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NONLINEAR OSCILLATION OF FOURTH ORDER 
DIFFERENTIAL EQUATIONS 

TAKASI KUSANO AND MANABU NAITO 

1. I n t r o d u c t i o n . In this paper we are concerned with the fourth order non
linear differential equation 

(A) [r(t)y"]"+yF(y\t) = 0, 

where the following conditions are always assumed to hold: 
(a) r(t) is continuous and positive for t ^ 0, and 

J'00 i 
—-dt = CO; 

o r{t) 
(b) yF(y2, t) is continuous for \y\ < oo , t ^ 0, and F(z, t) is positive for 

z > 0, t ^ 0. 
Following Nehari [11] and Coffman and Wong [3], we classify equations of the 
form (A) according to the nonlinearity of yF(y2, t) with respect to y. Equat ion 
(A) is called superlinear or sublinear according as F(z, t) is, respectively, non-
decreasing or nonincreasing in z, i.e., 

F(zi,t) g F(z2lt), 0 < Zl < z2, ^ 0 , 

or 
F(zu t) ^ F(z2, t), 0 < zi < z2, t è 0. 

Fur thermore , (A) is called strongly superlinear if, for some e > 0, z~€F(z, t) is 
nondecreasing in z, i.e., 

z r e F ( z i , t) g s 2 - ^ ( z 2 , / ) , 0 < zi < z2, / è 0, 

and strongly sublinear if, for some e > 0, zeF(z, t) is nonincreasing in z, i.e., 

zi '^Csi, /) ^ 22eF(z2, 0 , 0 < zi < z2, U 0 . 

We confine our discussion to those solutions y(t) of (A) which exist on some 
ray [Ty, oo ) and satisfy 

sup { b (01 : to S t < oo } > 0 

for every t0 £ [Ty, oo). Such a solution y{t) is said to be oscillatory if it has 
arbitrari ly large zeros. If this condition does not hold, t ha t is, if y(t) is eventu
ally positive or negative, then y(t) is said to be nono s dilatory. Equat ion (^4) 
itself is called oscillatory if all of its solutions are oscillatory. 
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In the oscillation theory of nonlinear differential equations one of the 
impor tant problems is to find necessary and sufficient conditions for the 
equations under consideration to be oscillatory. Beginning with the pioneering 
work of Atkinson [1] there have been a number of papers devoted to the 
investigation of this problem; see, e.g., Belohorec [2], Coffman and Wong [3], 
Kiguradze [4], Kusano and Naito [5], Licko and Svec [8], Onose [12], and 
Ryder and Wend [13]. The purpose of this paper is to proceed further in this 
direction to present some new oscillation criteria for Equat ion (A). We aim at 
determining the effect which r(t) exercises upon the oscillatory character of (A) 
in conjunction with its nonlinearity. In Section 2 we give necessary and 
sufficient conditions for (A) which is either superlinear or sublinear to have 
non-oscillatory solutions with special asymptot ic properties. In Section 3 we 
provide necessary and sufficient conditions for {A ) which is strongly superlinear 
or strongly sublinear to be oscillatory. The present paper has points of contact 
with the earlier work by Leigh ton and Nehari [6], Lovelady [9], Ter ry and 
Wong [14], and Wong [15]. 

2. N o n o s c i l l a t i o n t h e o r e m s . We begin with a lemma which gives informa
tion on the behavior of possible nonoscillatory solutions of (A). 

LEMMA 1. Suppose (a) and (b) hold. Ify(t) is an eventually positive solution of 
(A), then one of the following cases holds: 

(I) y'00 > 0, y"(p) > 0 and [r(t)y"(t)]f > 0 for all large t; 
(II) y' {t) > 0, y"{l) < 0 and [r{t)y"{t)}' > 0 for all large L 

In either case there are positive numbers T and a such that 

(1) J it) S a l 'tt^-^ds for t ^ T. 
Jo r{s) 

Proof. Let y(t) > 0 for t ^ t0. From (A), [r(t)y"{t)}" < 0, t ^ t0, which 
implies tha t [r(t)y"(t)Y is decreasing for t ^ t0. Therefore, [r{t)y"{t)Y is 
eventually of constant sign. Suppose [r{t)y" (t)Y < 0 a t some h > t0. Then, 
[r(t)y"(t)]f è -ci for £ ^ tu where Ci = -[r{t)y"(t)Y t = h > 0. Upon integra
ting this inequality we see tha t there are numbers t2 > h and c2 > 0 such tha t 
r{i)y"(/) S —c4 for t ^ t2. We divide the last inequality by r(t), integrate it 
from /2 to /, and then let t —> oo . Using (a) we have l i m ^ œ yf (t) = — GO , which 
yields l i m ^ œ y(t) = — oo . But this contradicts the positivity of y if). Hence we 
must have [r(t)y" (t)Y > 0 for t ^ to. I t follows tha t r{t)y"(t) is increasing, so 
tha t it is eventually of one sign. If r{t)y"' (t) < 0 for t ^ tQ, then yf (t) is eventu
ally positive. In fact, if y'' (t) is negative a t some point, then using the de
creasing property of y'(t), we obtain lim /_> c o^(0 = — oo, a contradiction. If 
there exists h > t0 such tha t r(t)y"(t) > 0 for / ^ h, then r(t)y"(t) è cz for 
t ^ /3, where c3 = r(h)y"(h)- Multiplying this inequality by t/r(t) and inte
grating from Is to t, we obtain 

(2) ty'(t) - y{t) - hy'(h) + y(h) è c3 ~j-rds, t^ h. 
J n r\s) 
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From (2) and in view of (a) we see t ha t limr^0O ty' (t) = co , which implies t h a t 
y'(t) > 0 for all large t. 

If we integrate the inequali ty [r(t)y" (t)],r < 0 four times from /0 to t, we have 

f* t - s Cl It - s)s 
(3) y(t) S a0 + ait + a2 I ~j-r ds + a3 I rr—efo, 

•/ ÏO
 r W J to r\s) 

where a0, . . . , a 3 are positive constants . The inequality (1) follows immediately 
from (3). This completes the proof. 

Evident ly, similar inequalities hold for an eventual ly negative solution of 
(A). In what follows we use the notat ion 

Jo r(s) 

According to Lemma 1, if y(t) is a nonoscillatory solution of (A), then it is 
eventually monotonie and there are positive constants a,\ and a2 such tha t 
ai è \y(t)\ S a2R(t) for all large t. Therefore, among all nonoscillatory solu
tions of {A), those which are asymptot ic to functions of the form aR(t), a ^ 0, 
as t —» 00 may be regarded as the "max ima l" solutions, and those which are 
bounded and asymptot ic to nonzero constants as t —» 00 may be regarded as the 
"min imal" solutions. In case (A) is superlinear or sublinear necessary and 
sufficient conditions for the existence of these special types of nonoscillatory 
solutions can be established wi thout difficulty. 

T H E O R E M 1. Let {A) be either superlinear or sublinear. A necessary and 
sufficient condition for {A ) to have a nonoscillatory solution which is asymptotic to 
aR(t), a y* 0, as t —* 00 is that 

(4) J R(t)F(c2R(t)\ t)dt < 00 for some c > 0. 

Proof. (Necessity) Let y(t) be a nonoscillatory solution of (A) such t ha t 
limz_>0O y(t)/R(t) = a 5^ 0. We may suppose t ha t a > 0. There are positive 
numbers tlf ai , a2 such t ha t 

(5) aiR(t) S-y(t) g a2R(t) for t ^ h. 

Integrat ing (^4) from ti to /, we obtain 

(6) [r{t)y"\t)Y - [ r ( 0 / ' ( 0 ] U + {'y(s)F(y(s)\ s)ds = 0. 

Since [r(t)y" (t)]' > 0 by Lemma 1, we see from (6) t ha t 

(7) I y{t)F(y(t)\t)dt < oo. 
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From (5) and (7) we conclude tha t 

ai I R(t)F(ai2R(t)\ t)dt < oo if (A) is superlinear, 

R(t)F(a2
2R(t)\ t)dt < oo if (A) is sublinear. 

(vSufficiency) x^ssume (4) holds. Pu t a — c/2 if (A) is superlinear and a = c 
if (A) is sublinear. Take T > 0 so large tha t 

(8) J~R(t)F(c2R(t)\t)dt<± 

and consider the integral equation 

(9) y(t) = ( * y ) ( 0 , 

where 

(10) ( # y ) ( 0 = «#(*) + *(*) I J-(5)F(y(5)2, s)<fc 
** t 

+ J^R(s)y(s)F(y(s)\s)ds 

+ £{I^7(7)da){t-s)yis)Fiyis)2's)ds 

+ fr(fïtiiïd°)Syis)F(y{S),'S)d5-
As easily verified by differentiation a solution of (9) is a solution of Equat ion 
(A). T o solve (9) with the help of Schauder 's fixed point theorem we introduce 
the linear space CR[T, oo ) of all continuous functions y : [T, oo ) —> R such tha t 

I H | S = sup{R(t)~*\y(t)\ :t* T\ < co. 

Obviously CR[T, oo ) is a Banach space with norm || • \\R. We seek a fixed point 
of the operator <ï> in the set 

Y = {y e CR\T, oo) : aR(t) S y(t) S 2aR(t) for t^T}, 

which is a bounded, convex and closed subset of CR\T, oo ). We shall show tha t 
<£ is continuous and maps Y into a compact subset of Y. 

i) $ maps Y into Y. lî y £ Y, then by (10) ($y)(t) è aR(t),t è r , and in 
view of (8) 

($30(0 ^ a # ( 0 + * (0 f°°y(s)F(y(s)2, s)ds 

+ 2 [' R(s)y(s)F(y(s)2,s)ds 

^ a£(*) + 2R(t) I }i(5)F(yW2 , s)ds 

^ ULR(0 + 4ai?(/) J R(s)F(c2R(s)2, s)ds ^ 2aR(t), t ^ 7\ 
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ii) $ is continuous. Let {yn} be a sequence of elements of F such t ha t 

limn_>œ \\yn — y\\R = 0. Since F i s closed, y G F and 

I (*?»)(') - (*y)(')l ^ 2*(0 f°° Fn(*)<fc, * ^ r, 

where 

*"»(*) = |yn(5)f(yK(5)2,5) - y ( s ) f (y (5 )* , i ) | . 

I t follows tha t 

(11) | |*y„ - * y | | s g 2 i ? ( D " 1 f°° F,(*)<fc. 

Since l i m ^ ^ Fn(s) = 0 and Fw(s) :§ 4:aR(s)F(c2R(s)2, s) for s ^ T, applying 
the Lebesgue dominated convergence theorem, we conclude from (11) t ha t 
limn_^œ \\$yn — ^ | U = 0- This proves the cont inui ty of 3>. 

iii) <£F is compact. I t suffices to show tha t the family of functions 
{R~2$y : y (E F} is uniformly bounded and equicontinuous on \T, 00). Since 
the uniform boundedness is evident, we need only to demons t ra te the equi-
continuity. This will be accomplished if we show tha t , for any given e > 0, the 
interval [7", 00 ) can be decomposed into a finite number of subintervals in such 
a way t ha t on each subinterval all functions of the family have oscillations less 
than e; see Levitan [7, § 3]. 

If y £ F, then we have for /2 > h è T 

\(R-2$y)(t2) - (R-2<S>y)(h)\ £ 2aR(t1y
1 

+ 4 ^ ( / 1 ) " 1 ) y(s)F(y(s)\s)ds 

(12) ^ 2aR(h)~1 

+ SaRih)-1 J R(s)F(c2R(s)\ s)ds 

Since j \ ( / i ) - 1 —» 0 as h —> 00 , it follows from (12) tha t , for a given e > 0, there 
exists T* > T such t h a t 

(13) \(R-2$y)(t2) - (R-2$y)(h)\ < e if h > h è 7*. 

Let y 6 F and T tk h < t2 S T*. A simple computat ion yields the following 
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inequality: 

\(R-2$y)(t2) - (iT2$;y)(/i)| g a\R{h)~x - Rfa)'1] 

+ \Rihr1 - Rih)-^ ry(s)F(y(s)2,s)ds 

+ R(t2y
1 / y(s)F(y(s)2,s)ds 

J tl 

+ \R(t2y
2 - R(hT2\ f " R(s)y(s)F(y(s)2, s)ds 

%J JH 

+ R(h)-> f" R(s)y(s)F(y(s)*,s)ds 

+ \hR(h)-> - hR(hY2\)* (f*-r-^da)y(s)F(y(s)2,s)ds 

+ hRihY2/" ( f°-^d<r)y(s)F(y(s)2, s)ds 

+ \R(t2y
2 - R(tlr

2\ / J ' ( f°~d<T)sy(s)F(y(s)2, s)ds 

+ R(hY2§^ ( f°7~d<r)sy(s)F(y(s)2, s)ds 

+ \hR{hT2 - hR{hY2\ / J ' ( J'' ~)sy(s)F(y(s)2, s)ds 

+ hR(hy2 f " -ff- • f " Sy(s)F(y(s)2, s)ds 

+ tXM->f°(f^)sy(s)F<y(s)\s)dS 

+ \R(t-2)-
2 - R(hy2\ f " ( J'' ^dv)sy(s)F(y(s)2, s)ds 

+ R(h)-2 [''-—da- f'2 sy(s)F(y(s)2,s)ds 

+ R(t1)-
tf'*(f'i ~^dc)sy(s)F(y(s)2,S)ds. 

Using the inequality y(s)F(y (s)2, s) ^ 2aR(s)F(c2R(s)2, s), s ^ T, in the above 
inequality, we conclude that there exists a ô > 0 such that for all y G Y 

(14) \(R~2<S>y)(t2) - (R-2$y)(h)\ < e if k - h < Ô. 

The inequalities (13) and (14) enable us to divide the interval \T, oo ) into a 
finite number of subintervals on each of which the oscillation of every 
R~2$y, y G F, is less than e. It follows that <ï>F is compact. 

https://doi.org/10.4153/CJM-1976-081-0 Published online by Cambridge University Press

file:///Rihr1
https://doi.org/10.4153/CJM-1976-081-0


846 T. KUSANO AND M. NAITO 

From the above considerations we see that the Schauder fixed point theorem 
can be applied to the operator $. Let y Ç F be a fixed point of <ï>. Then, 
y = y(i) is clearly a solution of the integral equation (9) on [T, oo ). Since, by 
l'Hospital's rule, 

r y{t) r y'(t) ,. r(t)y"(t) 
hm ~yx = hm ~rj-r = hm -jx^rrrz 
t_>œR(t) t->œR(t) t^a>r(t)R (t) 

= l i m - ( ^ Ç ^ = lim [r(t)y"(t)]' = a, 

y{t) is a solution of (A) with the required asymptotic property. This completes 
the proof of Theorem 1. 

THEOREM 2. Let {A) be either superlinear or sublinear. A necessary and 
sufficient condition for (A ) to have a bounded nono s dilatory solution is that 

r (15) J R(t)F(c, t)dt < oo for some c > 0. 

Proof. (Necessity) Let y(t) be a bounded nonoscillatory solution of (A). 
Without loss of generality we may suppose that y{t) > 0 eventually. Observe 
that Case (II) of Lemma 1 holds. There are positive numbers ti, ai, a2 such that 

(16) ai S y if) ^ a2 for t ^ h. 

Multiplying (A) by R(t) and integrating from t\ to t, we obtain 

f ' R(s)y(s)F(y(s)\ s)ds = - f R(s)[r(s)y"(s)]"ds 

( 1 7 ) = -R(t)[r(t)y"(t)]' + R'(t)r(t)y"(t) - ty'(t) + y{t) + c, 

where c is a constant. Using the inequalities of Case (II) of Lemma 1 and the 
boundedness of y(t), we see from (17) that 

(18) fœ R(t)y(t)F(y(t)2,t)dt<œ. 

In view of (16) and (18) we have 

R(t)F(ai , t)dt < oo if (̂ 4) is superlinear, a\ I 
J ti 

r 
a\ I 

J n 

R(t)F(a2
2, t)dt <co if (A) is sublinear. 

(Sufficiency) Let a = c/2 if (A) is superlinear and a = c ii (A) is sublinear. 
Choose T > 0 so large that 

/ . 
R{t)F{c\t)dt <\. 

T 4 
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The required solution of (A) is obtained as a solution of the integral equation 

(19) y(t) = (*?)(*), 

where 

(*?)(*) = a + R(t) J y(s)F(y(s)\ s)ds + I ' R(s)y (s)F(y(s)\ s)ds 

+ l T t ( S[S-^fda)y{s)F{y{s)\s)ds 

+ f'-frd* . J (s- t)y(s)F(y(s)2, s)ds. 
J o r\<j) J t 

A solution of (19) in turn is determined as a fixed point of the operator ^ . 
The underlying Banach space is C[T, oo ) of all bounded and continuous func
tions y : [T, oo ) —*R with norm \\y\\ = sup{|y(0| • t ^ T) and the set F on 
which ^ acts is Y = {y G C[7\ oo ) : a ^ y (J) ^ 2a for 1 ^ r | , which is a 
bounded, convex and closed subset of C[T, oo ). 

As in the proof of the sufficiency part of Theorem 1 it can be shown that ^ is a 
continuous operator which maps F into a compact subset of F. Therefore, by 
the Schauder fixed point theorem, ^ has a fixed point y £ F, which provides a 
solution y = y(t) of (A). Since 

y'(t) = / " ( J i
S~£^)y(5) JF(y(5)2

I s)ds > 0, 

this solution tends to a limit in [a, 2a] as £ —» oo . This sketches the proof of the 
sufficiency part of Theorem 2. The details are left to the reader. 

We now consider the differential equation 

(B) [r(t)y"]"+ PiOHy) =0. 
The conditions we always assume for r, p, f are (a) and the following: 

(c) p{t) is continuous and positive for t ^ 0; 
(d) f(y) is continuous and nondeçreasing for y £ R, and 3>/(;y) > 0 for y ^ 0. 

It is easily seen that the arguments and techniques developed in the proof of 
Theorems 1 and 2 apply equally well to equation (B). Thus we have the follow
ing 

THEOREM 3. (i) A necessary and sufficient condition for (B) to have a non-
oscillatory solution which is asymptotic to aR(t), a 7^ 0, as t —> 00 is that 

r f(cR(t))p(t)dt < 00 for some c > 0. 

(ii) A necessary and sufficient condition for (B) to have a bounded nono s dilatory 
solution is that 

r R(t)p(t)dt < 00. 
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An important particular case of (̂ 4) and (B) is 

(C) [r(t)y"]" +P(t)\y\ysgny = 0, y > 0, 

where r(t) and p(t) satisfy (a) and (c), respectively. When specialized to (C) 
the above theorems give the following corollary. 

COROLLARY, (i) Equation (C) has a solution which is asymptotic to aR(t), a j* 0, 
as t —> oo if and only if 

J [R(t)]yp(t)dt < oo. 

(ii) Equation (C) has a bounded nonoscillatory solution if and only if 

I R(t)p(t)dt < oo. 

3. Oscillation theorems. In this section we establish necessary and 
sufficient conditions in order that Equation (A) which is either strongly 
superlinear or strongly sublinear be oscillatory. 

LEMMA 2. Suppose (a) and (b) hold. If y{t) is an eventually positive solution of 
(A ) , then for all sufficiently large T 

(20) y(t) è RT(t)[r(i)y"(t)]'+JT RAs)y(s)F(y(sY,s)ds, t ^ T, 

where 

p (A f'(t-s)(s- T) 
RAt)=JT 7{7) ds-

Proof. Let T be so large that y{t) satisfies Case (I) or Case (II) of Lemma 1 
for / ^ T. Suppose first that Case (I) holds. Since y"'(t) > 0 and [r(t)y"(t)]' is 
decreasing, we have 

(21) r(t)y"(t) ^ J j [r(s)y"(s)]'ds ^ (t - T)[r(t)y"(t)]', t ^ T. 

Using (21) and the positivity of y' (i), we find 

s - r , 
T *; T r(s) 

with the help of which we obtain 

y'(t) è I ty"(s)ds ^ f tLZ77T\r(s)y"(s)Yds, t ^ T, 

(22) y(t) è £y'(s)ds ^ £ ( / J ~ y [r(a)y"(<r)]'da)dS 

^£(£~rWda)[ris)y"(s)YdS' l=T-
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Integrating the last integral by parts, we obtain from (22) 

(23) y(t) ^ RT(t)[r{t)y"{t)}' - f RT(s)[r(s)y"(s))"ds, 
%J y 

which implies (20). 
Next suppose that Case (II) of Lemma 1 holds. We multiply (A) by RT(t) 

and integrate it over [T, t\. Repeated application of integration by parts then 
yields 

RAt)[r(f)y"(t)]' - RT'{t)r{t)y"{t) + (t - T)y'(t) 

- y(t) + y(T) + J RT(s)y(s)F(y(s)\ s)ds = 0. 

Since y"(t) < 0, y' (t) > 0 and y(T) > 0, (20) follows immediately from (24). 
Thus the proof is complete. 

A characterization of the oscillation situation for the strongly sublinear 
equation (A) is given in the following theorem. 

THEOREM 4. Let (A) be strongly sublinear. A necessary and sufficient condition 
for (A ) to be oscillatory is that 

! (25) J R(t)F(cR(ty, t)dt = oo for all c > 0. 

Proof. The necessity part is an immediate consequence of Theorem 1. To 
prove the sufficiency part let y{t) be a nonoscillatory solution of (^4). We may 
suppose that y it) > 0 for t ^ T, since a similar argument holds if y(t) < 0 for 
t è T. From Lemma 2 we have 

(26) y(t) ^ Rr(t)[r(t)yn(t)Y for t ^ T. 

According to Lemma 1 there are positive constants k and Ti > T such that 
y(t) ^ kRT(t) for t ^ T\. From this inequality and the strong sublinearity we 
see that 

(27) [y{t)]^F{y{t)\ t) è [kRT{t)]^F{k'RT{t)\ t). 

Using (26), (27) and the fact that the value of e in the definition of strong 
sublinearity can be chosen arbitrarily small, we obtain 

= 2i{[r(t)y"{t)}'\^ • [y(t)Y-» • [ y ( 0 ? ' W ) 2 , t) 

(28) ^ 2ek><{[r(t)y"(t)]'}»-i • \RT(t)[r(t)y"(/)]'}'-" 
•[RT(t)]*'F(k>RT(t)',t) 

= 2eki'RT(t)F(k2RT(t)\ t), t ^ TL 
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An integration of (28) yields 

I RT(t)F(k2RT(t)2j)dt < oo, 
J rp. 

which contradicts (25). This finishes the proof. 

We now turn to the strongly superlinear equation {A). 

THEOREM 5. Let {A) be strongly superlinear. A necessary and sufficient 
condition for (A ) to be oscillatory is that 

(29) J R(t)F(c2, t)dt = oo for all c > 0. 

Proof. That (29) is necessary follows readily from Theorem 2. To show that 
(29) is sufficient let there exist a nonoscillatory solution y{t) of (^4). Without 
loss of generality we may assume that y(t) > 0 for t ^ T. By Lemma 2 we get 

(30) yit) ^ J' RT(s)y(s)F(y(s)2,s)ds, t^T. 

There is a constant k > 0 such that y(i) ^ k for t ^ T, since y'(t) > 0 by 
Lemma 1. Using the strong superlinearity, we have 

, „ n y(s)F(y(s)\ s) = {y(s)]1+2c • [y(s)r'eF(y(s)\ s) 
{ ' ^k-2t[y(s))1+2'F(k\s). 

From (30) and (31) we obtain 

(32) [y(t)J -1-2* S (k~2€ f [y(s)]1+2'RT(s)F(k2,s)ds) 

for t è T. Multiplying both sides of (32) by [y(t)}l+2*RT(t)F(k\ t) and inte
grating over [Tu t], Tx > T, we find 

u=T\ 

/

* t 7 2€(l+2e) / rU \ - 2 e 

RT(s)F(k\ s)ds è ~ [y(s)?+uRT{s)F{k\ s)ds) 
which implies 

I RT{t)F(k2,t)dt < oo. 
J Tl 

This clearly contradicts (29) and the proof is complete. 

COROLLARY, (i) Equation (C) with 0 < y < 1 is oscillatory if and only if 

J [R(t)]yp(t)dt = oo. 

(ii) Equation (C) with y > 1 is oscillatory if and only if 

J R(t)p(t)dt = oo. 
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We conclude by providing an oscillation criterion for Equation (B) which 
improves a recent result of Lovelady [9]. 

THEOREM 6. In addition to (a), (c), (d) assume that if a > 0, then 

(33) P * # T < t t ) and f ° # r > -oo . 

A necessary and sufficient condition for (B ) to be oscillatory is that 

/ (34) J R(t)p (t)dt = oo. 

Proof. From Theorem 3 (ii) it follows that (34) holds if (B) is oscillatory. 
To prove the converse we use the method adapted from Alacki and Wong [10]. 
Let y(t) be a nonoscillatory solution of (B). We may suppose that y(t) > 0 for 
t ^ T. Lemma 2 implies that 

(35) y ( l ) è RT(s)p(s)f(y(s))ds, t è 7\ 

Using (35) and the fact that/(3/) is nondecreasing, wTe see that 

(36) IMÙ è l i / > r . 
(/ji?r(5)^(5)/(y(5)y5) / 

Multiplying (36) by RT(t)p(t) and integrating over [7\, T2], T\ > r , we 
obtain 

(37) J''RT(s)P(s)ds ^ jy^, 

where 

î/4 = f T l RT(s)p(s)f(y(s))ds, i = 1, 2. 

Since the right hand side of (37) remains bounded on account of (33), we 
arrive at 

%J y 
RT(t)p(t)dt < 00 

in the limit as T2 —> 00. This, however, is a contradiction to (34). It follows 
that Equation (B) is oscillatory if (34) holds. This completes the proof. 
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