(c) Canadian Mathematical Society 2011

Maximal Sets of Pairwise Orthogonal Vectors in Finite Fields

Le Anh Vinh

Abstract. Given a positive integer n, a finite field \mathbb{F}_{q} of q elements (q odd), and a non-degenerate symmetric bilinear form B on \mathbb{F}_{q}^{n}, we determine the largest possible cardinality of pairwise B-orthogonal subsets $\mathcal{E} \subseteq \mathbb{F}_{q}^{n}$, that is, for any two vectors $x, y \in \mathcal{E}$, one has $B(x, y)=0$.

1 Introduction

In this short note, we study the largest possible cardinality of pairwise orthogonal subsets in vector spaces over finite fields. Let n be a positive integer, and let \mathbb{F}_{q} be the finite field of q elements, where q is an odd prime power. To put the problem in a more general setting, instead of using the usual dot product, we consider each nondegenerate symmetric bilinear form B on \mathbb{F}_{q}^{n} (that is, $B(u, v)=B(v, u)$ for all $u, v \in$ $\left.\mathbb{F}_{q}^{n}\right)$. Given two n-dimensional vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q}^{n}$, if $B(x, y)=0$, we say that x and y are B-orthogonal, or orthogonal for short when B is clear from the context. Any non-degenerate bilinear form on $\mathbb{F}_{q}^{n}(q$ odd) can be given by

$$
\begin{align*}
B(x, y) & =\sum_{i=1}^{n} a_{i} x_{i} y_{i}, a_{i} \neq 0,1 \leq i \leq n, \quad x=\left(x_{1}, \ldots, x_{n}\right) \tag{1.1}\\
y & =\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q}^{n}
\end{align*}
$$

Let χ be the quadratic character of \mathbb{F}_{q}. We define $\chi(B) \in\{ \pm 1\}$ as

$$
\chi(B)=\prod_{i=1}^{n} \chi\left(a_{i}\right) .
$$

The main result of this short note is the following theorem.
Theorem 1.1 For any non-degenerate symmetric bilinear form B on \mathbb{F}_{q}^{n}, we define $I\left(B, \mathbb{F}_{q}^{n}\right)$ as the largest possible cardinality of pairwise B-orthogonal subsets $\mathcal{E} \subseteq \mathbb{F}_{q}^{n}$.
(i) If n is odd, then $I\left(B, \mathbb{F}_{q}^{n}\right)=q^{(n-1) / 2}+(n+1) / 2$.
(ii) If n is even and $\chi(B)=\chi(-1)^{n / 2}$, then $I\left(B, \mathbb{F}_{q}^{n}\right)=q^{n / 2}+n / 2$.
(iii) If n is even and $\chi(B)=-\chi(-1)^{n / 2}$, then $I\left(B, \mathbb{F}_{q}^{n}\right)=q^{n / 2-1}+n / 2+1$.

[^0]Recall that, for a given symmetric bilinear form B, we can define the quadratic form $Q: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$ by $Q(v)=B(v, v)$; and for any given quadratic form Q, we can pull out a symmetric bilinear form defined by $B(u, v)=\frac{1}{2}(Q(u+v)-Q(u)-Q(v))$. In particular, if $B(\cdot, \cdot)$ is given in (1.1), then $Q(x)=\sum_{i=1}^{n} a_{i} x_{i}^{2}$. Similarly, we define $\chi(Q)=\prod_{i=1}^{n} \chi\left(a_{i}\right)$. Iosevich, Shparlinski, and Xiong ([1]) obtained the following results using exponential sum estimates.

Theorem 1.2 ($\left[1\right.$, Theorem 1.2]) For any non-degenerate quadratic form Q on \mathbb{F}_{q}^{n}, let $I_{0}\left(Q, \mathbb{F}_{q}^{n}\right)$ denote the largest possible cardinality of subsets of $\mathcal{E} \subseteq \mathbb{F}_{q}^{n}$ with pairwise zero Q-distance; that is, for any two points $x, y \in \mathcal{E}$, one has $Q(x-y)=0$.
(i) If n is odd, then $I_{0}\left(Q, \mathbb{F}_{q}^{n}\right)=q^{(n-1) / 2}$.
(ii) If n is even and $\chi(Q)=\chi(-1)^{n / 2}$, then $I_{0}\left(Q, \mathbb{F}_{q}^{n}\right)=q^{n / 2}$.
(iii) If n is even and $\chi(Q)=-\chi(-1)^{n / 2}$, then $I_{0}\left(Q, \mathbb{F}_{q}^{n}\right)=q^{n / 2-1}$.

We will give another proof of this theorem in this note, which uses only simple linear algebra.

Note that in the Euclidean space \mathbb{R}^{n}, the maximal sets of pairwise orthogonal vectors are simply orthogonal bases of \mathbb{R}^{n}, and the maximal sets of pairwise zerodistance sets are just single-point sets. However, the arithmetic of finite fields allows a richer orthogonal structure. Another example of this phenomenon is the question, which was first studied by Iosevich and Senger [2], of whether a sufficiently large subset of \mathbb{F}_{q}^{n} contains a k-tuple of mutually orthogonal vectors. This problem does not have a direct analog in Euclidean or integer geometries because placing the set strictly inside $\left\{x \in \mathbb{R}^{d}: x_{i}>0\right\}$ immediately guarantees that no orthogonal vectors are present. On the the other hand, Iosevich and Senger ([2]) showed that if $\mathcal{E} \subset \mathbb{F}_{q}^{n}$ of cardinality

$$
|\mathcal{E}| \geq C q^{n \frac{k-1}{k}+\frac{k-1}{2}+\frac{1}{k}}
$$

with a sufficiently large constant $C>0$, then \mathcal{E} contains $(1+o(1))|\mathcal{E}|^{k} q^{-\binom{k}{2}} k$-tuples of k mutually orthogonal vectors in E (see also [6], where the author improved the bound on the cardinality of \mathcal{E} to $|\mathcal{E}| \geq C q^{\frac{n}{2}+k-1}$ using graph theoretic methods).

2 Maximal Subspaces in Quadratic Hypersurfaces

Since any non-degenerate quadratic form on $\mathbb{F}_{q}^{d}(q$ odd) can be diagonalized ([5], Theorem 3.1]), we may assume that Q is given by

$$
Q(x)=\sum_{i=1}^{n} a_{i} x_{i}^{2},: a_{i} \neq 0,1 \leq i \leq n, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}
$$

We fix a non-square element $\lambda \in \mathbb{F}_{q}^{*}$, then it is well known that (see, for example, [1, 4]) any non-degenerate quadratic form Q on \mathbb{F}_{q}^{n} can be reduced (by repeated change of variables) to one of the forms $Q_{n, \varepsilon}, \varepsilon \in\{1, \lambda\}$, depending on the value of $\chi(Q)$, where for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$, if $n=2 m$ is even, then

$$
\begin{equation*}
Q_{n, \varepsilon}(x)=x_{1}^{2}-x_{2}^{2}+x_{3}^{2}-x_{4}^{2}+\cdots+x_{2 m-1}^{2}-\varepsilon x_{2 m}^{2} \tag{2.1}
\end{equation*}
$$

and if $n=2 m+1$ is odd, then

$$
Q_{n, \varepsilon}(x)=x_{1}^{2}-x_{2}^{2}+\cdots+x_{2 m-1}^{2}-x_{2 m}^{2}+\varepsilon x_{2 m+1}^{2}
$$

For any non-degenerate quadratic form Q on \mathbb{F}_{q}^{n}, let S_{Q} denote the quadratic hypersurface associated with Q on \mathbb{F}_{q}^{d}, that is

$$
S_{Q}=\left\{x \in \mathbb{F}_{q}^{d}: Q(x)=0\right\}
$$

The following lemma tells us about the maximal dimension of linear subspaces in S_{Q}.
Lemma 2.1 Let W be a linear subspace of maximal dimension in S_{Q}.
(i) If n is odd, then $\operatorname{dim}(W)=(n-1) / 2$.
(ii) If n is even and $\chi(Q)=\chi(-1)^{n / 2}$, then $\operatorname{dim}(W)=n / 2$.
(iii) If n is even and $\chi(Q)=-\chi(-1)^{n / 2}$, then $\operatorname{dim}(W)=n / 2-1$.

Proof Let $\left(\mathbb{F}_{q}^{n}\right)^{*}$ be the dual space of \mathbb{F}_{q}^{n}, that is, the space of all linear functionals on \mathbb{F}_{q}^{n}. Recall that a symmetric bilinear form B is associated with the corresponding linear map $\widetilde{Q}: \mathbb{F}_{q}^{n} \rightarrow\left(\mathbb{F}_{q}^{n}\right)^{*}$ given by sending v to the linear form $B(v, \cdot)$, where

$$
\begin{equation*}
B(u, v)=\frac{1}{2}(Q(u+v)-Q(u)-Q(v)) \tag{2.2}
\end{equation*}
$$

Let W be a linear subspace in S_{Q}, then $\left.Q\right|_{W}=0$, or equivalently $\widetilde{Q}(W) \subset \operatorname{Ann}(W)$. Since Q is non-degenerate, \widetilde{Q} is an isomorphism. So we have

$$
\operatorname{dim}(W) \leq \operatorname{dim}(\operatorname{Ann}(W))=\operatorname{dim}\left(\mathbb{F}_{q}^{n}\right)-\operatorname{dim}(W)
$$

which implies that

$$
\begin{equation*}
\operatorname{dim}(W) \leq n / 2 \tag{2.3}
\end{equation*}
$$

For $1 \leq i \leq n$, denote by e_{i} the vector in \mathbb{F}_{q}^{n} with 1 in the i-th entry and 0 everywhere else. Suppose that $n=2 m+1$. Let $W=\operatorname{span}\left\{e_{1}+e_{2}, \ldots, e_{2 m-1}+e_{2 m}\right\}$, then $\operatorname{dim}(W)=(n-1) / 2$ and $W \subset S_{Q}$. This proves the first claim of the lemma.

Suppose that $n=2 m$ and $\chi(Q)=\chi(-1)^{n / 2}$. By the classification of nondegenerate quadratic forms on \mathbb{F}_{q}^{n}, we assume that $Q=Q_{n, 1}$ (given in (2.1)). Let $W=\operatorname{span}\left\{e_{1}+e_{2}, \ldots, e_{2 m-1}+e_{2 m}\right\}$, then $\operatorname{dim}(W)=n / 2$ and $W \subset S_{Q}$. This proves the second claim of the lemma.

Next, we suppose that $n=2 m$ and $\chi(Q)=-\chi(-1)^{n / 2}$. Let $O\left(\mathbb{F}_{q}^{n}, Q\right)$ be the group of all linear transformations on \mathbb{F}_{q}^{n} that fix Q (which is called the orthogonal group associated with the quadratic form Q). We will need the following lemma.

Lemma 2.2 Let W and V be any two linear subspaces of dimension k on \mathbb{F}_{q}^{n}, and let $\left\{w_{1}, \ldots, w_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ be orthogonal bases of W and V, respectively. Suppose that $\left\|w_{i}\right\|=\left\|v_{i}\right\|, 1 \leq i \leq k$, then there exists an orthogonal transformation $O \in$ $O\left(\mathbb{F}_{q}^{n}, Q\right)$ such that $O(W)=V$.

Proof Let $\left\{w_{1}, \ldots, w_{k}\right\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$ be basis of W and V, respectively. It suffices to show that there exists an orthogonal transformation $O \in O\left(\mathbb{F}_{q}^{n}, Q\right)$ such that $O\left(w_{i}\right)=v_{i}, i=1, \ldots, k$. The proof of this claim proceeds by induction. The base case $k=1$ follows immediately from the fact that the orthogonal group with respect to Q acts transitively on S_{Q}. Suppose that the claim holds for $k-1$; we show that it also holds for k. Since $\left\|w_{1}\right\|=\left\|v_{1}\right\|$, there exists an orthogonal transformation Q_{1} that maps w_{1} to v_{1}. Let $w_{2}^{\prime}, \ldots, w_{k}^{\prime}$ be images of w_{2}, \ldots, w_{k} under this map. Set $W^{\prime}=\operatorname{span}\left\{w_{2}^{\prime}, \ldots, w_{k}^{\prime}\right\}$ and $V^{\prime}=\operatorname{span}\left\{v_{2}, \ldots, v_{k}\right\}$, then W^{\prime} and V^{\prime} are two linear subspaces of dimension $k-1$ on $v_{1}^{\perp} \cong \mathbb{F}_{q}^{n-1}$. Note that $\left\|w_{i}^{\prime}\right\|=\left\|v_{i}\right\|$ for $2 \leq i \leq k$. Hence, it follows from the induction hypothesis that there exists an affine, orthogonal transformation O^{\prime} on $v_{1}^{\perp} \cong \mathbb{F}_{q}^{n-1}$ such that $O^{\prime}\left(W^{\prime}\right)=V^{\prime}$. Let $O=O^{\prime} \circ Q^{\prime}$. This concludes the proof of the induction step and the proof of Lemma[2.2,

Continuing the proof of Lemma 2.1 let $W=\operatorname{span}\left\{e_{1}+e_{2}, \ldots, e_{2 n-3}+e_{2 n-2}\right\}$, then $\operatorname{dim}(W)=n / 2-1$ and $W \subset S_{Q}$. Suppose that S_{Q} contains a linear subspace of dimension $n / 2$. It follows from Lemma 2.2 that there exists an $n / 2$-dimensional linear subspace W of S_{Q} such that $W^{\prime} \subseteq W$. Choose any $v=\left(v_{1}, \ldots, v_{n}\right) \in W$ such that $v \in\left(W^{\prime}\right)^{\perp}$. Since $v \in\left(e_{2 i-1}+e_{2 i}\right)^{\perp}(1 \leq i \leq n / 2-1)$, we have $v_{2 i-1}=-v_{2 i}$ for $i=1, \ldots, n / 2-1$. Note that $v \in S_{Q}$, so $v_{2 n-1}^{2}-\lambda v_{2 n}^{2}=0$. It follows that $v_{2 n-1}=v_{2 n}=0$ or $v \in W^{\prime}$, which is a contradiction. The third claim of Lemma 2.1 follows.

3 Maximal Pairwise Orthogonal Sets

We are now ready to give a proof of Theorem 1.1 Let W_{0} be the maximal linear subspace of S_{Q} given in the proof of Lemma 2.1 Let W_{1} be an orthogonal basis of W_{0}^{\perp}. It is clear that $\mathcal{E}=W_{0} \cup W_{1}$ is a pairwise orthogonal set. This completes the proof of the lower bounds.

Next, we prove the upper bounds. Let \mathcal{E} be a pairwise orthogonal set of maximal cardinality. Set $\mathcal{E}_{0}=\mathcal{E} \cap S_{Q}$ and $\mathcal{E}_{1}=\mathcal{E} \backslash \mathcal{E}_{0}$. Note that if $x \in \mathcal{E}_{0}$, then $B(x, x)=0$. Hence, for any $x, y \in \mathcal{E}_{0}, z \in \mathcal{E}$, and $\lambda_{1}, \lambda_{2} \in \mathbb{F}_{q}$, one has

$$
B\left(\lambda_{1} x+\lambda_{2} y, z\right)=\lambda_{1} B(x, z)+\lambda_{2} B(y, z)=0
$$

By the maximality of \mathcal{E}, we have $\lambda_{1} x+\lambda_{2} y \in \mathcal{E}_{0}$. This implies that \mathcal{E}_{0} is a linear subspace of S_{Q}. Suppose that $x_{0}=\sum \alpha_{i} x_{i}$ for some $x_{0}, x_{1}, \ldots, x_{k} \in \mathcal{E}_{1}, \alpha_{1}, \ldots, \alpha_{k} \in$ \mathbb{F}_{q}. Then

$$
B\left(x_{0}, x_{0}\right)=\sum_{i=1}^{k} \alpha_{i} B\left(x_{i}, x_{0}\right)=0
$$

which is a contradiction. Hence, \mathcal{E}_{1} is a linearly independent set. It follows that

$$
\begin{equation*}
|\mathcal{E}|=\left|\mathcal{E}_{0}\right|+\left|\mathcal{E}_{1}\right| \leq\left|\mathcal{E}_{0}\right|+\left(n-\operatorname{dim}\left(\mathcal{E}_{0}\right)\right) \tag{3.1}
\end{equation*}
$$

The upper bounds follow immediately from (3.1) and Lemma 2.1 This completes the proof of Theorem 1.1

4 Maximal Pairwise Zero-Distance Sets

We recall the following lemma, which is due to Iosevich, Shparlinski, and Xiong [1]. Since the proof of this lemma is short and easy, we will reproduce it here for the sake of completeness.
Lemma 4.1 If $\mathcal{E} \subseteq \mathbb{F}_{q}^{n}$ is a maximal subset with pairwise zero Q-distance and $0 \in \mathcal{E}$, then \mathcal{E} is a linear subspace of S_{Q}.

Proof Suppose that $\mathcal{E} \subseteq \mathbb{F}_{q}^{n}$ is a maximal subset with pairwise zero Q-distance and $0 \in \mathcal{E}$. For any $x \in \mathcal{E}$, one has $Q(x)=Q(x-0)=0$. Hence, $\mathcal{E} \subset S_{Q}$. For any $x, y \in \mathcal{E}$, one has

$$
B(x, y)=\frac{1}{2}(Q(x-y)-Q(x)-Q(y))=0 .
$$

Therefore, for any $x, y, z \in \mathcal{E}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{F}_{q}$,

$$
\begin{aligned}
& Q\left(\lambda_{1} x+\lambda_{2} y-z\right) \\
& \quad=\lambda_{1}^{2} Q(x)+\lambda_{2}^{2} Q(y)+Q(z)+2 \lambda_{1} \lambda_{2} B(x, y)-2 \lambda_{1} B(x, z)-2 \lambda_{2} B(y, z) \\
& \quad=0 .
\end{aligned}
$$

By the maximality of \mathcal{E}, we have $\lambda_{1} x+\lambda_{2} y \in \mathcal{E}$. This implies that \mathcal{E} is a linear subspace of S_{Q} and concludes the proof of the lemma.

Theorem 1.2 now follows immediately from Lemmas 2.1 and 4.1 .

5 Remarks

Note that the upper bound (2.3) in the proof of Lemma 2.1 can also be obtained by a simple character sum estimate. We will need the following estimate of a character sum with bilinear forms over finite fields.

Lemma 5.1 Let $B(\cdot, \cdot)$ be a non-degenerate bilinear form in the n-dimensional vector space \mathbb{F}_{q}^{n}, and ψ be a non-trivial additive character on \mathbb{F}_{q}. For any two sets $\mathcal{E}, \mathcal{F} \subset \mathbb{F}_{q}^{n}$ with $|\mathcal{E}|=E,|\mathcal{F}|=F$, we have

$$
\left|\sum_{u \in \mathcal{E}, v \in \mathcal{F}} \psi(B(u, v))\right| \leqslant \sqrt{q^{n}|\mathcal{E} \| \mathcal{F}|} .
$$

Proof Viewing $\sum_{u \in \mathcal{E}, v \in \mathcal{F}} \psi(B(u, v))$ as a sum in v, applying the Cauchy-Schwarz inequality, and dominating the sum over $v \in \mathcal{F}$ by the sum over $v \in \mathbb{F}_{q}^{n}$, we see that

$$
\begin{aligned}
\left|\sum_{u \in \mathcal{E}, v \in \mathcal{F}} \psi(B(u, v))\right|^{2} & \leqslant|\mathcal{F}| \sum_{v \in \mathbb{F}_{q}^{n}} \sum_{u, u^{\prime} \in \mathcal{E}} \psi\left(B\left(u-u^{\prime}, v\right)\right) \\
& \leqslant|\mathcal{F}| \sum_{u, u^{\prime} \in \mathcal{E}} \sum_{v \in \mathbb{F}_{q}^{n}} \psi\left(B\left(u-u^{\prime}, v\right)\right) \\
& \leqslant q^{n}|\mathcal{E}||\mathcal{F}|
\end{aligned}
$$

since the inner sum over v vanishes unless $u=u^{\prime}$.

Suppose that W is a linear subspace in S_{Q}. It follows from (2.2) that $B(u, v)=0$ for any $u, v \in W$. Hence,

$$
|W|^{2}=\left|\sum_{u, v \in W} \psi(B(u, v))\right| \leqslant q^{n / 2}|W|
$$

or equivalently, $\operatorname{dim}(W) \leq n / 2$.

References

[1] A. Iosevich, I. Shparlinski, and M. Xiong, Sets with integral distances in finite fields. Trans. Amer. Math. Soc. 362(2010), no. 4, 2189-2204. http://dx.doi.org/10.1090/S0002-9947-09-05004-1
[2] A. Iosevich and S. Senger, Orthogonal systems in vector spaces over finite fields. Electron. J. Combin. 15(2008), no. 1, Research Paper 151.
[3] S. Kurz, Integral point sets over finite fields. Australas. J. Combin. 43(2009), 3-29.
[4] W. M. Kwok, Character tables of association schemes of affine type. European J. Combin. 13(1992), no. 3, 167-185. http://dx.doi.org/10.1016/0195-6698(92)90022-R
[5] S. Lang, Algebra. Revised third ed., Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002.
[6] L. A. Vinh, On the number of orthogonal systems in vector spaces over finite fields. Electron. J. Combin. 15(2008), no. 1, Note 32.

Mathematics Department, Harvard University, Cambridge, MA, 02138, USA
e-mail: vinh@math.harvard.edu

[^0]: Received by the editors March 31, 2009.
 Published electronically September 15, 2011.
 AMS subject classification: 05B25.
 Keywords: orthogonal sets, zero-distance sets.

