗ e1 − αU )U− j e1 = 〈e1,U je1〉e1 − αU− j+1e1 = −αU− j+1e1,

so with respect to this basis e1 ⊗ e1 − αU is −α times a single Jordan cell and hence
is nilpotent.

For general P = e ⊗ e, conjugate by any unitary which maps e to e1 to obtain the
result.

As mentioned above, in [6] it is shown that, at least in dimensions 1, 2 and 3, the
closest projection to the set of nilpotents is of rank one, and it is conjectured that
this is always the case. The following estimation allows us to obtain the result for

dimension 4.

Lemma 3.3 In Mn(C), if P is a projection of rank k and N is nilpotent, then

‖P − N‖ ≥
√

k

2n

(

1 +
k

n

)

.

Proof We shall use ‖ · ‖2 to denote the Hilbert–Schmidt norm and ‖ · ‖1 to denote
the trace norm. If the rank of a projection P is k and N is any nilpotent, upper
triangularize N and with respect to this triangularization let ∆(X), L(X) and U(X)
denote the diagonal, lower triangular and upper triangular parts of any operator X,

respectively. Then

‖P − N‖2 ≥ 1

n
‖P − N‖2

2 =
1

n

(

‖L(P)‖2
2 + ‖∆(P)‖2

2 + ‖U(P − N)‖2
2

)

≥ 1

n

(

‖L(P)‖2
2 + ‖∆(P)‖2

2)

≥ 1

2n

(

‖L(P)‖2
2 + ‖∆(P)‖2

2 + ‖U(P)‖2
2

)

+
1

2n
‖∆(P)‖2

2

=
1

2n

(

‖P‖2
2 + ‖∆(P)‖2

2

)
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Now a rank k projection has Hilbert–Schmidt norm
√

k, and applying the Holder

inequality we have k = tr(∆(P)) ≤ ‖∆(P)‖1 ≤ ‖∆(P)‖2‖I‖2 so ‖∆(P)‖2
2 ≥ k2

n
.

Substituting these and taking square roots we have that

‖P − N‖ ≥
√

k

2n

(

1 +
k

n

)

Theorem 3.4 In M4(C), the shortest distance from the non-zero projections to the

nilpotents is achieved by a rank-one projection and is δ4 = ν4 =
1√

3
.

Proof Apply Lemma 3.3 with n = 4 and k > 1. The computation shows that
a projection of rank greater than 1 must be at least .612 away from the nilpotents,

while Theorem 1 of [6] allows us to get a closest rank-one projection within 1√
3
.

Closer analysis of the estimate from Lemma 3.3 shows that the rank of the clos-

est projection to nilpotents can be no more than one-third of the dimension of the
underlying space.

4 Idempotents to Nilpotents

Starting from a unitary, we would like to mimic the construction from the projection
case in Section 3 for the case of a general idempotent. The fact that closest pairs
{E, N}, (E idempotent of rank one and N nilpotent) have the property that E − N is

a multiple of a unitary imposes spatial conditions.

Lemma 4.1 For E = x ⊗ y a rank-one operator, N a nilpotent operator and U a

unitary operator in Mn(C), and γ ∈ C, if E − N = γU , then

(i) on the n − 1 dimensional subspace y⊥, −N = γU ;

(ii) N has degree of nilpotency n;

(iii) if z ∈ ker(N) then U z ∈ Ran(E).

Proof (i) is immediate. If z is in ker(N), then Ez = γU z , so (iii) is established,
and if there were two linearly independent vectors in ker(N), then applying U would
give two linearly independent vectors in Ran(E). Hence the nullity of N is 1, and so
from Jordan canonical form, N must consist of a single Jordan cell and have degree

of nilpotency n.

This lemma tells us that the following construction is canonical.

We begin with a unitary matrix U in Mn(C) with a cyclic vector e of norm one.
Define a nilpotent matrix N as the Jordan cell (the matrix of zeroes and ones with the

only nonzero entries on the first superdiagonal) with respect to the basis {U− je}n
j=1.

So the restriction of U − N to the n − 1 dimensional subspace
∨n

j=2 U− je is 0 and

(U − N)U−1e = e.

Let y be a vector in (
∨n

j=2 U− jet)⊥ with 〈e, y〉 = 1 and define E = e ⊗ y.
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Lemma 4.2 E has the following properties:

(i) E is idempotent of norm ‖y‖.

(ii) The distance from E to the set of nilpotents is 1
| tr(U )| .

Proof Part (i) is obvious. Taking N1 = −〈U−1e, y〉N , we see that

E − N1 = e ⊗ y + 〈U−1e, y〉N.

If j = 2, 3, . . . , n, then U− je ⊥ y and U and N act identically on U− je, so

(E − N1)U− j e = 〈U−1e, y〉NU− je = 〈U−1e, y〉UU− je;

while U−1e is in the kernel of N1, so

(E − N1)U−1e = (e ⊗ y)U−1e = 〈U−1e, y〉e,

so E − N1 and 〈U−1e, y〉U agree on a basis and hence are equal.

To complete the proof, take trace of both sides of E−N1 = 〈U−1e, y〉U . Since E is
a rank-one idempotent, its trace is 1 and N1 is nilpotent and so has trace zero. Hence
tr(U ) =

1
〈U−1e,y〉 .

We will want to compute the norm of the vector ‖y‖. We have that y satisfies the
n independent linear equations: 〈U− je, y〉 = 0 for j = 2, 3, . . . , n and 〈U−1e, y〉 =

1
tr(U )

, so we can find y and hence ‖y‖ by solving this system.

So we want to choose unitaries so that the above construction will give good

bounds. In the projection case the eigenvalues of the unitary had good separation
properties, that is, the angle between adjacent eigenvalues on the unit circle was con-
stant. We shall use similar eigenvalue properties in the general idempotent case, but
first we need to interpret the above formulas in terms of the eigenvalues of U .

Set

U =











λ1

λ2

. . .

λn











and e =











lx1

x2

...
xn











where {λi}n
i=1 lie on the unit circle in the complex plane, and all xi are distinct (so e

is cyclic for U ) and
∑n

i=1 |xi|2 = 1. Then

U ke =













λk
1x1

λk
2x2

...

λk
nxn













.
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Let D denote the n×n diagonal matrix with λixi in the (i, i) entry and z = Dy. Then
the above equations for y translate into the following linear system for z:



















1 1 1 · · · 1
λ1 λ2 λ3 · · · λn

λ2
1 λ2

2 λ2
3 · · · λ2

n
...

...
...

. . .
...

λn−2
1 λn−2

2 λn−2
3 · · · λn−2

n

λn−1
1 λn−1

2 λn−1
3 · · · λn−1

n



















z =















0
0
...
0
1

∑

n

i=1
λi















.

The coefficient matrix above is a Vandermonde matrix, and using the well-known

formula for the determinant of a Vandermonde matrix V and Cramer’s rule, we ob-
tain that

|z j |2 =
1

|
∑n

i=1 λi |2
( 1

∏

i 6= j |λ j − λi|2
)

,

so

|y j |2 =
1

|x j |2|
∑n

i=1 λi|2
( 1

∏

i 6= j |λ j − λi |2
)

and hence

‖E‖ = ‖y‖ =
1

|
∑n

i=1 λi|

n
∑

j=1

√

1

|x j |2
∏

i 6= j |λ j − λi|2
.

We want to achieve a given distance with an idempotent of minimal norm, so we
choose the cyclic vector e in such a way as to minimize the norm of E. This can

be done via a standard Lagrange multiplier method with variables t j = |x j |2 for
j = 1, 2, . . . , n, where, if

A j =
1

|∑n
i=1 λi|2

( 1
∏

i 6= j |λ j − λi|2
)

,

the objective function is

f (t1, t2, . . . , tn, λ) =

n
∑

i=1

Ai

ti

− λ
(

n
∑

i=1

ti

)

.

This gives us our choice of

ti =

√
Ai

(

∑n
j=1

√

A j

) 2

which, when substituted into the formula for the norm of E, gives us

‖E‖ =
1

|
∑n

i=1 λi |

n
∑

j=1

1
∏

i 6= j |λ j − λi|
.
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We want |∑n
i=1 λi | to be as large as possible, to get close to nilpotents, But if they

are too close the norm of E will blow up. It seems reasonable that, as in the pro-

jection case, equally spaced eigenvalues on some arc of the unit circle are desirable
for U . Since the formulas for both ‖E‖ and dist(E, Nil) are invariant under rotation
of the eigenvalues {λi}n

i=1, with no loss of generality we may assume that the eigen-
values {λi} of the unitary matrix U sum to a positive real number. This leads to the

following geometric conjecture.

Conjecture 4.3 Fix β ≥ 1 and let λ1, λ2, . . . , λn be n points (n ≥ 2) on the unit

circle which sum to β. For each j = 1, 2, . . . , n consider D j which is the reciprocal of the

product of the distances from λ j to each of the other λi . We conjecture that D1 + D2 +

· · · + Dn is minimized when λ1, λ2, . . . , λn are equally spaced on some arc of the unit

circle.

This conjecture is vacuously true for n = 2 and can be verified for n = 3 by setting

λ1 = e2ix, λ2 = 1 and λ3 = e−2i y . (Of course, a suitable rotation can be applied so
that λ1 + λ2 + λ3 is a positive real number). Then it suffices to show that

D1 + D2 + D3 =
1

sin(x) sin(y)
+

1

sin(x) sin(x + y)
+

1

sin(y) sin(x + y)
= f (x, y)

subject to the constraint |e2ix + 1 + e−2i y| = 1, which simplifies to

cos(x) cos(y) cos(x + y) =
β2 − 1

8
,

has its minimum where x = y. In this case, the computations are unpleasant but
manageable. In higher dimensions, experimental evidence points to the truth of the

conjecture but a computational proof seems intractable.
Assuming the conjecture, we want to take the eigenvalues of U to be e2i jθ for j =

0, 1, . . . , n − 1 for some fixed angle 2θ. (The notational choice of 2θ rather than θ

is just to slightly simplify formulas to follow, and of course these eigenvalues could

be rotated so their sum is a positive real number without changing the calculation of
‖E‖ or dist(E, Nil).)

Substituting these choices for the eigenvalues, and using standard trigonometric
identites, we obtain the following bounds:

‖E‖ =
sin θ

sin nθ

1

2n−1

( n
∑

k=1

1
(
∏k−1

j=1 sin jθ
)(

∏n−k
j=1 sin jθ

)

)

(where empty products are interpreted as 1) and

dist(E, Nil) ≤ sin θ

sin nθ
.

Proving the above conjecture is the only impediment to confirming that the above
bounds actually give νn(β).
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For n = 2, there is only one choice of eigenvalues up to rotation for each fixed β,
and this gives that

‖E‖ =
1

sin 2θ

and

dist(E, Nil) ≤ 1

2 cos θ
.

So setting ‖E‖ = β and solving we obtain that

dist(E, Nil) =
1√
2

1
√

1 +
√

1 − β−2

and so

δ2(β) =
1√
2

1
√

1 +
√

1 − β−2

.

Note that this gives the known values δ2(1) =
1√

2
and limβ→∞ δ2(β) =

1
2
. Expand-

ing at the point β = 1 we have that

δ2(β) =
1√
2

+
1

2
√

2
(β − 1) + o(β − 1)2.

The above formulas can be used to numerically determine any value νn(β) (as-
suming Conjecture 4.3), or at least give bounds on the value of νn(β). They also give
parametric descriptions of the curves y = νn(x) as

x =
sin θ

sin nθ

1

2n−1

( n
∑

k=1

1
(
∏k−1

j=1 sin jθ
)(

∏n−k
j=1 sin jθ

)

)

,

y =
sin θ

sin nθ
,

where the parameter θ ranges in the interval 0 < θ ≤ π
n+2

. As θ varies in this interval,
x, which is the norm of the idempotent, ranges in the interval 1 ≤ x < ∞ and y,

which is the distance to nilpotents, ranges in the interval 1
n

< y ≤ 1
2

sec( π
n+2

).

Figure 1 is a plot of these curves for n = 2, 3, . . . , 100, which gives upper bounds
on the corresponding y = νn (β), and assuming Conjecture 4.3 are actually plots

of y = νn (β). The limiting curve gives a bound (which we conjecture is exact)
on the distance from rank-one idempotents of norm β to the nilpotents in infinite
dimensional Hilbert space.

A better view of the functions may be obtained by applying the function t =
1
x

to the x coordinate. Plots of these functions (which bound y = νn

(

1
β

)

) are given in

Figure 2 for n = 2, 3, . . . , 100.

Both these plots were generated by plotting the parametric curves described above
using Maple. It is perhaps surprising that, as can be seen from the above plots, the
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norm of an idempotent does not have to be very large (on the order of 2 to 3 depend-
ing on n) to be within .2 of a nilpotent, but must be very large (on the order of 25 to

30 depending on n) to be within .1 of an idempotent.
Based on numerical evidence derived from the above formulas, we make the fol-

lowing conjecture regarding the behavior of

ν∞(β) = inf
{

‖E − N‖ : E = E2, ‖E‖ ≤ β,

rank(E) = 1, N ∈ Nil and E, N ∈ B(H)
}

where H is a separable, infinite-dimensional Hilbert space.

Conjecture 4.4 For β large,

ν∞(β) ≈ 1

2 ln(β)

while for β near 1,

ν∞(β) ≈ 1

2

(

1 −
√

β − 1
)

.

Except for low dimensional cases and large β cases, it is still open as to whether

δn(β) = νn(β), that is: “Is the closest idempotent (of a given norm) to the set of
nilpotents in B(H) always rank-one?” It is virtually certain that this is the case, but
the proof is elusive. Perhaps the fact that in Mn(C), the closest pairs {Eβ , Nβ}β≥1

(where Eβ is a rank-one idempotent of norm β and Nβ is the closest nilpotent) form

a continuous path, and are closest pairs among idempotents of all ranks when β is
large, can be exploited to verify that δn(β) = νn(β).

Since every rank-one operator is either nilpotent or a multiple of an idempotent,
once Conjecture 4.3 is established, the distance to the set of nilpotents of any rank-

one operator will be confirmed. Determination of the distances of higher-rank oper-
ators to nilpotents is more difficult. However it seems reasonable that for any non-
nilpotent operator A, if N is the nilpotent closest to A, then A − N is a multiple of a
unitary. If so, then at least in the case where A is normal, there is perhaps hope that

methods similar to those in this paper could yield a general distance-to-nilpotents
formula, in terms of the spectral data of A. It is known [1] that this distance should
have something to do with the width of the gaps between eigenvalues.

We close by noting that since the eigenvalues of the unitary U in our construction

can, with no loss of generality, be taken to be symmetric about the real line, all the
constructed matrices U , E and N which satisfy E − N = νn(β)U can be realized in
Mn(R). Thus it seems that, as in the projection case, the distance from an idempotent
of a given norm to the nilpotents is independent of whether we are over the real or

complex field.
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