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ON FINITE ESSENTIAL EXTENSIONS 
OF TORSION FREE ABELIAN GROUPS 

K. BENABDALLAH AND M. A. OULDBEDDI 

ABSTRACT. Let A be a torsion free abelian group. We say that a group K is a finite 
essential extension of A if AT contains an essential subgroup of finite index which is 
isomorphic to A. Such K admits a representation as {A © Zyt;c)/Z^y wherey = Nx + a 
for some k x k matrix N over Z and a G Ak satisfying certain conditions of relative 
primeness and Tk = {(a\,.. .,ak) : a, 6 Z}. The concept of absolute width of an 
f.e.e. K of A is defined and it is shown to be strictly smaller than the rank of A. A 
kind of basis substitution with respect to Smith diagonal matrices is shown to hold 
for homogeneous completely decomposable groups. This result together with general 
properties of our representations are used to provide a self contained proof that acd 
groups with two critical types are direct sum of groups of rank one and two. 

1. Introduction. Let A be a torsion free group. We say that a group K is a finite 
essential extension of A ifK contains an essential subgroup of finite index isomorphic to 
A. We write K is an/, e. e. of A. Note that K is also torsion free. We denote by cf(A) the 
class of all/ , e. e.'s of A. 

Some general results about the class J-(A) were given in [10] via the study of Ext(C, A) 
exploiting the isomorphism Ext(C,^) = Hom(C,A) where C is a finite group and ,4 = 
A/eA where eC = 0. In this article we propose another approach obtaining the class 
J-(A) as special homomorphic images of the direct sum of A with a finite rank free group 
L. This leads to a simple representation of members of J-(A) which can be handled with 
an appropriate and suggestive linear calculus. We develop general properties of this rep
resentation and show its usefulness by giving a new proof of the structure theorem of 
almost completely decomposable groups with two critical types. We begin with an ob
servation which is at the root of our development. 

THEOREM 1.1. Let Abe a torsion free group. A group K is anf. e. e. of A if and only 
if there exists a free group L of finite rank and an epimorphism <j>:A (BL —» K such that 
ker <j> is A-high in A ® L, where A — {(a, 0) : a £ A}. 

PROOF. Suppose that K is an/, e. e. of A, without loss of generality we may assume 
that K contains A and K/A is finite. Write K/A in its canonical direct sum of cyclic 
groups namely, K/A = ©*=1 (x/ +A) where 1 < o{xt +A) \ O(XJ+\ +A\ i — 1 , . . . ,£— 1. It 
is easy to see that {x/}f is an independent set in K. Thus K — A+L where L = ©*=1 (JC/) 
is a free group of rank k. Put G — A 0 L and <j>\G-^ K defined by <f>(a, /) = « + /, where 
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FINITE ESSENTIAL EXTENSIONS 919 

a G A, I G L. Now ker</> = {(a, —a) : a G ̂  Pi L] is a pure subgroup of G of rank & 
disjoint from,4 = {(a, 0) : a £ A}. Clearly ker </> is maximal disjoint from A. Conversely, 
if <j>:A 0 L —> AT is an epimorphism where I is free of finite rank and ker</> is ,4-high in 
A 0 L then 0(̂ 4) is an essential subgroup of AT of finite index and (j>(A) = A. m 

We see from Theorem 1.1. that K is an/, e. e. of A if and only if AT = (A @L)/H where 
L is free of finite rank and H is an .4-high subgroup of A 0 L. Note that H also is free and 
has the same rank as L. 

2. Linear calculus of finite essential extensions. In order to give a useful analyt
ical description of A -high subgroups of G = A 0 L where L is free of finite rank, we 
have found it convenient to introduce some notations and to state explicitly some linear 
algebra inherent to this subject. 

Let G be a torsion free group and k a positive integer. We put 

G* = { ( g i , . . . , g i k ) : g i e G , i = l , . . . , t } 

the element (g\,... ,g#) of Gk we denote by g. Thus if we write h G Gk it means h = 
(/zi,..., A*), A/ G G, / = 1,...,&. G* is a Z-module with the usual addition and scalar 
multiplication. Gk is also naturally a left and right module over the ring Mk(Z) of k x k 
matrices over the ring of integers Z. If g G Gk and N G A/*(Z), giV is the formal line-
column matrix product of g considered as 1 x k matrix by N, whereas TVg is gNT or 
the transposed of the line-column product of N by g considered as a k x 1 matrix. In 
the following, for a general group G, we use only the left M^(Z)-module structure of 
Gk. However in the case of Z we use the right M^(Z)-module structure and we write 
Tk instead of Z*. The elements of Z* will generally be denoted by Greek letters such as 
a , |5, If we have to consider a sequence a i , Gi2,..., otr G Z* we adopt the convention 
that the coefficients of ot/ will bear a double index the first of which is /. Thus a, = 
(a/i, a / 2 , . . . , ocik). 

Finally, in handling linear combinations of elements of G we find it useful to consider 
the bilinear map/ from Z* x Gk to G defined by 

k 

/ (a , g) = Y, ai£i 
i=\ 

we denote/(a, g) simply by ag. 
We gather in the next proposition some of the rules of calculation involving a mixture 

of these various operations. 

PROPOSITION 2.1. Letm,n G Z, a , 0 G Zk, N,De Mk{T), g,h G Gk. Then 
(1) (wot)g = a(wg) G G 
(2) a(mg + nh) = mag + noth G G 
(3) (mot + «P)g = mag + Hpg G G 
(4 a(tfg) = (aAOg G G 
f5; N(Dg) = (ND)g G G* 
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(6) m(Ng) = (mN)g = N(mg) G Gk 

(7) N(g + h) = Ng + NheGk 

(8) (a + fl)N = ctN + $N elk. 

NOTATION. Letgi , . . . ,gk be a sequence of elements of G, let g be the corresponding 
element of Gk then the subgroup generated by g\,..., gk can be represented as: 

Z*g = {oLg:oL£Zk} = (gu... ,gk) < G. 

Also for N G Mk(Z), 
NGk = {Ng : g G Gk} < Gk. 

DEFINITION 2.2. Let g G Gk, N G Mk(Z\ and/? a prime number. We define the 
p-annihilator of g by 

Ann^(g) = {a G Tk : a g epG} 

and the p-kernel ofN by 

Kp(N) = {aeZk:aNepZk}. 

These are subgroups of Zk containing pZk. 

DEFINITION 2.3. Let g E G*, we say that g is distinguished if g\,... ,gk are inde
pendent elements in G. Thus g is distinguished if and only if Z*g is a free group of rank 
k. In particular we will denote a free group L having x\,... ,xk as a basis by the symbol 
I = Zkx. 

PROPOSITION 2.4. Le/ G be a torsion free group, g £ Gk a distinguished element of 
Gk, N E Mk(Z) andp a prime number. Then 

(a) Annp(g) = pZk iff Zkg is ap-pure subgroup ofG 
(b) Annp(g) = Zk iff ZkgdpG 
(c) KP(N) = pZk iffip, det N) = 1, i.e.p does not divide detN 
(d) KP{N) = Zk iffN = pMfor some M G Mk(Z). 
(e) detA^ = 0 iff3oL ^ 0, a G Zk such thatotN= 0. 

Before we proceed to the characterization of A -high subgroups of A 0L where L = Zk\ 
is a free group of rank k, we need a generalization of the notion of relatively prime 
integers. 

DEFINITION 2.5. Let JV G Mk(Z) and g G Gk where G is a torsion free group. We 
say that JV and g are relatively prime and we write (N, g) = 1, if for every prime number 
p we have 

(I) Armp(g)nKp(N)=pZk. 

It can be seen that ifk = 1 and G = Z that it is the usual relative primeness of integers. 
This notion is useful when the determinant of TV is a non-zero integer, and in this case it 
is only necessary to verify (I) for those prime numbers that divide det N. 
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3. Characterization of ,4-high subgroups of A 0 Zk\. Let G = A 0 Tk\ and H 
an ,4-high subgroup of G, then H is isomorphic to a subgroup of the free group Z^x, and 
as such H is also free. In fact H has a basis {y\ ,72, • • • ,yk) and for each j>/ there exist a 
unique a, £ 4̂ and a unique a, £ Z* such that 

Let y = (yi,... ,)>*), AT the matrix whose rows are a, = (an, a^, . . . , aik) and a = 
(a\,...,ak), we have: 

y = iVx + a and / / = Z^y. 

Thus every A -high subgroup //of ^40 Z*x determines a matrix Ar £ M*(Z) and an element 
2i£Ak for each choice of basis of//. More precisely we have: 

THEOREM 3.1. Let A be a torsion free group and G = A 0 Z^x, where Zk\ is a free 
group of rank k. Then every A-high subgroup ofG is of the form Zky where y = Nx + a 
for some N £ Mk(Z) and a £ Ak. Furthermore, Zky is an A-high subgroup ofG if and 
only if det N ^ 0 and (N9 a) = 1. 

PROOF. In view of the preceding discussion we need only to show the second part of 
this theorem. Suppose Z*y is .4-high in G. Then y is distinguished since Z*y is of rank k. 
Let a £ Atmp(a)nKp(N) for a prime/?, this means that a a £ /?G, and o/V = /?P, for some 
P £ Tk. Therefore, ay = a/Vx + a a = /?px + a a £ /?G, so that a £ Ann/?(y) and since 
Z^y is pure (p-pure for all primes/?), Annp(y) = pZk, by Proposition 2.4a. It follows that 
a £ pZk and Annp(a)PiA^(7V) — pZk, for every prime/?. This is precisely what we mean 
by (N, a) = 1. Now, let 7 £ Zk such that yN = 0 then 7y = 7a £ A D Z*y = 0. Thus 
7y = 0 and since y is distinguished, 7 = 0. Therefore, by Proposition 2.4e, det N ^ 0. 
Conversely, suppose det N ^ 0 and (N, a) = 1, we need to show that y is distinguished, 
ZkyHA = 0 and Z*y is/?-pure for all primes/?. Suppose a y = 0, then OLNX = —aa £ 
A n Zkx = 0 i.e., OLN = 0, but detAf ^ 0, therefore a = 0, and y is distinguished. 
Similarly, one can show that Zky DA = 0. Now, let P £ Ann/7(y), then py £ pG and 
since G — A 0 Z*x we have pNx £ pZk\ and Pa £ pA. But x is distinguished so 
that $N = /?7 for some 7 £ Zk. It follows that P £ Ann^a) n KP(N) = plk, hence 
Annp(y) = pZk. Therefore, by Proposition 2.4a, Z*y is /?-pure for all primes /?. • 

The next step is to show that the matrix N can be replaced by a special diagonal matrix 
through a suitable change of bases. This is an application of the well-known stacked bases 
theorem. 

PROPOSITION 3.2. Let G — v4 0 Z^x, where Zk\ is a free group of rank k, and Z*y 
an A-high subgroup ofG. Then there exist z, w £ Gk and b £ Ak and Da diagonal k x k 
matrix over Z,D — diag(</i,..., dk) and d\ \d?\ • • • \dk, such that: 

ZkT = Zkx, Zkw = Z^y, and w = Dz + b. 

PROOF. Let y = Nx + a, where N £ Mk(Z), detN ^ 0, a £ Ak and where (N, a) = 1. 
Since det N ^ 0, Zk(N\) is a free group of rank k. By the stacked bases theorem for finite 
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rank free abelian groups, there exist a basis z\,... ,zk of Zk(Nx) and dt E Z, d\di+\ such 
that d\iu.. .,dkzk is a basis ofZk(Nx). Thus we have Tkx — Zkz and Zk(Nx) — ZkDz 
where z = (z\,..., zk) and Z) = diag(Ji,. . . , dk). Let M be the matrix corresponding to 
this change of basis in Zk(Nx),M is an invertible matrix in Mk{Z) and Nx = MDz. Let 
b = M~]a and w = M_1 y then w = Dz + b and Z^w = Z^y. • 

From the preceding exposition it follows that if K is an/, e. e. of A then K is isomorphic 
to (^ © Tkx)/2.ky where Z^x is a free group of rank A: and y = Dx + a where D = 
diag(t/i , . . . ,</*) , d e t Z ) ^ 0, rfj |rf2| • • • | 4 and a e / such that (A a) = 1. We will say 
that (A ® Zkx)jZky is in canonical form when D is such a diagonal matrix. 

We have the exact sequence: 

A ^eZ^y A®Tk\ A®Zk\ ~ lk\ A 
U ZAy Z,y A®Zky ~ Zk(Dx) V 

II II II 
0 —> A —> K —> 7 = ®?=i(^i+>4> —> 0 

where o(x, +A) = dj and dj\dj+\, / = 1 , . . . ,& — 1. 
We say that (^ ® Zkx)jZky is a reduced representation of an/, e. e. of ,4 if in addition, 

1 < d\ < di < -• • < dk. In other words that Zkx/Zk(Dx) is the direct sum of k non
zero cyclic groups (x, + ZkDx) of order dj respectively and d\d^\. In this case we say 
that (A ® Zkx)jZky is a reduced/, e. e. of A of relative width k. In general we define 
the relative width of an extension in canonical form {A © Zkx)jZky to be the number of 
diagonal entries in D larger than 1. It can be shown that the relative width is equal to the 
maximum of dim(Z*x/Z*Afa)[p] over the primes p that divide det N. 

In general if A is a fixed torsion free group and K is a n / e.e. of A, K may be iso
morphic to different canonical reduced representations. It is easy to see that the relative 
width of these representations is at most equal to the rank of A. We can define the abso
lute width ofK over^4 to be the minimum of the relative widths of all canonical reduced 
representations isomorphic to K. In other words given a K which contains an essential 
subgroup B of finite index isomorphic to A, we define the absolute width of K over A to 
be the smallest width of K/B where B ranges over all subgroups of finite index in K that 
are isomorphic to A. (The width of a finite group G being the number of cyclic summands 
in any canonical decomposition of G.) The absolute width of an/ , e. e. K of A of rank k 
is always strictly smaller than k. This is shown in the next theorem. But first a definition 
and some technical lemmas. 

DEFINITION 3.3. Let M G Mk(Z) we say that M is a Smith diagonal matrix if 
i) d e t M ^ Oand 

ii) M — diag(mi,.. .,mk) where 1 < m\\m2\ • — \mk. 

LEMMA 3.4. Let D G Mk(Z) be a Smith diagonal matrix, and a G Ak such that 
(D, a) = 1 where A is a torsion free group, then a, is distinguished and k < rank(A). 

PROOF. Let a G Zk, such that a a = 0, then a G Annp(a), for all primes/?. If a ^ 0, 
we may assume that ot = (a\,..., ak), and gcd(a\,..., ak) = 1. Let/? be a prime divisor 
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of d\, then Kp(D) = Zk, since D = pM where M — diag(/wi,..., mk) and dt — mip. 
Therefore a G KP(D) D Ann^(a) = pZk and a = pfi for some (J G Z*. This contradicts 
the fact that gcd(«i,. . . , ak) — 1 therefore a = 0. It follows that k < rank(^). • 

LEMMA 3.5. Let G — v4 0 Zkx and y = Dx + a w/zere D,A,a are as in Lemma 3.4 
and rank(^) = k. Then A C(d\A® Tkd\ x) + Z*y. 

PROOF. Let b £ A, since by Lemma 3.4, a is distinguished we have k = rank(Z^a), 
thus there exists n G Z such that H& = a a for some a G Z*. If /? is a prime divisor 
of n and dj, we have D — pM where M — diag(mi,..., mk) and mtp = rf/. Therefore 
KP(D) = Z* and consequently Annp(a) = /?Z*. But a G Ann/7(a), since a a £ pA, thus 
a = pfi. This gives p(mb — Pa) = 0, where « = pm and since ̂  is torsion free, we have 
mb — (5a. Therefore we may suppose that (n,d\)= 1. Let s, t G Z such that tn+sd\ — 1, 
then fc = fa& + 5^ib but tab = /aa = tct(Dx — y) G Z^ix + Z^y since D = d\D' where 
D' = diag(l, ̂ , . . . , d[) and </,- = d\d\. It follows that b G (<M 0 Z^ix) + Z*y and 
A C (dxA^Zkdxx) + Zky. • 

Now, we are ready to establish our theorem. 

THEOREM 3.6. Lef Abe a torsion free group of rank n and K anf. e. e. of A. Then 
the absolute width ofK over A is strictly less than n. 

PROOF. Let K = (A 0 lkx)/Zky such that y = Dx + a,Z) a Smith diagonal matrix, 
a G Ak and (£), a) = 1. From Lemma 3.4 A: is less or equal to n. Now Z*y C ^ © Zkd\ x. 
Indeed let dt — d\d\ and set M — diag(l, df

2,..., d'k) then for every a G Z*, 

ay = aDx + a a = aMd\ x + a a G 4̂ 0 Zkd\ x. 

Now, Z^y is also ^4-high in A 0 Z ^ x , thus H — {A 0 Tkd\x)/Tky is an/ , e. e. of A. 
Furthermore H C K, and 

K/H^lkx/Zkd.x = ®(x, + Z^,x)o(x/ + Z^,x) - </,,/ = l , . . . , t . 
/=i 

It follows that d\K C H. Now if A: < «, there is nothing to prove, but if k — n, from 
Lemma 3.5 we have 

(A 0 Zkdxx)lZky C ((rf,yJ 0 Zkdxx) + Z*y)/Z*y = (dx(A + Z*x) + Z*y)/Z*y 

= d{((A+ Zkx)/Zky) 

= d]K. 

Therefore H = d\K but K is torsion free thus K = //. Clearly, / / is an/ , e. e. of 4̂ of 
relative width < k — 1. Therefore Â  contains an essential subgroup B of finite index 
isomorphic to A such that width of K/B < k, and the absolute width of K over A is 
strictly less than n. m 

This theorem has many consequences. In particular we see immediately that for a 
groups of rank 1 all/, e. e.'s of A have absolute width 0. That is to say that a l l / e. e.'s are 
isomorphic to A. In fact it is well-known that all/, e. e.'s of a homogeneous completely 
decomposable group A of finite rank are isomorphic to A. But it is interesting to see how 
we can obtain this from Theorem 3.6. 
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COROLLARY 3.7. Let A be a homogeneous completely decomposable group of finite 
rank and K anf. e. e. of A. Then K = A. In other words the absolute width ofK over A 
isO. 

PROOF. We induct on the rank of A. If rank(^4) = 1 it follows from the remark 
above. Let A be of rank k > 1. Then by Theorem 3.6 if K is an/ , e. e. of A it can be 
represented as {A 0 Zwx)/Zwy where m <k and y = Dx + a where a G Am, D G MW(Z), 
D is a Smith diagonal matrix and (D, a) = 1. By Lemma 3.4 a is distinguished so that 
Zma is a subgroup of rank m of A. Since A is homogeneous completely decomposable 
of finite rank every pure subgroup of A is a summand of A (see [5, vol. II, p. 115]), thus 
A = (Zwa)* 0 //, then 

f(Zwa)*0Zwx>| / J / e Z w y \ 
I Zwy J V Zwy /' 

The right hand summand is isomorphic to H. The left hand summand is an/ , e. e. of the 
homogeneous completely decomposable group (Zwa)* of rank m < k, hence by induction 
it is isomorphic to (Zma)*. Therefore K = 7 / 0 (Zwa)* = 4̂. • 

To conclude this section we observe that our representation off. e. e.'s remains invari
ant under certain substitutions. Let K = (A 0 Z£x)/Z*y, where y = Nx + a, detiV ^ 0, 
a G J4*, (TV, a) = 1. Then K does not change if we replace y by My where M is an in-
vertible k x k matrix over Z. It does not change either if we replace x by x + b where 
a = Nb + c, b, c G Ak. Thus a e Ak can be replaced by c G Ak provided a = c modN, 
k a - c G M4*. These transformations play an important role in the sequel. 

4. Homogeneous completely decomposable groups. Starting here we consider 
f.e.e.'s of completely decomposable groups. We need to establish a crucial property 
of homogeneous completely decomposable groups (hcd groups) of finite rank. We call 
this the substitution property with respect to Smith diagonal matrices, and it is explicitly 
stated in the following 

THEOREM 4.1. Let D G M*(Z) be a Smith diagonal matrix and a G Ak such that 
(JD, a) = 1, where A is an hcd group of finite rank. Then there exists c G ^ such that 

1) c = a mod A i.e. c — a G DAk and 
2) (Z*a)* = ef= 1(C /)*. 

Before we give a proof of Theorem 4.1, we need a few lemmas. 

LEMMA 4.2. Let A be a torsion free group, a,b G A such thatr(a) < r(b), m G Z, 
such that (w, a) = 1. Then there exists c G (b) such that 

i) c G b + m(b) 
n) X(a) < x(c) 

PROOF. Let (P be the set of all primes and E = {p G P̂ : /^(a) > hp(b)}, since 
T(#) < r(b),E is finite and /^(a) = a^ < oo for every/? G £. Let 

H = f j p a ' -& where Ap(Z>) = f3p. 
peE 
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Now since (ra, a) — 1, q E T and q\m implies that q does not divide a so that hq(a) — 0 
and q £ E. It follows that (w,«) = 1. Let s, t E Z such that sm + tn = 1 and put c = tofc, 
then A = smb + c and x(«) < x(c)- • 

LEMMA 4.3 (A. MADER). Let M = K (& L be a direct decomposition ofR-modules. 
Then 

<j> H-> (1 + cj))L = {x + </>(JC) : * E L} 

defines a bijective correspondence between the maps o/Hom^(L, K) and the set of com
plementary summands ofK in M. Furthermore, 1 + </>: L —» (1 + </>)L /s a« isomorphism. 

PROOF OF THEOREM 4.1. Let D be a Smith diagonal matrix and a = (01 , . . . , ak) E 
4̂*. Since (Z), a) = 1 we know that a is distinguished. H — (Z^a)* is a pure subgroup of 

A, therefore H is itself an hcd group [5, vol. II, p. 114] of rank k. Now (ak)* is a pure 
subgroup of// and as such, we have: 

H= (ak)*@Hk. 

We put ck — ak. Now suppose that we have constructed elements ck, ck^\,..., cJ+\ J < 
&— 1, such that: 

H=Cj®Hj 

where 
i) C; = e*=yH<c.-}.. 

ii) ct — at E d[A, i = j + 1, . . . , k. 
iii) (Aa7) = 1, where a7 = (a\,...9aJ9cj+\,...,ck). 

Then a,- = bj + fy where 6/ E C7 and fy E Hj. Now there exists n,nj+\,... ,nk E Z such 
that 

it 

nbj = ]T «,-c/, where gcd(«, w/+1,..., nk) = 1. 
i=y+i 

We claim that (dj,hj) = 1. Indeed ifp is a prime divisor of both dj and fy, we let a — 
(ocifi=x where 

fO, z = l , . . . j - l 
oti = ln, i=j 

[-nh / = y + l , . . . , A:. 

Then 
aa7 = way — nbj = nhj E /?G 

and 
QLD = (0,...,/u/y, -nJ+\dJ+i,..., -«*</*) E pZ^ 

so that a E Ann/3(a
/) Pi Kp(D) = p~lk, i.e. a = pfi for some ($ E Z*. This means that/? 

divides gcd(«, rij+\,..., nk) which is a contradiction. Thus (dy, hj) — 1. But r(hj) = r(Z)y), 
we apply Lemma 4.2 to obtain an element b1- E fy + dj(bj) such that x(Ay) < x(bj)- We 
write 6j = bj + </y-&", where 6j' E (6/). Let 

0: (A,-)* —> (bfj), defined by: <f>(hj) = b). 
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<j> is a well defined homomorphism since \(hj) < x(bj)- Put Cj = aj + djb", then c7 = 
hj + bj + djb'j = hj + 6j = (1 + </>)(/zy). Thus (c,-)* = (1 + <l>)(hj)*. From Lemma 4.3 

(Ay)* 0 Cy = (cy)* 0 Cy. 

Now, (Ay^isasummandofthehcdgroup/^,say/^- = {hj)*@Hj-\.¥utCj-\ — (cy)*0Cy 
then / / = Cj-\ 0 7^-i. Clearly Cj — aj G <â 4 and Cy_i = ©f=y(c/)*. It remains to 
show that (D,a!~l) = 1, where a7-1 = (a\,.. .,aj-\,cj,... , Q ) . Let/? be a prime and 
a G Ann/,(a

/_!) H Ap(Z>), then 

oD = /?P z.e. or/rf/ = p/3i i — 1 , . . . , k 

and 
7 - 1 * 

.1=1 /=/ 

but 

aa/'~1 = ota + ]T) a/(c/ — a/) = a a + ^ ar/rf/6", where c, — a, = d/6". 

Therefore aa G /?// so that a G Ann/?(a) Pi A^(D) = pTk. It follows that 

Aniv,(a /- ,)nA:p(D)=pZ i t. 

This completes the induction step. Now putting c = (c\,...,ck) and b" = (b",..., b'D 
we have c — a — Db" and the result follows. • 

5. Finite essential extension of completely decomposable groups. In this section 
we restrict our attention tof.e.e.'s of completely decomposable groups of finite rank. 
Such groups have been studied in the literature under the name of almost completely 
decomposable groups (acd groups). A comprehensive treatment of the hitherto known 
facts and theories about these groups has been given by A. Mader in [ 10] and it is his work 
that prompted us to study/, e. e.'s. Our approach is different and could be classified as 
belonging to the generators and relations type. We want to make a case for our techniques 
by proving the following theorem. 

THEOREM. Let X be an almost completely decomposable group such that Tcr(X) — 
{a, T}. Then X is isomorphic to a direct sum of rank one and rank two groups. In partic
ular, ifX is indecomposable, then Xhas rank one or rank two. 

Furthermore our approach pinpoints the major obstacle that prevents generalizations 
of this theorem to the case of acd's of more than 2 incomparable critical types. 

We need some facts relating decompositions of the original groups and the represen
tation of/, e. e.'s of A. First something quite general whose proof is straightforward. 
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LEMMA 5.1. Let A = B © C and k be a positive integer, k < rank(^). Put G = 
A © Z^x, where Zkx is a free group of rank k. Let y = Nx + a where N G Miff), a € Ak 

and write a = b + c , b G ^ , c G ( i . 7%e/i 

(C + Z) ty)n(5©Zytx) = Zy t(y-c) an*/ C+Z*y = C+ Z*(y - c). 

Furthermore ifdetN ^ 0 rte/i B n Z*(y - c) = 0 a/id C n Z*y = 0 = CC\ Tk{y - c). 

The next proposition is very important. It is in fact the key of the reason why the 
results do not generalize to the case of more than two non comparable critical types. 

PROPOSITION 5.2. If in Lemma 5.1 we suppose that Zky is an A-high subgroup ofG. 
Then (N, b) = 1 if and only ifC © Z^y is a pure subgroup ofG. 

PROOF. If (N,b) — 1 then since detN ^ 0, and y — c = Nx + b we see from 
Theorem 3.1 that Z*(y — c) is iMiigh in B © Zkx. It follows that Z*(y — c) is a pure 
subgroup of £©Z*x and C©Z*y = C©Z*(y-c) is pure in C©£©Z*x = G. Conversely, 
if C© Zjty is pure in G, then Z (̂y — c) is pure in G since it is the intersection of two pure 
subgroups of G. Now detN ^ 0 so that in view of Lemma 5.1, Z*(y — c) = Z*y, and 
thus it is a pure subgroup of B © Z^x of rank k. Therefore Z*(y — c) is ZMiigh in B © Z*x 
and by Theorem 3.1, (N, b) = 1. • 

It is important to note the cross relationship in Proposition 5.2. If 

a = b + c, b <G B\ C G C* 

then B © Z*y is pure in G if and only if (N, c) = 1 and C © Z^y is pure in G if and only 
if(N,b) = 1. 

Now, we come back to a completely decomposable group A of finite rank. We can 
writer = 0?=1 At where At is an hcd of type 77 and 77 ^ TJ if/ ^j. IfK is an/, e. e. of A we 
may assume that ,4 is a subgroup of K and in view of Corollary 3.7, the purification (Aj% 
of At in K is isomorphic to A\ since it is an/, e. e. of At. Thus without loss of generality 
we can assume that A\ is already pure in K for each /. Furthermore if k is the width of 
K/A and A C B C K then the width of K/B is < k. It follows that in the representation 
{A © Zkx)jZky of a n / e. e. of A — ®n

i=x A\ we may assume that k < rank(^) and that 
Ai © Tky is a pure subgroup of A © Z^x, for each /. 

LEMMA 5.3. Let A be a torsion free group of finite rank and K an f. e. e. of A of 
absolute width k. Let (A © Zkx)jZky be a reduced representation ofK and suppose A = 
B © C such that B © Z*y is pure in A © lk\. Then k < rank(Q. 

PROOF. Consider the short exact sequence 

(A © Zky)/B © Z*y —• (A © Zkx)/B © Z*y —>A® Zkx)/A © Z*y 

the first term is isomorphic to C and the last term to Zk\/ZkD\ where y = Dx + a for 
some Smith diagonal matrix D G Mk(Z) and some a £ Ak. The middle term is a torsion 
free group and in fact it is a n / e. e. of C of relative width k. Therefore k < rank(Q. • 

In the remaining part of this section our group A is the direct sum of two hcd groups 
of finite rank B and C such that T(B) and r{C) are incomparable. 
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PROPOSITION 5.4. Let A = 5 0 C, where B is hcd of rank m and C is hcd of rank n. 
Let K be anf. e. e. of A and let k be the absolute width ofK over A, then h < min(«, m). 
Furthermore ifK has no rank 1 summand then rmk(A) — 2k. 

PROOF. From the remarks after Proposition 5.2 K can be represented in the form 
(A 0 ~Lkx)j~Lky where k is the absolute width of K over A and B 0 Z*y and C 0 Tky are 
both pure subgroups of A 0 Zk\. By Lemma 5.3, we have k < rank(Z?) and k < rank(C). 
Therefore k < min(m, n). Write y = Dx + a for a Smith diagonal matrix D G Mk(l) 
and a G ^^, then a = b + c for some b G Z?* and c G C* and by Proposition 5.2, 
(Z), b) = 1 '= (D, c). Now by Lemma 3.4 both b and c are distinguished. Thus Z*b and 
Z^c are both of rank k. But (Z^b)* and (Z^c)* are each summands of B and C respectively, 
say B = B'® (Z*b)* and C = C 0 (Z*c)*. Now 

(A 0 Zitx)/Ziky - (5' e C ® Z*y)/Z*y 0 ((Z*b)# 0(Z*c)* 0 Zkx)/lky. 

IfK has no summands of rank 1, the left hand factor which is isomorphic to B10 C must 
be null. Therefore B = (lkb\ and C = (2.kc\ thus rank,4 = 2k. m 

THEOREM 5.5. Let A = B 0 C where B and C are hcd groups ofnon comparable 
types and K anf. e. e. of A. Then K is the direct sum of groups of rank two or one. 

PROOF. Let k be the absolute width ofK over A, and represent K as {A 0 Tkx)/Tky. 
Then as in Proposition 5.4, 

(A 0 Z*x)/Z*y = ((£' 0 C' 0 Z*y)/Z*y) 0 (((Z*b)# 0 (Z*c)* 0 Z*x)/Z*y). 

The left hand summand is a completely decomposable group isomorphic to B' 0 C'. So 
we consider the right hand summand. We have 

y = Dx + b + c, and (D, b) = 1 = (£>, c). 

By the substitution property for hcd groups (Theorem 4.1) there exists b' and b", and c' 
and c" such that 

b ' ^ b + Db" and c' = c + £>c" 

and 
k k 

(Z*b), = (Z,b')* = ©(£;>*, (Z*c)* = (Z*c')# = 0 (c j ) # . 

Thus 

(Z*b)* 0 (Z*c)* 0 Z*x = (Z*b7)* 0 (Z*c')* 0 Z*z 

where z = x — b" — c". Therefore 

k k k k 

((Z,b). © (Z*c)» © Z*x)/Z*y = ( © W ) 0©<c,') ©©<z,))/©(y,-> 
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where z = (z\,..., zk). Now y = £>z+b'+c' and since j^+d/Z/ = &•+£-, / = 1, . . . , k, (y,) C 
(fey)* + (c-)* 0 (z/), and the right hand side is isomorphic to 

« e ( c ; ) © W ) / W 

which is a direct sum of groups of rank 2. Therefore K is the direct sum of groups of rank 
one and rank two. • 

In a subsequent paper we intend to present the relationship of our method and the 
important notions of regulating and regulator subgroups and near-isomorphism. 
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