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Abstract

As shown by Gluck in 1962, the diffeotopy group of S1 × S2 is isomorphic to Z2 ⊕ Z2

⊕ Z2. Here an alternative proof of this result is given, relying on contact topology.
We then discuss two applications to contact topology: (i) it is shown that the
fundamental group of the space of contact structures on S1 × S2, based at the standard
tight contact structure, is isomorphic to Z; (ii) inspired by previous work of Fraser, an
example is given of an integer family of Legendrian knots in S1 × S2#S1 × S2 (with
its standard tight contact structure) that can be distinguished with the help of contact
surgery, but not by the classical invariants (topological knot type, Thurston–Bennequin
invariant, and rotation number).

1. Introduction

The diffeotopy group D(M) of a smooth manifold M is the quotient of the diffeomorphism
group Diff(M) by its normal subgroup Diff0(M) of diffeomorphisms isotopic to the identity.
Alternatively, one may think of the diffeotopy group as the group π0(Diff(M)) of path components
of Diff(M), since any continuous path in Diff(M) can be approximated by a smooth one, i.e.
an isotopy. We use this terminology to emphasise that we work in the differentiable category
throughout. In the topological realm, with diffeomorphisms replaced by homeomorphisms, one
speaks of the homeotopy group. In either situation, the more popular term is mapping class group,
sometimes with the attribute ‘extended’ in order to indicate that orientation-reversing maps are
allowed.

Quite a bit is known about the diffeotopy groups of 3-manifolds. The theorem of Cerf [Cer68]
says that D(S3) = Z2. The diffeotopy groups of lens spaces were computed independently by
Bonahon [Bon83] and Hodgson and Rubinstein [HR85]. For other known results, open questions,
and an extensive bibliography, see Kirby’s problem list [Kir97], especially Problems 3.34–3.36.

The diffeotopy group of S1 × S2 was determined by Gluck [Glu62]. He showed that
D(S1 × S2)∼= Z2 ⊕ Z2 ⊕ Z2. (Actually, Gluck dealt with the homeotopy group, but in dimension
three this amounts to the same; see the discussion in [HR85, § 5.8].) Our aim in this note is
to derive that result by contact topological means. The main ingredients are the classification
of contact structures on S1 × S2 up to isotopy, a result of Colin about isotopies of 2-spheres in
contact 3-manifolds, and a theorem of Giroux concerning the space of contact elements on R2
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The diffeotopy group of S1 × S2

and its contactomorphism group. This may indicate to what extent one might hope to generalise
our method to other 3-manifolds.

The key point in the determination of the diffeotopy group of S1 × S2 is to show that
any diffeomorphism acting trivially on homology is isotopic to either the identity or a
diffeomorphism r of order two (up to isotopy) that will be described in the next section. This
argument will take up §§ 3–7.

We then put this result to use in contact topology. In § 8 we show that the fundamental
group of the space of contact structures on S1 × S2, based at the standard tight contact
structure ξst, is isomorphic to Z. This follows essentially from the observation that the mentioned
diffeomorphism r is isotopic to a contactomorphism rc of infinite order in the contactomorphism
group (as was noticed previously by Gompf [Gom98]).

In § 9 we give an explicit description of an infinite family of homologically trivial Legendrian
knots in (S1 × S2#S1 × S2, ξst#ξst), all of which have the same topological knot type, Thurston–
Bennequin invariant, and rotation number, but which are pairwise not Legendrian isotopic. This
family has previously been described by Fraser, albeit in an implicit fashion only. Moreover, we
shall explain why we regard her argument as incomplete.

2. The diffeotopy group of S1 × S2

Given a manifold M , write Auti(M) for the group of automorphisms of the homology group
Hi(M). We consider the homomorphism

Φ: D(S1 × S2)−→Aut1(S1 × S2)⊕Aut2(S1 × S2),
[f ] 7−→ (f∗|H1 , f∗|H2).

Since Hi(S1 × S2)∼= Z for i= 1, 2, this gives a homomorphism Φ: D(S1 × S2)→ Z2 ⊕ Z2.
For the interpretation of Z2 as the automorphism group of Z, it is convenient to write Z2

multiplicatively with elements ±1. In order to study the properties of Φ, we introduce the
following diffeomorphisms.

Write rθ for the rotation of S2 ⊂ R3 about the x3-axis through an angle θ. We think of S1 as
R/2πZ. Define diffeomorphisms s, a, r of S1 × S2 by

s(θ, x) = (−θ, x),
a(θ, x) = (θ,−x),
r(θ, x) = (θ, rθ(x)).

Then Φ([s]) = (−1, 1), Φ([a]) = (1,−1), and Φ([r]) = (1, 1). So, Φ is surjective and, since s and a
commute with each other, a splitting of Φ can be defined by sending (1, 1) to [idS1×S2 ], (−1, 1)
to [s], and (1,−1) to [a]. We therefore have a split short exact sequence

ker Φ �D(S1 × S2) � Z2 ⊕ Z2.

Lemma 1. The class [r] has order two in D(S1 × S2).

Proof. The fact that the order of [r] is at most two follows from r2(θ, x) = (θ, r2θ(x)) and
π1(SO3) = Z2. Actually, this shows that r2 is isotopic to the identity via an isotopy preserving
the S2-leaves in the product foliation of S1 × S2.

In order to show that r is not isotopic to the identity, we choose a trivialisation of the tangent
bundle T (S1 × S2) by an oriented frame. We may assume that along S1 ≡ S1 × {(0, 0, 1)} this
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F. Ding and H. Geiges

frame is ∂θ, ∂x1 , ∂x2 . Then any orientation-preserving diffeomorphism f of S1 × S2 induces an
element [Tf |S1 ] ∈ π1(GL+

3 ). Isotopic diffeomorphisms induce the same element. The identity
on S1 × S2 induces the trivial element; the diffeomorphism r, the non-trivial element in
π1(GL+

3 ) = Z2. 2

Our main goal will be to prove the following statement.

Proposition 2. The subgroup ker Φ⊂D(S1 × S2) is generated by [r], and hence isomorphic
to Z2. In other words, any diffeomorphism of S1 × S2 acting trivially on homology is isotopic to
either id or r.

The result D(S1 × S2)∼= Z2 ⊕ Z2 ⊕ Z2 is an immediate consequence: from the split short
exact sequence above we know that D(S1 × S2) is the semi-direct product of the normal subgroup
Z2 and the quotient Z2 ⊕ Z2; but a normal subgroup of order two is central, so the action of the
quotient by conjugation is trivial.

Thus, let f be a diffeomorphism of S1 × S2 acting trivially on homology. (In particular, f
preserves the orientation.) The strategy will be to isotope f step by step to a diffeomorphism
satisfying a number of additional properties, until we arrive at id or r. After each step, we
continue to write f for the new diffeomorphism.

3. From a diffeomorphism to a contactomorphism

We shall rely freely on some fundamental notions and results from contact topology, all of which
can be found in [Gei08].

The standard tight contact structure ξst on S1 × S2 ⊂ S1 × R3 is given by

α := x3 dθ + x1 dx2 − x2 dx1 = 0.

This is the unique positive tight contact structure on S1 × S2 up to isotopy; see [Gei08,
Theorem 4.10.1].

Lemma 3. The diffeomorphism f is isotopic to a contactomorphism1 of ξst.

Proof. The contact structure Tf(ξst), which is again positive and tight, is isotopic to ξst. Gray
stability [Gei08, Theorem 2.2.2] then gives the desired isotopy. 2

Later on we shall need a contactomorphism rc representing the class [r] (there should be
no confusion with the notation rθ used earlier). There are two ways of exhibiting such a
contactomorphism: the first one uses the above description of (S1 × S2, ξst); the second one
is better adapted to describing the effect on Legendrian curves in the front projection picture.

A straightforward computation yields

r∗α= (x3 + x2
1 + x2

2) dθ + x1 dx2 − x2 dx1.

We claim that r can be isotoped to a contactomorphism rc by an isotopy that shifts each 2-sphere
{θ} × S2 along its characteristic foliation induced by ξst. Indeed, that foliation is given by the
vector field

X = x1x3∂x1 + x2x3∂x2 + (x2
3 − 1)∂x3 ,

1 Contact structures are assumed to be cooriented; contactomorphisms are understood to preserve the
coorientation.
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Figure 1. The contactomorphism rc as a Dehn twist followed by a contact isotopy.

Figure 2. S1 × S2 with its standard tight contact structure.

with singular points at (x1, x2, x3) = (0, 0,±1). One computes

LXα= iX dα= (x2
3 − 1) dθ + 2x1x3 dx2 − 2x2x3 dx1 = 2x3α− (1 + x2

3) dθ.

This shows that the flow of X has the desired effect of decreasing the dθ-component relative to
the dx1- and dx2-components; thus, a suitable rescaling of X by a function that depends only
on x3 will give us a flow that moves the contact structure ker(r∗α) back to ker α= ξst.

An alternative picture, due to Gompf [Gom98, p. 636], is based on a contactomorphism

(S1 × (S2\{poles}), ξst)∼= (R× (R/2πZ)2, ker(dz + x dy)).

The 2-spheres {θ0} × S2 correspond to the annuli {y = y0}, each compactified by two points at
x=±∞. Now a simple description of a contactomorphism rc in the class [r] is given by a Dehn
twist along a circle {y = y0} in the torus (R/2πZ)2 (plus a shift in the x-direction to make it a
contactomorphism):

(x, y, z) 7−→ (x− 1, y, y + z).
Figure 1 shows the effect of that Dehn twist on the Legendrian circle t 7→ (0, t, 0) in
R× (R/2πZ)2, followed by a contact isotopy that pushes the Legendrian circle across the south
pole of the 2-sphere represented by the annulus {y = π}. (The figure shows the front projection
to the yz-torus.)

4. Fixing a 2-sphere

As described in [Gom98, § 2] or [GS99, § 11.1], cf. [DG09], one can represent the contact manifold
(S1 × S2, ξst) by the Kirby diagram with one 1-handle only (Figure 2) in the standard contact
structure on S3. The attaching balls for the 1-handle are drawn as round balls, but it is
understood that these balls are in fact chosen in such a way that the characteristic foliation on
their boundary induced by the standard contact structure on S3 is the same as the characteristic
foliation on {θ} × S2 induced by ξst.

Lemma 4. The contactomorphism f is contact isotopic to a contactomorphism fixing a sphere
S0 := {0} × S2, which we think of as the boundary of the attaching balls in Figure 2.

Proof. Since f is a contactomorphism, ξst induces the same characteristic foliation on f(S0) as
on S0. As shown by Colin [Col97], with ξst being tight this implies that f(S0) and S0 are contact
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Figure 3. Removing intersections between S0 and S1.

Figure 4. The Legendrian circle K0.

isotopic, and hence f is contact isotopic to a contactomorphism fixing S0, provided that the two
2-spheres are topologically isotopic.

For showing the existence of such a topological isotopy, we essentially rely on stage one of
Gluck’s proof [Glu62]; the argument is included here for the reader’s convenience.

If S1 := f(S0) is disjoint from S0, then those two spheres bound a compact manifold that
constitutes an h-cobordism W between them. This follows from the fact that the two spheres are
homotopic; recall that f acts trivially on H2(S1 × S2) = π2(S1 × S2). This h-cobordism W is
contained inside S1 × S2 and therefore does not contain any fake 3-cells, without appeal to
Perelman’s positive answer to the Poincaré conjecture. It follows that W is diffeomorphic
to S2 × [0, 1], and hence S0 is isotopic to S1. (This argument is due to Laudenbach [Lau73].)

In the general case, we first use an isotopy to bring S0 and S1 into general position, such
that they intersect transversely in a finite number of circles. We want to isotope S1 further to a
sphere disjoint from S0; as just explained this will conclude the argument.

Let C be one of the circles of intersection, chosen in such a way that it bounds a 2-disc D1

in S1 not containing any other circles of intersection. In S0, the circle C bounds two 2-discs
D0 and D′0. One of the 2-spheres D0 ∪D1 and D′0 ∪D1, say the former, bounds a 3-ball, as
can be seen by considering the situation in the universal cover of S1 × S2. This allows us to
isotope S1 across this 3-ball in order to remove the circle C of intersection. In the process, all
circles of intersection contained in D0 will be removed as well. See Figure 3 for a schematic
picture. Iterating this procedure, we separate S0 and S1. 2

5. Fixing a Legendrian circle

Now consider the oriented Legendrian circle K0 ⊂ (S1 × S2, ξst) representing what we shall call
the positive generator of H1(S1 × S2), as shown in the front projection picture in Figure 4.
(It is understood that R3 ⊂ S3 be equipped with the standard contact structure dz + x dy = 0;
Legendrian knots are illustrated in the front projection to the yz-plane.)

This K0 corresponds to the Legendrian circle on the left-hand side in Figure 1. So, the effect
of rc on K0 is as shown in Figure 5. In particular, that figure shows that the Legendrian knot
rc(K0) is Legendrian isotopic to the positive stabilisation S+K0 of K0.
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Figure 5. The contactomorphism rc.

Figure 6. The light bulb trick used for unknotting.

Lemma 5. For some k ∈ Z, the contactomorphism rkc ◦ f is contact isotopic to a contacto-
morphism fixing K0.

Proof. The image f(K0) will be some Legendrian knot representing the positive generator of
H1(S1 × S2) and, since f fixes S0, going exactly once over the 1-handle. With the help of ‘move 6’
from [Gom98], or what is also called the light bulb trick (cf. [DG09]), one can unknot f(K0)
via a Legendrian isotopy (which extends to a contact isotopy by [Gei08, Theorem 2.6.2]). This
‘move 6’ is the Legendrian isotopy shown in the top line of Figure 6; another instance is the
Legendrian isotopy from the top right to the bottom left in Figure 8. The Legendrian isotopy
indicated by the arrow in Figure 1 gives a description of ‘move 6’ in the alternative picture for
(S1 × S2, ξst) used there.

An example of this unknotting procedure is shown in Figure 6, where the final result of the
isotopy is actually K0. In general, the result will be some (multiple) stabilisation of K0.

Here is a more ‘algorithmic’ description of this unknotting procedure. First of all, by [Gom98,
Theorem 2.2] we may assume that, after a Legendrian isotopy, f(K0) is in standard form, i.e.
its front projection is contained entirely between the two attaching balls for the 1-handle. Given
a knotted piece of string with loose ends, one can clearly unknot it by contracting the string
from one of its ends. If we imagine the attaching balls as the ends of such a piece of string,
this contraction can be regarded as a motion of the right-hand ball, say. We thus remove all
crossings in the front projection, while preserving the cusps; we need Legendrian Reidemeister
moves of the second kind to slide all the cusps adjacent to the right-hand attaching ball over
or under another strand in order to remove the crossing with that strand. With the light bulb
trick this translates into a Legendrian isotopy with the attaching balls fixed. The final result of
this Legendrian isotopy will be a Legendrian knot whose front projection has no crossings, but
which now winds several times around the right-hand attaching ball in the yz-plane. One can
bring the knot back into standard form (and still with no crossings in the front projection) as
follows: perform a move of type 6 to introduce a single kink in the front projection; then remove
the kink with a Legendrian Reidemeister move of the first kind (see Figure 7); each such move
reduces the (absolute) winding number of the front projection of f(K0) around the right-hand
ball.

Positive and negative stabilisations can then be removed in pairs by a further application of
the light bulb trick, as shown in Figure 8.
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Figure 7. Reducing the winding number.

Figure 8. The light bulb trick used for removing stabilisations.

Thus, f is contact isotopic to a contactomorphism that maps K0 to a stabilisation Sn±K0 for
some n ∈ N0. Then r∓nc ◦ f is contact isotopic to a contactomorphism that fixes K0. 2

Remark . Even powers of rc are isotopic to the identity, but not contact isotopic to the identity.
This follows from the observation that the application of rc to K0 increases its rotation number
by 1. Notice that ξst is trivial as a 2-plane bundle; a global non-vanishing section of ξst is given by

(x2 − x1)∂θ + x3∂x1 + x3∂x2 − (x1 + x2)∂x3 .

So, the rotation number is well defined for arbitrary Legendrian knots in the contact manifold
(S1 × S2, ξst).

6. Fixing a neighbourhood of a Legendrian circle

We now want to show that after a further contact isotopy we may assume that rkc ◦ f fixes a
whole neighbourhood of K0. We formulate this as a general statement.

Lemma 6. Let K be a Legendrian knot in a contact 3-manifold (M, ξ), and let g be a
contactomorphism of (M, ξ) that fixes K. Then g is contact isotopic to a contactomorphism
that fixes a neighbourhood of K.

Proof. By the tubular neighbourhood theorem for Legendrian knots [Gei08, Corollary 2.5.9], we
may identify a tubular neighbourhood N(K) of K in (M, ξ) with a tubular neighbourhood of
S1 × {0} in S1 × R2 = R/Z× R2 with contact structure dz − y dx= 0; the knot K is identified
with S1 × {0}.

The dilatation

δt(x, y, z) := (x, ty, tz)

is a contactomorphism of S1 × R2 for each t ∈ R+. This allows us to assume that the
contactomorphic image of N(K) in S1 × R2 has been chosen so large that when we restrict
the contactomorphism induced by g to S1 ×D2, its image will stay inside this image of N(K)
(and that the same holds for the one-parameter family of contact embeddings considered below).
In fact, the argument in the proof of [CvKS09, Proposition 3.1] can be used to show that we may
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identify N(K) contactomorphically with all of S1 × R2. Although this is not essential, we shall
assume it for ease of notation. Thus, we think of (the restriction of) g as a contact embedding

g : S1 ×D2 −→ S1 × R2.

It will suffice to show that g is contact isotopic to the inclusion; the lemma then follows from
the isotopy extension theorem for contact isotopies, cf. [Gei08, Remark 2.6.8].

We now mimic the proof of the contact disc theorem [Gei08, Theorem 2.6.7]. Write g in the
form

(x, y, z) 7−→ (X(x, y, z), Y (x, y, z), Z(x, y, z)).

The condition for this to be a contact embedding is

dZ − Y dX = λ(dz − y dx),

with some smooth function λ : S1 ×D2→ R+. This can be rewritten as the following system of
differential equations: 

∂Z

∂x
− Y ∂X

∂x
=−λy,

∂Z

∂y
− Y ∂X

∂y
= 0,

∂Z

∂z
− Y ∂X

∂z
= λ.

The assumption that g fixes K translates into

X(x, 0, 0) = x, Y (x, 0, 0) = 0, Z(x, 0, 0) = 0.

Now, for t ∈ (0, 1], consider the contact embedding

δ−1
t ◦ g ◦ δt(x, y, z) =

(
X(x, ty, tz),

1
t
Y (x, ty, tz),

1
t
Z(x, ty, tz)

)
.

For t→ 0, this converges to the map

g0(x, y, z) :=
(
x, y · ∂Y

∂y
(x, 0, 0) + z · ∂Y

∂z
(x, 0, 0), y · ∂Z

∂y
(x, 0, 0) + z · ∂Z

∂z
(x, 0, 0)

)
.

From the above system of differential equations, we deduce that

∂Z

∂y
(x, 0, 0) = 0,

∂Z

∂z
(x, 0, 0) = λ(x, 0, 0) =: λ0(x).

The first differential equation in the above system gives

∂2Z

∂z∂x
− ∂Y

∂z

∂X

∂x
− Y ∂2X

∂z∂x
=−∂λ

∂z
· y.

When we evaluate this at (x, 0, 0), we find, with the previous equations,

λ′0(x) =
∂λ

∂x
(x, 0, 0) =

∂2Z

∂x∂z
(x, 0, 0) =

∂Y

∂z
(x, 0, 0).

Finally, the first differential equation also yields

∂2Z

∂y∂x
− ∂Y

∂y

∂X

∂x
− Y ∂2X

∂y∂x
=−∂λ

∂y
· y − λ.
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Since (∂Z/∂y)(x, 0, 0) = 0, we also have (∂2Z/∂x∂y)(x, 0, 0) = 0. Thus, evaluating the foregoing
equation at (x, 0, 0) gives

∂Y

∂y
(x, 0, 0) = λ0(x).

In conclusion, we see that the map g0 takes the form

g0(x, y, z) = (x, y · λ0(x) + z · λ′0(x), z · λ0(x)).

It is easy to check that any map of this form (with λ0 : S1→ R+) is a contact embedding of
S1 ×D2 into S1 × R2.

Our initial embedding g is thus seen to be contact isotopic to g0, and the convex linear
interpolation between λ0 and the constant function 1 defines a contact isotopy between g0 and
the inclusion map. This finishes the proof of the lemma. 2

Remark . As explained in [Gei08, Example 2.5.11], a universal model for the tubular
neighbourhood of a Legendrian submanifold L in a higher-dimensional contact manifold is
provided by a neighbourhood of the zero section L⊂ T ∗L⊂ R× T ∗L in the 1-jet bundle of L
with its canonical contact structure dz − λcan = 0, where λcan is the canonical 1-form on T ∗L,
written in local coordinates q on L and dual coordinates p on the fibres of T ∗L as λcan = p dq.
The above proof carries over, mutatis mutandis, to show that the tubular neighbourhood of a
Legendrian submanifold is unique not only up to contactomorphism, but up to contact isotopy.

Here is an alternative proof of Lemma 6. Admittedly, the methods used in it amount to
cracking nuts with a sledgehammer, but they may be of some independent interest. We define a
new contactomorphism h of (M, ξ) as follows, cf. [DG, Remark 4.1]. Choose a standard tubular
neighbourhood N(K) of K, where the contact structure is given by cos θ dx− sin θ dy = 0 under
the identification of N(K) with S1 ×D2 (and K with S1 × {0}). Observe that N(K) may be
regarded as the space of (cooriented) contact elements of D2.

Set h= g on the closure of M\N(K). On a smaller tubular neighbourhood N ′ ⊂N(K), set
h= id. By the uniqueness up to contactomorphism of the non-rotative tight contact structure on
T 2 × [0, 1] with two dividing curves on each boundary component, see [Hon00], this h extends
to a contactomorphism on all of (M, ξ).

Then g−1 ◦ h is a contactomorphism equal to the identity on M\N(K). So, the restriction
of g−1 ◦ h to N(K) may be regarded as a contactomorphism, equal to the identity near the
boundary, of the space of contact elements of D2. According to a result of Giroux [Gir01],
the group of those contactomorphisms is connected. This gives a contact isotopy from g−1 ◦ h
to the identity on M . It follows that g is contact isotopic to h, which has the desired properties.

Remark . Giroux’s paper [Gir01] has to be read with a certain amount of caution. Proposition 10
of that paper and the proofs of the main results (though not the results as such) are incorrect.
The proofs can be fixed using the methods of [Mas08].

7. Reduction to a space of contact elements

In a final step, we want to appeal once more to the result of Giroux [Gir01] about
contactomorphism groups of spaces of contact elements.

Lemma 7. The complement of K0 in (S1 × S2, ξst) is contactomorphic to the space of contact
elements of R2.
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Proof. In [DG07] we described an explicit contactomorphism between the space of contact
elements of R2 and the complement of a Legendrian unknot in S3 with its standard
contact structure (which we shall also write as ξst). That complement is seen to be
contactomorphic to (S1 × S2\K0, ξst) as follows.

An alternative surgery picture for (S1 × S2, ξst) is given by a single contact (+1)-surgery
along a Legendrian unknot in (S3, ξst). In this picture, K0 becomes a Legendrian push-off of the
surgery curve, see [DG09]. The cancellation lemma from [DG04], cf. [Gei08, Proposition 6.4.5],
says that contact (−1)-surgery along K0 brings us back to (S3, ξst). More specifically (as the proof
of the cancellation lemma shows), K0 may be regarded as the belt sphere of the surgery along the
Legendrian unknot in (S3, ξst), and the complement of that belt sphere in the surgered manifold
is indeed contactomorphic to the complement of the surgery curve in the initial manifold. 2

In the preceding section we had found an integer k such that (after a contact isotopy) rkc ◦ f
fixes a neighbourhood of K0. So, we may interpret this map as a contactomorphism of the space
of contact elements of D2, equal to the identity near the boundary. By Giroux [Gir01], this
contactomorphism is contact isotopic (rel boundary) to the identity.

Thus, in total, our initial diffeomorphism f of S1 × S2 (acting trivially on homology) has
been shown to be isotopic to either id or r, as was claimed in Proposition 2.

Remarks. (1) The result of Giroux about the contactomorphism group of the space of contact
elements of D2 uses Cerf’s theorem π0(Diff+(S3)) = 0 in its proof. So, the described methods
cannot, as yet, be used to give a contact geometric proof of Cerf’s theorem. However, there is in
fact a contact geometric proof of the slightly weaker form of Cerf’s theorem, saying that every
diffeomorphism of S3 extends to a diffeomorphism of the 4-ball; a theorem popularly known as
Γ4 = 0. That proof is due to Eliashberg [Eli92]; for an exposition see [Gei08].

(2) Observe that our argument has shown the following: any contactomorphism of (S1 ×
S2, ξst) acting trivially on homology is contact isotopic to a uniquely determined integer power
of rc; any contactomorphism that is topologically isotopic to the identity is contact isotopic to
an even power of rc.

8. On the topology of the space of contact structures

Gonzalo and the second author have shown in [GG04] that there are essential loops in the space
of contact structures on torus bundles over the circle. The main ingredient in that proof was the
classification of contact structures on the 3-torus. Bourgeois [Bou06] reproved their result with
the help of contact homology and used that technique to detect higher non-trivial homotopy
groups of the space of contact structures on a number of higher-dimensional manifolds. Here
we formulate such a statement for the fundamental group of the space of contact structures on
S1 × S2.

Write Ξ0 for the component of the space of contact structures on S1 × S2 containing ξst,
and Cont0 for the subgroup of Diff0 := Diff0(S1 × S2) consisting of contactomorphisms of ξst. By
Gray stability, we have a surjection

σ : Diff0 −→ Ξ0,
φ 7−→ Tφ(ξst),

with σ−1(ξst) = Cont0. As shown in [GG04], this gives rise to a long exact sequence

· · · ∆−→ πi(Cont0)
ι#−→ πi(Diff0)

σ#−→ πi(Ξ0) ∆−→ πi−1(Cont0)
ι#−→ · · · ,
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where we write ι for the inclusion Cont0→Diff0; this is essentially the homotopy long exact
sequence of a Serre fibration.

By the second remark at the end of the preceding section, we have π0(Cont0)∼= Z, generated
by the contact isotopy class of r2

c . Since this lies in the kernel of ι#, there must be a subgroup
isomorphic to Z in π1(Ξ0). If we permit ourselves to rely on some additional information about
the homotopy type of Diff0, we can actually show this to be the full fundamental group of Ξ0.

Proposition 8. The component Ξ0 of the space of contact structures on S1 × S2 containing ξst

has fundamental group isomorphic to Z.

Proof. The homotopy type of the group of diffeomorphisms of S1 × S2 has been determined by
Hatcher [Hat81]; he showed that

Diff0(S1 × S2)' SO2 × SO3 × Ω0SO3,

where Ω0SO3 stands for the component of the contractible loop in the loop space of SO3.
Now, π1(Ω0SO3)∼= π2(SO3) = 0, and the generators of π1(SO2) and π1(SO3) in the above

factorisation of Diff0 can be realised as loops of contactomorphisms

(θ, x) 7−→ (θ + ϕ, x), ϕ ∈ [0, 2π]

and

(θ, x) 7−→ (θ, rϕ(x)), ϕ ∈ [0, 2π],

respectively. Thus, the homotopy exact sequence becomes

π1(Cont0) � π1(Diff0)→ π1(Ξ0)→ Z→ 0.

The proposition follows. 2

9. Legendrian knots not distinguished by classical invariants

In [Fra96], Fraser described an infinite family of Legendrian knots in the contact manifold

(M0, ξ0) := (S1 × S2#S1 × S2, ξst#ξst),

all of which have the same topological knot type and the same classical invariants tb and rot, but
which are nonetheless pairwise not Legendrian isotopic. The idea for distinguishing these knots
is to perform Legendrian surgery on them (or contact (−1)-surgery in the language of [DG04]),
and then to observe that the contact structures on the surgered manifold (which happens to
be the 3-torus T 3) are pairwise not isotopic. This argument, in our view, is incomplete because
it hinges on the statement ‘Legendrian surgery on Legendrian isotopic knots produces isotopic
contact structures on the surgered manifold’, which is meaningless, as we want to explain.

Suppose that we have two Legendrian isotopic knots L0, L1 in a contact 3-manifold (M, ξ).
The Legendrian isotopy extends to a contact isotopy φt, t ∈ [0, 1], of (M, ξ) with φ1(L0) = L1.
For each t ∈ [0, 1], the contactomorphism φt of (M, ξ) induces a contactomorphism between the
contact manifold ML0 obtained by Legendrian surgery along L0 and the contact manifold Mφt(L0)

obtained by Legendrian surgery along φt(L0). But, there is no way, in general, to identify ML0

with Mφt(L0) (even as mere differential manifolds) other than with the diffeomorphism induced
by φt. So, we obtain a parametric family of contact manifolds, all of which are contactomorphic,
but not an isotopy of contact structures on a fixed differential manifold.
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Figure 9. Contactomorphic, non-isotopic contact structures.

In fact, in situations where there is a canonical way of identifying the surgered manifolds,
the statement in question is false, in general. This is illustrated by the following example
from [OS04, Exercise 11.3.12(c)]; see Figure 9. Contact (−1)-surgery on the ‘shark’ in (S3, ξst)
with its mouth on the left or on the right corresponds topologically to a surgery on the
unknot with surgery coefficient −3 relative to the surface framing. If we take the obvious
topological identification of the shark with the unknot, this allows us to identify the surgered
manifold in both cases with the lens space L(3, 1). With respect to this identification, the two
resulting contact structures on the surgered manifold L(3, 1) can be distinguished via their
induced spinc structure, so they are not isotopic. (Under the identification in question, which
gives the two sharks the same, say the counter-clockwise, orientation, the shark on the left has
rot = +1, the one on the right, rot =−1. This implies that the corresponding spinc structures
have first Chern class c1 =±1 ∈H2(L(3, 1); Z) = Z3; see [Gom98, Proposition 2.3].) However,
there is a Legendrian isotopy from one shark to the other (reversing its orientation), and this
induces a contactomorphism of the surgered contact manifolds; it is simply the contactomorphism
induced by the contactomorphism (x, y, z) 7→ (−x,−y, z) relating the two contact surgery
diagrams.

Thus, if one wants to show with the help of Legendrian surgery that two Legendrian knots
L0, L1 cannot be Legendrian isotopic, one has to require, in general, that the surgered contact
manifolds are not contactomorphic. In Fraser’s set-up, unfortunately, the surgered manifolds
happen to be contactomorphic by construction. Nonetheless, we now want to show that Fraser’s
idea can be made to work. In fact, the examples we are going to discuss presently are explicit
realisations of the knots described only implicitly by Fraser.

Figure 10 shows a family Lk, k ∈ Z, of Legendrian knots in (M0, ξ0); for k < 0, the zig-zags
are to be interpreted as |k| pairs of zig-zags in the opposite direction. Observe that Lk = rkc (L0),
where rc is regarded as a contactomorphism acting only on the upper (in the picture) summand
S1 × S2; there is a realisation of rc that fixes a disc and hence is compatible with taking the
connected sum. All these knots have the same topological knot type, as can be shown by applying
the topological light bulb trick. Moreover, the well-known formulae for computing the classical
invariants, which take the same form for a Legendrian knot in ‘standard form’ in (M0, ξ0) as in
(S3, ξst), see [Gom98], give tb(Lk) = 1 and rot(Lk) = 0 for all k ∈ Z (for either orientation of
those knots).

Theorem 9. For k 6= k′, the knots Lk and Lk′ are not Legendrian isotopic.

Proof. We begin with an outline of the argument. Our aim will be to derive a contradiction from
the assumption that there is a pair of Legendrian isotopic knots Lk1 , Lk2 with k1 6= k2. Such a
contradiction will be reached if we can show that rk2−k1c is contact isotopic to a contactomorphism
of (M0, ξ0) that fixes a Legendrian loop K1 going once over the upper 1-handle, for this is
incompatible with the effect of rk2−k1c on the rotation number of K1.
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k

Figure 10. The Legendrian knots Lk.

From the assumption on Lk1 and Lk2 we first of all find a contact isotopy between
rk2−k1c and a contactomorphism φ of (M0, ξ0) that fixes a neighbourhood N(L0) of L0. The
heart of the argument (Steps 2 and 3 below) is then to show that (M0\N(L0), ξ0) can be
interpreted as the space of contact elements of T 2\D2. By appealing to Giroux’s description of
the contactomorphisms of that space, we find a further contact isotopy from φ to the (impossible)
contactomorphism fixing K1. Now to the details.

Step 1. From a purported Legendrian isotopy, construct a contactomorphism φ.

Arguing by contradiction, let us assume that there are two Legendrian isotopic knots Lk1
and Lk2 , with k1 6= k2. Then L0 = r−k1c (Lk1) and Lk = r−k1c (Lk2), where k := k2 − k1, will be
Legendrian isotopic. Since Lk = rkc (L0), this implies that rkc is contact isotopic to a contacto-
morphism of (M0, ξ0) that fixes L0. By Lemma 6, rkc is then contact isotopic to a
contactomorphism φ that fixes a neighbourhood N(L0) of L0.

Step 2. Identify the result of contact (−1)-surgery on L0 ⊂ (M0, ξ0) with (T 3, η1), and the belt
sphere of the surgery with a θ-fibre in T 3 up to isotopy.

The Stein fillable and hence tight contact manifold obtained by contact (−1)-surgery on
L0 is T 3, see [GS99, Example 11.2.4], with its standard contact structure η1 := ker(sin θ dx−
cos θ dy), cf. [Stip02]. Interpreted as a Kirby diagram, Figure 10 (with k = 0 and framing for the
handle attachment equal to −1 relative to the contact framing) describes T 2 ×D2. The D2-fibre
is represented by the cocore of the 2-handle, so the belt sphere of the surgery on L0 is an S1-fibre
of T 3; see [GS99, Example 4.6.5].

This S1-fibre corresponds (up to isotopy) to the θ-coordinate in the description of η1, for the
θ-circles are uniquely characterised by the fact that they become homotopically trivial in any
Stein filling W of T 3; see the proof of [Stip02, Lemma 4.3]. That fact rests on two observations.
First of all, the homomorphism H1(T 3)→H1(W ) induced by inclusion is surjective; this follows
from the cell structure of Stein manifolds. Secondly, the θ-fibres must lie in the kernel of this
homomorphism, otherwise one could pass to a cover and obtain a Stein filling of the contact
structure ηn := ker(sin(nθ) dx− cos(nθ) dy) for some n > 1, which is impossible by a result of
Eliashberg [Eli96].
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Step 3. Identify the belt sphere of the surgery with a θ-fibre in (T 3, η1) up to Legendrian isotopy.

In the proof of the cancellation lemma given in [Gei08, p. 323], it is shown explicitly that
the belt sphere of the surgery is Legendrian isotopic, in the surgered manifold, to a Legendrian
push-off of L0. Alternatively, we can isotope it to a standard Legendrian meridian of L0, as
shown in [DG09, Proposition 2], i.e. a standard Legendrian unknot µ0 with tb(µ0) =−1 and
meridional to L0.

Remark . The meridian µ0 may be assumed to be exterior to the tubular neighbourhood of L0

where surgery is performed. So, we may think of µ0 on the one hand as a standard Legendrian
unknot in (M0, ξ0) or, if we ignore the 1-handles, as a standard Legendrian unknot in S3 with its
standard contact structure, or, on the other hand, as a Legendrian knot in the surgered manifold
(T 3, η1).

We now want to show that this standard Legendrian meridian is in fact Legendrian isotopic
to the θ-fibre S1

θ in (T 3, η1). For this we appeal to the classification of linear Legendrian
curves in (T 3, η1) by Ghiggini [Ghi06]. The Thurston–Bennequin invariant tb(L) can be defined
for such linear Legendrian curves L as the twisting of the contact structure relative to an
incompressible torus containing L. This means that tb(S1

θ ) =−1, since the contact structure
η1 makes one negative twist along a θ-fibre relative to the framing given by the product
structure T 3 = S1

θ × T 2
x,y = (R/2πZ)× (R/Z)2 (and the orientation dy ∧ dx ∧ dθ induced by η1).

This is the maximal tb in the topological knot type of S1
θ ; see [Ghi06, Theorem 5.4]. The

definition of the rotation number rot for linear Legendrian curves in (T 3, η1) depends on
the choice of trivialisation of η1, but it can be normalised so that rot = 0 for curves realising the
maximal tb. According to [Ghi06, Theorem 2.5], the classical invariants suffice to classify
Legendrian realisations of the topological knot type of S1

θ . So, all we have to show is that
the standard Legendrian meridian µ0 of L0 has tb(µ0) =−1 in the surgered manifold, i.e. in
(T 3, η1).

When regarded as a Legendrian unknot in S3, the meridian µ0 bounds a disc there. With
respect to the framing given by that disc in S3, the contact structure makes one negative twist
along µ0 (since tb(µ0) =−1). A close inspection of [GS99, Example 4.6.5] shows that the framing
which µ0 inherits from the meridional disc, now regarded as a framing of µ0 in T 3, is the same as
it inherits from an incompressible torus, whence it follows that tb(µ0) =−1 also in the surgered
manifold (T 3, η1). (For that last statement about framings, imagine S3 being cut in a plane
passing through the attaching balls of one of the 1-handles, and with the attaching balls for the
second 1-handle symmetric to this plane. Then, in the 2-sphere cut out by this plane, a circle
around one of the attaching balls, that ball being seen as a disc in this 2-sphere, defines µ0

up to isotopy. The 2-sphere with two discs removed, together with a cylinder contained in the
boundary of the 1-handle, is an incompressible torus in the surgered manifold, containing µ0.)

As a check for consistency, we observe that because tb(S1
θ ) =−1 in (T 3, η1), contact (+1)-

surgery along such a fibre, which brings us back to (M0, ξ0) by the cancellation lemma, is
topologically a surgery with framing given by the product structure of T 3, and that does indeed
produce M0.

Step 4. Interpret φ as a contactomorphism of a space of contact elements.

If we perform the surgery along L0 inside the neighbourhood N(L0), the fact that the belt
sphere of the surgery is S1

θ (up to Legendrian isotopy) implies that we have a contactomorphism
between (M0\N(L0), ξ0) and (T 3\N(S1

θ ), η1) for some neighbourhood N(S1
θ ) of S1

θ . It follows
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Figure 11. T 3\N(S1
θ ).

that the contactomorphism φ of (M0, ξ0), which fixes N(L0), induces a contactomorphism of
(T 3, η1) that fixes N(S1

θ ). This may be interpreted as a contactomorphism of the space of contact
elements of T 2 with a disc D2 removed, equal to the identity near the boundary. By Giroux’s
theorem [Gir01], this contactomorphism is contact isotopic (rel boundary) to one that is lifted
from a diffeomorphism of the base T 2\D2. (Recall that the differential of a diffeomorphism of any
given manifold induces a contactomorphism of the space of contact elements of that manifold.)
We continue to write φ for this contactomorphism and its extension to (M0, ξ0).

Step 5. The effect of the contactomorphism on a Legendrian loop K1, contact isotopy to a
contactomorphism fixing K1, and a contradiction.

Using the action of the diffeotopy group of T 2\D2 by contactomorphisms on (T 3\N(S1
θ ), η1),

we may assume that the identification of (T 3\N(S1
θ ), η1) with (M0\N(L0), ξ0) has been chosen

in such a way that one of the standard generators of H1(T 2\D2) corresponds to a loop in
M0\N(L0) going once (homologically, or geometrically counted with sign) over the upper
1-handle in Figure 10.

A concrete Legendrian realisation K1 of such a loop is shown in Figure 11, where S1
θ is taken

to be the fibre over (x, y) = (1/2, 1/2). We take K1 = {y = y0, θ = 0} (oriented by ∂x, cooriented
by −∂y); its Legendrian lift K1 coincides with K1. Transverse to K1, we see an annulus {x= 1/2}
in T 3\N(S1

θ ). Each of the two boundary components of that annulus bounds a disc in M0, so
there we have a 2-sphere transverse to K1, corresponding to the S2-factor in the upper summand
S1 × S2. We also write K1 for the corresponding Legendrian loop in (M0\N(L0), ξ0).

The contactomorphism φ of (M0, ξ0), being isotopic to rkc , sends K1 to a Legendrian knot
φ(K1)⊂M0\N(L0) that is smoothly homotopic in M0 to K1. This translates into a homotopy in
M0\N(L0) at the price of adding a meridional loop every time the original homotopy crosses L0.
In T 3\N(S1

θ ), this becomes a homotopy between K1 and φ(K1), modulo adding a θ-fibre for each
of the meridional crossings. When projected to T 2\D2, this defines a homotopy between K1 and
the projection K

′
1 of φ(K1).

If we write φ for the diffeomorphism of T 2\D2 whose lift is φ, then K
′
1 = φ(K1), so K

′
1 is

a simple closed curve in T 2\D2 homotopic to K1. By Baer’s theorem, see [Stil93, 6.2.5], there
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is an isotopy of T 2\D2, identical near the boundary, that moves K ′1 back to K1 (with the
original orientation, for homological reasons). The lift of this isotopy is a contact isotopy of
(T 3\N(S1

θ ), η1), fixed near the boundary, that moves φ(K1) back to K1.

Thus, rkc is contact isotopic to a contactomorphism of (M0, ξ0) that fixes K1, which means
that rkc sends K1 to a Legendrian isotopic copy of K1, contradicting the fact that rkc changes the
rotation number of any oriented Legendrian circle that passes once (in the positive direction,
passings counted with sign) over the upper 1-handle by k. 2

Remark . Prior to Fraser’s work, no examples were known of Legendrian knots that could not
be distinguished by the classical invariants. The first examples of this type in (R3, ξst) were
found by Chekanov [Che02], who used Legendrian contact homology to distinguish the knots.
Various other non-classical invariants have been developed in the meantime, such as normal
rulings [CP05, Fuc03] or knot Floer homology invariants [LOSS, OST08].
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Thèse de doctorat, ENS Lyon (2008).
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