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1. Introduction

Let F be a non-Archimedean local field and let G be a connected reductive group over
F. Let u1 be a conjugacy class of cocharacters of G (over the algebraic closure F), and
let b e G(F’ ), where F denotes the completion of the maximal unramified extension of F.
The main character of this paper is the set

X(u bk = X (1. b)k = {gK € G(F)/K | " bo (9) € K Adm(w)K}. (1.1)

Here K denotes an F-rational parahoric level structure of G, with corresponding standard
parahoric subgroup K c G(F). Also, Adm(u) denotes the w-admissible subset of the
Iwahori-Weyl group of G. (See Section 2 for details on this notion and other notation
used here.) By [19, Thm. A], X (u,b)k is nonempty if and only if [b] € B(G,u) (i.e., [b]
is neutral acceptable), which we assume from now on.

The set in (1.1) has a geometric structure: if F is a function field, then X (u,b)x
is a finite-dimensional closed subscheme of the partial affine flag variety G(F‘)/Ié,
locally of finite type over the algebraic closure of the residue field of F. If F is p-
adic, then the partial affine flag variety and its finite-dimensional closed subscheme
X (1, b) k have to be understood in the sense of Bhatt and Scholze [1, Def. 9.4] and Zhu
[41, Thm. 0.1] as a perfect scheme.
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The interest in the set in (1.1) comes from the fact that in the case of a p-adic field
and when w is minuscule, sets of this form arise as the set of geometric points of the
underlying reduced set of a Rapoport—Zink formal moduli space of p-divisible groups (cf.
[32, §4]). Something analogous holds in the function-field case for formal moduli spaces
of shtukas (cf. [37]; in this case, the minuscule hypothesis can be dropped). Both classes
of formal schemes are very mysterious. In fact, we know explicitly these formal schemes
essentially only in two cases: the Lubin—Tate case and the Drinfeld case. In the Lubin—
Tate case, the formal scheme is a disjoint union of formal spectra of formal power series
rings with coefficients in Op,, hence the underlying reduced scheme is just a disjoint union
of points. In the Drinfeld case, the formal scheme is w-adic and the underlying reduced
set is a disjoint union of special fibres of the Deligne-Drinfeld formal model of the p-adic
half-space corresponding to the local field F'.

In this paper, we address the question of classifying the cases when X (u,b)x has
minimal dimension zero (as in the Lubin—Tate case) or maximal dimension (u,2p) (as in
the Drinfeld case).

Let us first discuss our results pertaining to the case of dimension zero. For the group
G, we denote by {w} the set of fundamental coweights, where ¢ runs over the index set
of the simple roots. Here we use the same labeling as Bourbaki [2, Plate I-X].

Theorem 1.1 (cf. Theorem 4.1). Assume that G is quasi-simple over F and that p
is noncentral. Let b be basic and let K be an F-rational parahoric level structure. Then
X (u, b) k is zero-dimensional if and only if G.q is isomorphic to ResF/F(PGLn), for some

n and some finite extension F of F, and there exists a unique F-embedding ¢o: F — F
such that paq,e s trivial for ¢ # @ and pad,p, = @Y .

Here we write, for any F—group G, a cocharacter u of RBSF/F(G) as u = (y), for
cocharacters p, of G, where @ runs over Homp(F,F).

In particular, if G is absolutely quasi-simple, then the Lubin-Tate case (Example 2.7)
is the only one when the dimension of X (u, b) x is zero. In general, when the dimension
of X(u,b)k is zero, then u is automatically minuscule. Also, the statement that the
dimension of X (u,b) is zero is independent of the choice of K. The case (G, u) that
appears in Theorem 1.1 is called the extended Lubin—Tate case (we use the term extended
because there is an extension F'/F involved).

When we vary K, we obtain the transition morphisms 7w g X(u, b))k — X (u, b) g,
whenever K C K’. In the extended Lubin-Tate case, the fibres of wx g+ are finite for any
K ;Cé K’. For the next statement, let us exclude this case.

Theorem 1.2 (cf. Theorem 4.2). Assume that G is quasi-simple over F and that p
is noncentral. Let b be basic. Also, exclude the extended Lubin-Tate case discussed in
Theorem 1.1. Fiz a pair K ; K’ of F-rational parahoric level structures. N

Then the fibres of mx k' are all finite if and only if Gaq is isomorphic to ReSF/F(Gad);
where F is a finite extension of F and where Goq is the adjoint group of a unitary
group associated to a split F '/ F-Hermitian vector space V' for an unramified quadratic
extension F'/F, and the following two conditions are satisfied:
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o There exists a unique F-embedding ¢q: F — F such that Had,p 15 trivial for ¢ # @o and
Mad,pg = 60\1/

o The pair (K,K') satisfies the following: let the maximal unramified subextension Fy
of F/F have degree d. Correspondingly, write K and K' as K = (K,...,Kq) and
K’ = (K{,...,K}), where the entries are parahoric subgroups of ResF/Fd (Gaa).' Then
KI\Ki C {so,s%}, and if s; € K{\ K1, then s;11 ¢ K.

Both implications of the theorem are interesting. Indeed, in the case singled out by
the theorem, assume for simplicity that F' = F and consider a maximal self-dual periodic
lattice chain

{{..CASCA_1CAGCAICAxC...}

in V. The case when K'\ K = {sp} is given as follows: K’ stabilises a subchain A which
contains A; but not the self-dual lattice Ag, and K stabilises Ag in addition to Aj.
Under these conditions, the theorem states the following. Let N be an F‘, vector space
of dimension 2dim V', equipped with an action of F and an alternating bilinear form
(,) which is Hermitian with respect to the F-action. Let ¢ be a o-linear automorphism
of N which commutes with the F-action and which is isoclinic of slope 1/2 and such
that (¢ (z),¢(y)) = wo({x,y)) for all z,y € N. Here m denotes a uniformiser in F. Let
M be a self-dual chain of Op-lattices in N which are invariant under O, of type A;.
Assume that 7 M; C ¢ (M;) C' M; for all i € I. Then there are only finitely many ways
of completing the chain M; to a self-dual chain by adding a self-dual lattice Mg such
that T Mo C ¢ (Mg) Ct M.

The case when K'\ K = {s,,} when n =2m is similar (with a self-dual lattice replaced
by a lattice which is self-dual up to a scalar); and the case when K'\ K = {sp, $,,} when
n = 2m is a concatenation of the previous cases.

From a global perspective, i.e., the point of view of Shimura varieties, Theorem 1.1
implies that the only cases where the basic locus is zero-dimensional are those which
at the fixed prime p give rise to the extended Lubin—Tate case. This is the situation
considered by Harris and Taylor in [14].

Now let us discuss our results pertaining to the case of maximal dimension. First, we
have the following well-known upper bound on the dimension of X (u,b)x. As usual, p
denotes the half sum of all positive roots, and by (u,2p) we mean the value of 2p on a
dominant representative of u.

Proposition 1.3 (cf. Corollary 9.6). The dimension of X (i, b)k is bounded as
If equality holds, then b is basic.

It is thus a natural question to ask in which cases this upper bound is attained. A
well-known example is the Drinfeld case, but there are other cases, too.

INote that Res Ny (Gaq) has affine Dynkin type A,_1; we use standard notation for the simple
reflections in this case.
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Theorem 1.4 (cf. Theorem 10.1). Assume that G is quasi-simple over F and that p
is not central. If dim X (u,b)x = (,2p), then b is basic, the o-centraliser group Jy is
a quasi-split inner form of G and pu is minuscule (in the échelonnage root system?; see
Section 2.2). If K = is the Twahori level, the converse holds.

For a general parahoric level, dim X (u,b)x = (u,2p) if and only if b is basic and
W (W k.an 9. In this case, the orbits of the action of J,(F) on the set of irreducible
com}onents of X(i, bk of dimension (u,2p) are parametrised by the finite set W (1) i fin-

We refer to equation (10.1) for the definition of W(u)x fin, & finite set of translation
elements, which is related to Drinfeld’s notion of a critical index (see Proposition 12.1).

The constraints on (G, u, b, K) imposed by Theorem 1.4 are in fact quite weak. For
instance, if (G, u, b) is such that w is minuscule, b is basic and G is split over F’, then
there always exists an inner form H of G such that dim XH(u, b)y = (. 2p).

On the other hand, the condition that dim X (u,b)x be equidimensional of maximal
dimension is much stronger.

Theorem 1.5 (cf. Theorem 10.2). Assume that G is quasi-simple over F and that p
is not central. Let b € G(F) be a representative of the unique basic element in B(G,u).
Then X (u,b)k is equidimensional of dimension equal to (u,2p) if and only if the triple
(Gaa, had, K) is isomorphic to one of the following:

(1) (Resp, p(D55)ad: oY (90).9).
(2) (Resﬁ/FPGLQ(D1/2),60§(§00),@)-
(3) (Resp, p(PGLy), 1, 9).

Here F' denotes a finite extension of F, and for an adjoint reductive group G over F and
a cocharacter i of G and an embedding ¢y: F'— F', we denote by ji(po) the cocharacter u
of ResF/F(G) with p, =0 for ¢ # @o and g, = ji. Furthermore, D/, denotes the central

division algebra over F with invariant 1 /n, and Dlx/n the algebraic group over F associated

to its multiplicative group. In case (3), there are two embeddings ¢g, ¢1 : F — F such that
their restrictions to the maximal unramified subextension of F' /F are distinct, and the
cocharacter p is given as follows: p,, = w{ and wy, =, _; and u, =0 for ¢ & {po, ¢1}.

Case (1) is the eatended Drinfeld case. Case (2) is somewhat surprising and was
unknown to us before. Case (3) in the case of an unramified quadratic extension F'/F is
the Hilbert-Blumenthal case. It was discovered by Stamm [35] in the case G =Res, p GLa.

It is remarkable that in all three cases, the parahoric level structure K is the Iwahori
level. This implies the following characterisation of the Drinfeld case:

Corollary 1.6 (cf. Corollary 15.1). Assume that G is quasi-simple over F and that
w is not central. Then X (u,T)k is equidimensional of dimension equal to {(u,2p) for
every F-rational parahoric level structure K if and only if (Gaq, haq) @S isomorphic to

(RGSF/F(D;/n)adv w\l/ ((pO)) .

2The latter condition implies that u is minuscule but is slightly stronger if G does not split
over F.
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One of our motivations for this paper was to characterise the Drinfeld case. Scholze
suggested characterising it through the dimension of its underlying reduced scheme.
Theorem 1.5 shows that this is not quite possible, but Corollary 1.6 shows that it is
possible when K is varying.

As a consequence of Corollary 1.6, we can characterise the Drinfeld case as the only
Rapoport—Zink space which is a w-adic formal scheme. We place ourselves in the context
of [21, §4]; in particular, in the rational RZ-data (F, B, V,(,), *, G,{u},[b]), the first entry
F is a field. Also, RZ-spaces are modeled on the local models of [21, §2.6]; hence we make
a tame ramification hypothesis (cf. [21]).

Theorem 1.7. Let Dz, be integral RZ-data such that the associated reductive group G is
connected and quasi-simple over Q,, and the associated cocharacter p is noncentral. Let
E be its reflex field and let MDZ,, be the associated RZ-space, a formal scheme flat over
Spf Oy,. Then MDZ,, is a 7w -adic formal scheme if and only if Dy, is of extended Drinfeld

type, in which case MDZp is isomorphic to the disjoint sum of copies of §%®0E O;,,
where ﬁ% is the Deligne—Drinfeld formal model of the Drinfeld half-space attached to E.

Here the integral RZ-data are said to be of extended Drinfeld type if the rational RZ-
data are of type (EL) with B = Dy, dimp(V) =1, n = oy (¢o) and b basic, and the
integral RZ-data are given by a complete periodic Op-lattice chain in V.

Through Rapoport—Zink uniformisation, this theorem implies that there is no
p-adic uniformisation of Shimura varieties beyond the Drinfeld case. Note that the
characterisation of p-adic uniformisation through the fact that the basic Newton stratum
makes up the whole special fibre leads to Kottwitz’s determination of all uniform pairs
(G, ) (cf. Section 15.3 and [25, §6]). It appears interesting to us that one can also
characterise the Drinfeld case in a purely local way, without relating it to a Shimura
variety.

This paper consists of three parts. In the first part, we provide the necessary background
and introduce the terminology used. The second part is devoted to the case of dimension
zero. In Section 4, we discuss the main results of this part; Sections 5 and 6 are devoted
to the proofs. In Section 7, we explain in lattice-theoretic terms the minimal cases of
Theorems 1.1 and 1.2. In Section 8, we give the proofs of Theorems 1.1 and 1.2. The third
part is devoted to the case of maximal dimension. In Section 9, we recall the dimension
theory of some subsets of G and prove Proposition 1.3. In Section 10, we discuss the main
results of this part. Section 11 is preparatory for the proof but also contains results on
Drinfeld’s critical index set which are of independent interest (in particular, we solve a
problem posed 20 years ago in [34, §3]). In Section 12, we give the proof of Theorem 1.4,
and in Section 13 the proof of Theorem 1.5. In Section 14, we explain the equi-maximal
cases in lattice-theoretic terms. In Section 15, we discuss various ways of singling out
the Drinfeld case among the three cases occurring in the classification of Theorem 1.5.
Section 16 gives the proofs of the results for the case of maximal dimension.

Notation. For a local field F', we denote by Op its ring of integers and by k its residue
field. We denote by F' the completion of the maximal unramified extension, by O or Op
its ring of integers and by o its Frobenius generator of Gal(F/F).
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Part 1. Background
2. Preliminaries

2.1. The Iwahori—Weyl group

Let F be a non-Archimedean local field and F be the completion of the maximal
unramified extension FU" of F. We denote by o its Frobenius morphism, and by = € Op
a uniformiser. Let G be a connected reductive group over F. We fix a o-stable Iwahori
subgroup Tof G= G(F’).

We fix a maximal torus 7" which after extension of scalars is contained in a Borel
subgroup of G®p F , and such that 7 is the Iwahori subgroup fixing an alcove a in the
apartment attached to the split part of T'. The Iwahori-Weyl group is defined by

W =N(F)/(T(F)NT)
(cf. [13], [36, §1]). Let Wy = N(F)/T(F). Then we have
W = X, (T)r, x Wo, (2.1)

where Ty = Gal(F/F"). The splitting depends on the choice of a special vertex of the
base alcove a that we fix in the sequel. When considering an element A € X,(T)r, as an
clement of W, we write ¢*.

Let S be the set of simple reflections in W determined by the base alcove a and S =
SN Wy. For any subset K of S, we denote by W the subgroup of W generated by simple
reflections in K. We also denote by X W the set of representatives of minimal length of
the cosets Wi\ W. If W is a finite group, we denote by K the corresponding standard
parahoric subgroup.

The Iwahori-Weyl group is a quasi-Coxeter group. More precisely,

W =W, %, (2.2)

where W, is the affine Weyl group with set S as simple reflections and Q is the set
of elements stabilising the base alcove a (cf. [18, §2.2]). The length function on W, is
extended to W by £(wt) = £(w), for w € W, and t € Q. For w € W, we denote by t(w)
its image in €.

2.2. Admissible sets and acceptable sets

Let u be a conjugacy class of cocharacters of G. We can always choose an F-rational
representative p in this conjugacy class. We make a definite choice as follows. We identify
X(T)ro,r with the standard apartment (the apartment attached to the split part of T),
using our choice of special vertex of a. We then fix the unique Weyl chamber containing
a, which we declare to be the dominant Weyl chamber. Then u, is to be chosen such that
th*+a = p4 +ais contained in the dominant Weyl chamber. We denote by u the image in
X*(T)Fo of wy.

Remark 2.1. The choice of dominant Weyl chamber determines a Borel subgroup B
of G®p F containing 7. Note that I is equal to the image in X,(T)r,r of the B-
antidominant representative of the conjugacy class u C X,(T)! This phenomenon is
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already visible when G is split and is reflected by the minus sign in [36, Eqn. (5), p. 31].
The minus sign in turn is forced upon us by [36, Eqn. (4)], which could not possibly extend
to the noncommutative normaliser if the left-hand side were replaced by sX,s~'. This
means that for A € X, (T), the element A(;r) acts on the apartment for T by translation
by —A, i.e., as the element ¢t~*.

It also means that even for a split group, the values (u,a) and (u,«) for a root « differ
by sign.

If p is minuscule, then p is minuscule; but the converse does not hold (cf. the table
just before [21, Lem. 5.4]. More precisely, we have the following:

Lemma 2.2. Write G,q = ResF/F (éad), where the Z:"—gmup éad is absolutely simple. Let

the mazimal unramified subextension Fg of F /F have degree d, and write correspondingly
w= (El"“’ﬂd)’ where the entries M, correspond to the various embeddings v;: Fqg — F.

If w 1s minuscule, then for every i there exists an embedding ¢;o: F—>F inducing t;
such that p, =0 for every ¢ # @i o inducing t; and with [y, , minuscule.

Proof. One is immediately reduced to the case where F /F is totally ramified — that
is, d = 1; therefore, we may drop the index i. Let T be a maximal torus of G which
after extension to F' is contained in a Borel subgroup, and let T = Resj, / #(T). The sum

homomorphism X, (T) = Indlig (X*(T)) — X,(T) induces an identification
Xo(T)ry = Xo(T). (2.3)

Here Tg = Gal(F/F"™). Under the identification of equation (2.3), we have K= h g
From this the claim follows easily. O

Furthermore, we have the following:
Lemma 2.3. With notation as before,  is central if and only if p is central.

Proof. If u is central, then clearly u is central. Conversely, assuming that p is central,
we need to show that (iuy,a) =0 for every (absolute) root a. Assume by contradiction
that (uy,a) <0 for some @ (cf. Remark 2.1). Let us write [u] when considering p as

an element of X, (T )(50 We want to show that the relative root res(a) defined by a by

restriction to X, (T)QO takes a strictly positive value on [u] However, with u,, also every
Galois translate of p, under an element of I'g is antidominant; and [u| is the average
over the Tg-orbit of p.. But then res(a) takes a strictly positive value on [u], and this
contradicts the assumption that p is central. N O

The p-admissible set is defined by
Adm(p) ={w e W | w < t*® for some z € Wy} (2.4)

(cf. [31, §3]). For A a cocharacter (rather than a conjugacy class of cocharacters), we
denote by Adm(A) the admissible set of the conjugacy class of A. Let B(G) be the set of
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o-conjugacy classes in G. Kottwitz [24, 25] gave a description of the set B(G). It uses
the Kottwitz map,

K: B(G) — JTl(G)I‘, (25)

where T is the Galois group of F over F. Any o-conjugacy class [b] is determined by two
invariants:

e the element «([b]) € 71 (G)r and
e the Newton point vy in the dominant chamber of X, (T)r, ® Q.

The set of neutrally acceptable o-conjugacy classes is defined by
B(G, ) ={[b] € B(G) | k([b]) = & (), v < p°}, (2.6)

where u®=[I": Stabr (u, )] ™! Zyer/smbr(“” y (1) is the Galois average of p, an element
of X,(T'"®Q= X.(T)r,®Q.

2.3. Affine Deligne—Lusztig varieties

The affine Deligne—Lusztig variety (for the Iwahori subgroup) associated to w € W and
be G is

Xo(b)={gZ € G/T| g " bo(g) € TwT} (2.7)

(cf. [31, §4]). Then X,,(b) is a subset of the set of F,-points of the affine flag variety of G.
If F is of equal characteristic, then by the affine flag variety we mean the ‘usual’ affine flag
variety; in the case of mixed characteristic, this notion should be understood in the sense
of perfect schemes, as developed by Zhu [41, Thm. 0.1] and by Bhatt and Scholze [1, Def.
9.4]. More precisely, X,,(b) is the set of Fp—points of a locally closed (perfect) subscheme
of the affine flag variety, locally (perfectly) of finite type over Fp and of finite dimension,
which we denote by the same symbol. This follows from [34, Thm. 1.4]. In fact, the main
theorem of that paper implies that X, (b) is contained in a union | 9EG(F) gC, for some
Schubert variety C. Since for any g € G(F) there are only finitely many ¢’ € G(F) such
that ¢C and ¢’C have nonempty intersection, this union is a k-scheme locally of finite
type, and of finite dimension, and hence so is X, (b).

Denote by J;, the o-centraliser group of b, an algebraic group over F with F-rational
points

Jy(F)={g € G(F)| g bo(9) = b). (2.8)

Then J, (F) acts on X,,(b). Let K C S such that Wk is finite, with corresponding standard
parahoric subgroup K C G. Here and whenever we consider the space X (u, b) g, we assume
that o(K) = K. We set

X(un.b)k ={gK € G/K | g 7' bo(g) € K Adm(w)K}. (2.9)

For K =@, we write simply X(u,b) for X(u,b)x. Then X (u,b) is a union of affine
Deligne—Lusztig varieties.
We will need the following result (conjectured in [27, 31]):
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Theorem 2.4 ([19]). Let K C S such that o (K) =K and W is finite. Then X (i1, b) i # %
if and only if [b] € B(G, ).

2.4. Fine affine Deligne—Lusztig varieties

We recall the definition of fine affine Deligne-Lusztig varieties inside the partial affine
flag variety G/K (cf. [9, §3.4]). For K CS, w € ¥ W and b € G, the associated fine affine
Deligne—Lusztig variety is

Xk (b) =1{gK | g b0 (g9) € K -5 Zw). (2.10)

Note that we have the decomposition of the partial affine flag variety G / K into ordinary
affine Deligne—Lusztig varieties (for the parahoric subgroup associated to K),

G/K = |_| {gK | ¢ bo (9) € KzK).
zeW\W/ Wi

An ordinary affine Deligne—Lusztig variety decomposes in turn into a disjoint sum of fine
affine Deligne—Lusztig varieties,

(K19 o) ekakt = || Xew(d) (2.11)

weK Wn WgaWg

(ct. [9, §3.4)).

2.5. The decomposition of X (u,b)x
We set

EAdm(p) = Adm(u) N X w.
It is proved in [19, Thm. 6.1] that KAdm(u) = Wx Adm(u) Wi N K W. Hence

Xwbr= | ] Xrwb). (2.12)

weXAdm(u)

We can read definition (2.10) as saying that Xx ., (b) is the image of X,,(b) under the
projection map G /f - G /Ié. We call this decomposition the FKOR stratification, and
accordingly call the subsets Xg ,,(b) the EKOR strata inside X(u,b)x. If K =0, we
speak of the KR stratification and KR strata instead. These stratifications are the ‘local
analogues’ of the stratifications defined in the global context in [22]. But since here we
always fix a o-conjugacy class [b], an EKOR stratum in our context really corresponds
to the intersection of a global EKOR stratum with the Newton stratum attached to [b].
In [9, §5.1], EKOR strata were called EO strata.

2.6. Tits data

We recall the notion of Tits data and Coxeter data from [21, Def. 5%] For an affine
Coxeter system (W,,S), we denote by Wy the finite Weyl group, and by W the associated
extended affine Weyl group and by X, the translation lattice of W.
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Definition 2.5.

(i) A Tits datum (over F) is a pair (A, 1), where A is a local Dynkin diagram and A is
a Wy-conjugacy class in X,.

(ii) A Coxeter datum (over F) is a pair (W,,S),1), where (W,,S) is an affine Coxeter
system and A is a Wy-conjugacy class in X,.

A Tits datum yields a Coxeter datum by forgetting the arrows in the Dynkin diagram.
In general, different Tits data may give rise to the same Coxeter datum. However, in
type A and more generally for any simply laced Dynkin diagram, the Coxeter datum
determines the Tits datum uniquely.

We need to generalise this notion as follows, to cover also the situation over F'. Over F ,
simple adjoint groups are classified up to isomorphism by their (absolute) local Dynkin
diagram (cf. [36, §4.2]). Over F, we need to take into account the case of groups which are
not residually split. In [36, §4.3], Tits gives the classification in terms of the ‘local index’
and ‘relative local Dynkin diagram’. Here we choose to work instead with the absolute
local Dynkin diagram (i.e., the affine Dynkin diagram attached to G over F ), together
with the diagram automorphism induced by Frobenius. This datum is determined by
G/F (up to isomorphism), and determines the group G over F up to isomorphism.

Definition 2.6.

(i) A Tits datum over F'is a triple (A,8,1), where A is an absolute local Dynkin diagram,
8 is a diagram automorphism of A and A is a Wy-conjugacy class in the coweight
lattice X, of A.

(ii) A Cozeter datum over F is a tuple (( W.,S),8,1), where (W,,S) is an affine Coxeter
system, § is a length-preserving automorphism of W, and A is a Wy-conjugacy class
in X,.

Note that a Tits datum over F' gives rise to a Coxeter datum over F. In [21], the notion of
enhanced Tits and Coxeter data was used, where an enhanced datum in addition specifies
a parahoric level structure. Note that for an enhanced Coxeter datum (( Wa,g),k, K) in
the sense of [21, Def. 5.3], the associated parahoric subgroup is the one generated by
the Iwahori and all simple affine reflections which are not contained in K, a convention
opposite to the one used in this paper.

Next we explain the notion of restriction of scalars of Dynkin types over F (i.e., Dynkin
types together with a diagram automorphism) along an unramified field extension. It
models the form of the extended affine Weyl group of a group which arises as such a
restriction of scalars. Let Fy/F denote the unramified extension of degree d, and let (A, 84)
be a local Dynkin diagram with diagram automorphism §;. We then define Resrg,, (A, 89)
as the Dynkin type

Alx---xﬁd

with diagram automorphism 8, where A; = A for all i, § is given by id: A; — AH—I
for i=1,...,d—1 and 84: Ay — A;1. So § permutes the components cyclically, and the
restriction of 8¢ to any component is equal to 84.
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Specifying a translation element for Respg d/F(A,&i) amounts to giving a tuple
(A1,...,Aq) consisting of d translation elements for A. It is central (resp., minuscule)
if and only if all the A; are central (resp., minuscule).

Example 2.7 (The Lubin—Tate case). This is the case with Tits datum (A,_1,id, wy).
The corresponding group is GL,. This is a fully Hodge-Newton decomposable case
(Section 3), and is even of Coxeter type in the sense of [9, §5.1] (and in this case the
Coxeter property holds for arbitrary parahoric level). See Section 4.2 for a discussion of
this case as a ‘minimal dimension’ case, and Section 7.1 for a ‘lattice description’ of the
Lubin-Tate case.

Similarly, we have the extended Lubin—Tate case (Rest/F(;ln,l,id), (w{,0,...,0)).

Example 2.8 (The Drinfeld case). Here we consider the Tits datum (An_l,gn_l,a)f),
where g,,_1 denotes rotation by n —1 steps, 0,_1(S9) = Sn_1, and so on. The corresponding
algebraic group is the group of units of a central division algebra of invariant 1/n. This
is a fully Hodge-Newton decomposable case (Section 3), and even a ‘Coxeter’ case (for
arbitrary parahoric level). See Section 14 for a ‘lattice description’ of the Drinfeld case.
Similarly, we have the extended Drinfeld case (Rest/F(;ln_l,gl), (w{,0,...,0)).

2.7. Reduction to F’-simple groups

Let us recall the construction of [10, §3.4]. Given an F-simple group G of adjoint type
together with a conjugacy class u of cocharacters, we can decompose

GF=G1X~~~XGd,

where the G; are simple algebraic groups over F and where the Frobenius o induces maps
G, — G;41 (with indices viewed in Z/d). Let Fy denote the unramified extension of F'
of degree d in F. We denote by G’ the algebraic group over Fgy, with (G) = G1, with
Frobenius given by (ad)‘Gl. In other words, we write G = Resp,,/r(G’) for a quasi-simple
group over Fy which stays quasi-simple over F. Correspondingly, the Tits datum of G
arises by restriction of scalars along Fy/F as defined in Section 2.6.

We also define p' = Z?zl od(i+), where o denotes the L-action (cf. [10, Def. 2.1]), i.e.,
the Frobenius action corresponding to the quasi-split inner form of G.

Now suppose that K = (Kj,...,Ky) is an F-rational parahoric level structure for G.
Then K is an Fg-rational parahoric level structure for G'.

We now consider the special situation that u = (u1,...,1q) is a conjugacy class of
cocharacters of G where u; is central for all ¢ > 1. Let v = (tq,...,74) be a o-conjugacy

class in B(G, u); we may choose t; central for all 4 > 1. Let /" = ITt; (this is well defined,
as only one of the 7; is noncentral).

Then it is easy to see that projection to the first factor induces an isomorphism
XG(u, ) = X¢ (1, 7") K, - Examples of this situation are the extended Lubin-Tate case
and the extended Drinfeld case already mentioned in the examples.
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Moreover, if K’ = (K7,...,K}) is another F-rational parahoric level and K C K’, then

~

we likewise have X&(u,7) g = X¢ (W, T/)Ki and we obtain a commutative diagram

X 1)k — X%, 1)k,

| |

XG0y —= X (W)
where the vertical maps are the natural projections.

3. Fully Hodge—Newton decomposable case

3.1. The o-support

For w € W,, we denote by supp(w) the support of w, i.e., the set of i € S such that
s; appears in some (or equivalently, every) reduced expression of w. For any length-
preserving automorphism 6 of W, we set

suppy (wt) = | J(Ad(r) 00)" (supp(w)). (3.1)

nez

This applies in particular to the Frobenius action o. Then supp,(wt) is the minimal
Ad(t)o-stable subset J of S such that wrto € W; x (to).

3.2. Classification of fully Hodge—Newton decomposable pairs (G, 1)

In [10], the notion of a fully Hodge-Newton decomposable pair (G, ) is introduced.
We refer to [10, Def. 3.1] for the definition. Here we use the following equivalent
characterisations [10, Thm. B, Thm. 3.3]:

Theorem 3.1. Let (G, 1) be a pair as before, with G quasi-simple over F, and let K C S
with o (K) = K and Wg finite. The following are equivalent:

(1) The pair (G,u) is fully Hodge-Newton decomposable.
(2) For each w € Adm(u), there exists a unique [b] € B(G,u) such that Twi C [b].

(3) For each w € KAdm(p) with Xx ., (t) # @, the set Waupp, (w) 18 finite.

Here 7 denotes a representative of the unique basic element [t] in B(G, ).
In particular, condition (3) is independent of K.

In particular, in this case, for any K C S with Wx finite and any w € KAdm(u), there
exists a unique [b] € B(G,u) such that K-, ZwZ C [b]. This gives us a natural map

KAdm(n) — B(G,p), w > [w]. (3.2)
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We will later use the following statement:
Proposition 3.2 ([10, Prop. 5.6, Lem. 5.8]). Let z € W. The following are equivalent:
(1) K- ZaZ C |z].
(2) k(@) =k (t) and Wsupp, @) is finite.
(3) k(z) =k () and Ad(z) oo fizes a point in the closure of the base alcove.

In the next two theorems, we give the classification of the fully Hodge-Newton
decomposable cases following [10, Thm. 3.5].

Theorem 3.3. Assume that G over F is absolutely simple and that p is not central.
Then (G, ) is fully Hodge—Newton decomposable if and only if the associated Tits datum
18 one of the following:

(Ap_1.id, wy) (Ap-1.0n-1.0Y) (An-1. 50, 00Y)
(A2m-1.0160.0Y) | (An_1.id, 0y +w)_,)
(A3.id, ) (A3, 50.0Y) (A3,02.0%)
(By,id, wY) (Bn, Ad(11), 0}
(Croid, wY) (Co,id, wy) (Cy, Ad(to), )
(Dy,id, o)) (D 50, @)

Theorem 3.4. Assume that G is quasi-simple over F' and that | is not central. Then the
pair (G, ) is fully Hodge—Newton decomposable if and only if the associated Tits datum
is of type (Resr,/r(A,8), (11, ..., a)), where one of the following two possibilities occur.

(1) There is a unique i such that u,; is noncentral and (A, 8, 1;) is one of the triples listed
in Theorem 3.5.

2) (A,8) = (An,l,id) and there exist i # 1’ such that u; = 0y, uy =’ _, and wu; 1is
1 n—1 J
central for all j #1i,7.

Here we use the same labelling of the Coxeter graph as Bourbaki [2, Plate I-X]. If
) is minuscule, we denote the element (1) e Q by 7;; conjugation by 7; is a length-
preserving automorphism of W, which we denote by Ad(t;). For type A,, Ad(t;) is the
rotation of the affine Dynkin diagram by i steps (i.e., so is mapped to s;, s; is mapped
to s;+1, etc.), and we denote it by o; instead. Let ¢y be the unique nontrivial diagram
automorphism for the finite Dynkin diagram if Wy is of type A,, D, (with n >5) or
Es. For type Dy, we also denote by ¢y the diagram automorphism which interchanges o3

and ay.
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If we assume that u is noncentral in every component of the affine Dynkin diagram, the
fully Hodge—Newton decomposable cases are the cases in Theorem 3.3 and the Hilbert—
Blumenthal case (A,_1 X A,,_1, o, (wY,w,._4)), where the automorphism Legon Ap_q X

A,_1 is the automorphism which exchanges the two factors.

To derive Theorem 3.4 from Theorem 3.3, note that for a group G which is quasi-simple
over F but not over F', we can apply the construction in [10, §3.4] (cf. Section 2.7). We
then have that G’ is quasi-simple over F' and that w is minute if and only if i’ is minute
(cf. [10, Def. 3.2 and §3.4]). Applying Theorem 3.3 to (G/, '), we obtain Theorem 3.4.

3.3. Basic case

Let 7 = t(u) €  be the length-0 element in W such that Adm(u) C W,t. Then [t] is
the unique basic o-conjugacy class in B(G, u).
Set

KAdm(p)o = {w € “Adm(w) | Waupp, (w) is finite}. (3.3)

If (G,p) is fully Hodge-Newton decomposable, the set KAdm(u)g is just the fibre over
the unique basic element of B(G,u) of the map in (3.2).
The following result is proved in [10, Thm. B (5)]:

Theorem 3.5. Suppose that (G, 1) is a fully Hodge—Newton decomposable pair. Then
Xwor= || Xew@,

weKAdm(u)g

and Xg . (1) # 9 for all w € KAdm(w)o.

Part 2. Minimal dimension

In this part we determine those cases when X (u, b) i is zero-dimensional, in case b is basic.
When b is basic, we also determine the cases when the transition morphism X (u, b) gk —
X (i, b) kg has finite fibres.

4. Statement of results

4.1. Change of parahoric

In this section, we are concerned with the following two theorems.

Theqrem 4.1. Assume that G is quasi-simple over F and that w is not central. Let
K ; S be o-stable. The following are equivalent:

(1) dim X (u, )k =0.

(2) (G,u) is of extended Lubin-Tate type, i.e., (A,o,pu) = (Rest/F(;ln_l,id),
(@7,0,...,0)) for a finite unramified extension Fq/F .

See Example 2.7 for a discussion of the (extended) Lubin-Tate case. We will prove a
stronger version of this theorem later (see Theorem 4.5).
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For any o-stable subsets K g K’ C S, we denote by

Tk X (U, = X(, Tk (4.1)

the projection map.

Theog‘em 4.2. Assume that G is quasi-simple over F' and that u is not central. Let K ;
K’ ; S be g—stable parahoric level structures. Write the Tits datum of (G, 1) in the form
(Resp,/r(A,0), (11, ..., 1q)), and correspondingly write the parahoric level structures as
K =(Ki,Ks,....,Ky), K'=(K[,K},...,K]}). Then the following are equivalent:

(1) The projection X (1, 7)xk — X (u,T)k has discrete fibres.
(2) There exists a unique j such that w; is noncentral, we have p; = wy and

e o acts as id on the affine Dynkin diagram or

e n >3 and the action of o on Anq preserves sy and induces the nontrivial diagram
automorphism ¢o on A,_1. Furthermore, the pair (K1, K{) satisfies Condition 4.5.

Here is the Condition 4.3 that appears in Theorem 4.2, case (2):

Condition 4.3. Every element of K|\ K; is fivzed by 04, and if s; € K{\ K1, then s;41 ¢
K.

Note that K and K’ are assumed to be o-stable, so requiring that the inclusion K’ ; S
be strict implies that in each connected component of S there exists a vertex not lying in
K', and similarly for the inclusion K G K'.

Remark 4.4. Let us enumerate the cases for the second alternative in Theorem 4.2,
case (2), when G is quasi-simple over F. By assumption K and K’ are o-stable; also,
the corresponding algebraic group is a quasi-split unitary group which splits over an
unramified quadratic extension.

e 1 odd: In this case, o(sy) = sop and o(s1) = $,,_1. Then K C §\ {s0, $1,8n_1} is o-stable
and K’ = K U{sg}.

Extreme case n=3; then K =0, K’ = {sg}.

e n =2m even: In this case, o(sg) = $9,0(Sm) = Sm and o (Sy+1) = Sm—1. Then the
following three possibilities occur:

(i) K C S\ {s0, 51, $p_1} is o-stable and K’ = K U {so}.
(ii) K C S\ {Sm_1, Sm, Sm+1} is o-stable and K’ = K U {s,,}.
(i) K C S\ {50, S14 Sm—1, Sm» Smt1, Sn_1} is o-stable and K’ = K U{so, Sy}

Extreme case n =4, m = 2; then for (K, K') the following possibilities occur: (&, {sg}) or
(¥, {s2}) or (4, {s0, s2}) or ({s2},{s0,52}) or ({so},{s0,82})-

The proof of Theorem 4.2 will occupy the next two sections. In the rest of this section,
we give more details on the two alternatives of the theorem.
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4.2. The Lubin—Tate case

Theorem 4.5. Assume that G is quasi-simple over F' and that u is not central. The
following are equivalent:

1) The pair (G,u) is of extended Lubin—Tate type (cf. the statement of Theorem 4.1).

2) dim X (u,t)x =0 for some parahoric K.

(1)

(2)

(3) dim X (i, 1)k =0 for all parahorics K.

(4) The projection X (u,7)x — X (U, )k has finite fibres for all K g K'.
(5)

5) The projection X (u,t)g — X (U, T) g’ is a bijection for all K g K'.

Proof. (3) = (2) and (5) = (4) are obvious.

(1) = (3) & (5): This follows from Remark 4.6.

(2) = (1): This is Theorem 4.1.

(4) = (1): By Theorem 4.2, the Dynkin type is Rest/p(;ln,l,ad), with o4 =1id or
04 = o (up to isomorphism). Moreover, as we may take K = {sg}, Condition 4.3 implies
that o4 cannot be ¢o. Hence o =id. O

Remark 4.6. Properties (3) and (5) in Theorem 4.5 are well known in the Lubin—Tate
case, and we explain this in terms of lattices in Section 7. Alternatively, we could apply
the methods of [9, §6.3], with Case 1 for i =1 (cf. also [10]). There is only one basic EKOR
stratum in this case. (Note that EKOR strata were called EO strata in [9].) Let J =J; be
the o-centraliser of 7 (cf. equation (2.8)). The index set for the stratification in a single
connected component is a quotient of J(F)! by a parahoric subgroup (where J(F)?! is
the kernel of the Kottwitz homomorphism). Since J(F)! is anisotropic, this quotient is a
single point, so the EKOR stratification has a single stratum. This stratum is attached
to the length 0 element t, thus the corresponding classical Deligne-Lusztig variety is just
a point. Note that this argument can be applied to arbitrary parahoric level structures,
not only maximal parahoric as in the setting of [9]. By either of the two methods, we
obtain the more precise statement that X (u,t)x has only one point in each connected
component of the affine flag variety.

Using the construction in Section 2.7, the result can be generalised to the extended
Lubin-Tate case, where a restriction of scalars is allowed.

4.3. The exotic case

The second alternative in Theorem 4.2, where Condition 4.3 is relevant, will be studied
in detail in Section 6.4 in group-theoretic terms and in Section 7.2 in terms of lattices.
Using either approach, we will determine the cardinalities of the fibres of the map 7k k.
If #(K|\ K1) = 1, then the fibre cardinalities are 1, 2 and q?+1. If #(K|\ K;) = 2,
then each fibre is naturally a product of two sets as in the first case, so the cardinalities
which occur are 1, 2, 4, ¢ +1, 2(¢% +1) and (¢% +1)2. We give precise criteria in group-
theoretic terms as well as in lattice terms for which case occurs when (see Section 6.7 and
Proposition 7.9).
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5. Proof of (1) = (2) in Theorems 4.1 and 4.2

In this section, we prove the implications (1) = (2) in Theorem 4.1 and Theorem 4.2. We
will handle both theorems simultaneously by allowing K = S, with the convention that
X(u,t)z = é/é is a single point. Hence the condition that the map 7y s has discrete
fibres is equivalent to the condition that dim X (u,t)x = 0.

We assume that u is not central.

5.1. Preparations
We start with some properties of the admissible set.
Lemma 5.1 ([23, Lem. 6.6]). For any s €S, st € Adm(u).

Lemma 5.2. Let W be an irreducible Cozeter group and S be the set of simple reflections.
Let K ; S; then there exists a Coxeter element c € K W.

Proof. Let T" be the Coxeter graph associated to the Coxeter system (W,S). The vertices
are S. The two simple reflections s,t are connected in I' if and only if the order of st in
W is at least 3. In this case, the edge is labeled by the order of st.

Let s € S— K. We reorder the simple reflections of S in the following way: let r = s,
and for any ¢ < j, the distance between r; and s in the graph I' is less than or equal to
the distance between r; and s. Let n be the cardinality of S. Set c=1ryr---7,. Then it is
easy to see that for any ¢ # 1, r;myrp--- 1, is a reduced expression of ;¢ and thus r;¢c > c.
Soce X W. O

Propositi~0n 5.3. Suppf)se that G is quasi-simple over F and that w s noncentral. If
(A, ) # (Ap_1,0)) or (Ap_1,w,,_;) for some n, then there exists w € Adm(u) such that
supp(wz~1) = S.

Remark 5.4.

(1) Note that (/Nln,l,a){) and (An,l,a)fkl) are isomorphic. We often mention only one
of these two isomorphic pairs.

(2) In Theorem 11.1, we will prove a stronger statement by a different method.
We decided to keep the present proof, because it is simpler and uses only the
combinatorics of the affine Weyl group.

Proof. Let wy be the longest element in Wy and K = {s € S| swo(p) = wo()}. By [20,
Thm. 2.2], we have L(wg wot™0 Wy = ¢t — ¢ (wr wp) and wx wet“0® € SW. Here wy
denotes the longest element in Wiy . Then we have

supp(t"°Wz 1) = supp(wi wo) Usupp(wg wot 0@ 1).
Since p is noncentral, we have K ; S. By Lemma 5.2, there exists an element ¢ € W)
such that €(cwg) = £(c) + £(wk). In particular, wxc ' < wy and ¢! < wrxwy. Hence

supp(wg wp) = S. y
If p is nonminuscule, we have wr wpt W=t £ 1. Since wrgwot™® € SW, we have

S\S C supp(wr wot“* @t =1). Thus supp(t**Wr—1) = S.
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Now we assume that u is minuscule. Then t“0W — e wot, where K =S\ {s} for certain

s € S. Let sp be the unique element in S\S and s’ =157 ! €S. Then we have

50w W) — g wps'T.

If W is of type A,_1 and u ¢ ia)f,a)lvklh then by dire~ct computation, supp(wg wps’) =S
and thus supp(t°0“0Wr=1) =S, If W is not of type A, then by the explicit formula for
the reduced expressions of wg wpy given in [16, §1.5], we still have supp(wg wps’) =S and
supp(t 0w =1y =§ O

Lemma 5.5. Let W be the Twahori—Weyl group of type A,_q. If pu is noncentral and not
equal to wy or w) _,, then for any s,s’ € S, ss't € Adm(p).

Proof. If s commutes with s, then by Proposition 5.3 there exists w € Adm(u) such that
5,8 € supp(wr 1) and hence ss’ < wr™!. So ss't < w and ss't € Adm(w).

Let 71 be the automorphism of |74 sending sy to s1, s1 to So, ..., Sp—1 to So. Then
the conjugation action of t; preserves p and we have t; Adm(u)t; !'= Adm(u). Since 1,
acts transitively on S, it suffices to show that there exists 7 with 0 <7 < n —1 such that
88j+17, 5j4+15;T € Adm(u). Here, by convention, we set s, = 5.

Let « : W — Z/nZ be the Kottwitz map (cf. expression (2.5)). Let i = x(u). If
i ¢ {0,1,n — 1}, then py > w!. By direct computation, sps17,s157 < t* and hence
50517, 51507 € Adm(w)) C Adm(w).

If i =0, then py > w) +w, _;. By direct computation, s; 527, $2517 < #2i+en_1 and hence
51827, 52617 € Adm(w) +w,,_;) C Adm(u).

If i=1 and py # oy, then puy > 0y +w,_;. By direct computation, sy$17, 5157 <
23 +n_1 and hence 50517, 81507 € Adm(wy +w),_;) C Adm(u).

Ifi=n—1and uy #w, 4, then ui > ) +w,,_,. By direct computation, sy$17, 5157 <

v n—1°
\
+°1 +o,

-2 and hence 517,51 507 € Adm(w) + o), _5) C Adm(u). O

Proposition 5.6. Let K ;Ct K' CS be o-stable. If sto(s) € Adm(u) for some s € K'\ K,
then the projection wi r: X (1, T)xk — X (U, 7)k’ has nondiscrete fibres.

Proof. Let K, be the standard parahoric subgroup generated by 7 and s. We then have
ICS o Itl C jsitfa(s)j - fz’fUistinro(s)jUfsra(s)f - léAdm(,u)I%.

By definition, T € Adm(u). By Lemma 5.1, st,70(s) € Adm(u). By assumption, sto(s) €
Adm(u). Hence K,/ € X (u, )k, and this is a subset of dimension 1 which maps to a
point in X (u,7) k. O

5.2. Reduction to the case where G is quasi-simple over F

From now on we assume that condition (1) in either Theorem 4.1 or Theorem 4.2 holds
for K ; K’ CS. We may assume that G is adjoint, so we can write Gz = Gy x --- G4 for
F-simple groups G;.
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Correspondingly, W is of the form
W: Wlx W2X~~X Wd,

where Wy = Wy = ... = W,, are the extended affine Weyl groups with connected Dynkin
diagram. Since G is quasi-simple over F, we have (up to renumbering, if necessary)
o (W) = Wa,....0(Wa1) =0 (Wa), 0 (W) = o (W1).

Write u = (u1,...,4¢q) and 7 = (tq,...,74). Since by assumption p is noncentral, at
least one of the w; is noncentral in W;. Suppose that there is more than one noncentral
;. Without loss of generality, we may assume that p; is noncentral in W, and that
is the smallest positive integer > 1 such that u; is noncentral in W;. Then Ad(zy) is the
identity group automorphism on V~Vj for 1 <j <.

Let s be a simple reflection of W that is contained in K'\ K. Let

Z=1{(g,0(9),...,0"2(¢9),1,...,1) | g € Ks}.

Then Z c K/ and ZK/K c K'/K is 1-dimensional. By direct computation, Z -, T C
TstoY(s)Z. By Lemma 5.1, sty € Adm(u;) and 7,0°(s) € Adm(u;). Therefore
10 1(s) € Adm(p). Hence ZK/K € X (u,7)x, and this is a subset of dimension 1 which
maps to a point in X (u, ) k.
It follows that u; is noncentral W; for a unique ¢, say ¢ = 1. We can thus carry out the
construction in Section 2.7 and find an algebraic group G’ over Fy; and a commutative
diagram

XC(u,r)x — X (W, ) g

\L”K,K’ anl,Ki

XC(u ) — X (Wt g

It is then enough to show property (2) in Theorem 4.1 or Theorem 4.2, respectively, for
the F-simple group G'.

5.3. Reduction to the case (An_l,wf)

Now we assume that G is quasi-simple over F.Let se K’ \ K. Suppose that the projection
gkt X(U,T)k = X (U, T)xr has discrete fibres. By Proposition 5.6, we then have
sto(s) ¢ Adm(u). We distinguish cases.

Case (1): s commutes with to (s)T 1.

By Proposition 5.3, if (A,p) # (An_l,a)f) or (An_l,a)rvl_l) for some n, then there
exists w € Adm(u) with supp(wt™!) = S. Hence sto(s) < w and sto(s) € Adm(u): a
contradiction.

Case (I1): s does not commute with ra(s)t

Then W is of type An, an+1 or D2n+1 If W is of type C‘gnH or ng_l, then
{s,70(s)T™'} = {55, $p41}. Then by direct computation, s, $,+17, Sp+15,7T € Adm(u) for
any minuscule or quasi-minuscule coweight . For general w, there exists a minuscule
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or quasi-minuscule coweight ' such that u > u'. Hence Adm(u’) C Adm(u) and
Sn.Sn+1T, Sn415,T € Adm(u): a contradiction. If W is of type A,_1 but uy is not wy
or w, _;, then by Lemma 5.5, sto(s) € Adm(u): a contradiction.

In summary, we may now assume that (A, p) = (An,l,a)f).

5.4. The case (An_l,wy)

If (A, p) = (;ln_l,aq), then s does not commute with o (s)r™!. Indeed, assume that s
does commute with to(s)T~!. The maximal elements in Adm(u) are Tsp_iSp_2--- 1,
TSp-28n-3"80y -+, TSOS_1"*S_(n—2).- If s =710(s)T71, then sto(s) =1 € Adm(u): a
contradiction to Proposition 5.6. If s # to(s)T !, then since s commutes with to (s)T71,
we have n > 3 and hence t, 51 € Adm(u) for any t, 6 € S with tyta = tot;. We again have
sto(s) € Adm(u): a contradiction to Proposition 5.6.

We deduce that o =id,c = ¢p (for n > 3) or 0 = Ad(t,,—2). Now Ad(t,—2) acts on the
affine Dynkin diagram by sending s5 to sg, s3 to s1, ..., s to s,_1. By direct computation,
if o = Ad(t,,_2), then sto(s) € Adm(u): a contradiction to Proposition 5.6.

If 0 = ¢, then sto(s) ¢ Adm(u) if and only if s = sy for n odd and s = sy or s = s,
for n = 2m even. Now assume that K'\ K C {s0,s2}, and let us check Condition 4.3 on
(K, K’). We argue by contradiction.

If s € K'\ K and s; € K, then Iéso,sl C lé’, where Iéso,sl is the standard parahoric
subgroup generated by 7 and S0, 51. We have

Tsotl C Iéso,sl T CK yt.
Since spt € Adm(u), the set
lgeK'/K g to(g) € Ko LsorL)

is a one-dimensional subvariety of X (u,7)g in the fibre over I@/I&’ € X(u,t)g: a
contradiction.

If n=2m is even, s, € K’'\ K and smHeK,thenlé c K’ and

S Smtl
Ts, 1l C I&sm,smﬂ wTCK .
Since s,,T € Adm(u), the set
{geK'/K| g t0(9) €K 5 LsmtL}

is a one-dimensional subvariety of X (u,7)g in the fibre over Ii//lé’ € X(u,t)g: a
contradiction.

6. Proof of (2) = (1) in Theorem 4.2

Similarly as before, we may assume that G is quasi-simple over F.

6.1. Compatibility of the map pg .

Assume that we are in the following situation:
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Situation 6.1. Let (G,u) and K g K’ ; S be o-stable and such that we are in either of
the following two cases:

e (The Lubin—Tate case) The associated Coxeter datum is isomorphic to (A,_1,id, y).

e (The exotic case) The associated Coxeter datum is isomorphic to (A1, So,wy), n>=3
and Condition 4.3 is satisfied.

Then by Theorem 3.3, the pair (G,u) is fully Hodge-Newton decomposable. By
Theorem 3.5,

Xwor= || Xrw@),

weXAdm(u)g

and we define the map pr..: X(u,7)x — KAdm(u)o by mapping all points in Xg ,,(t)
to w. We prove the following compatibility result for the maps px . when K varies:

Theorem 6.2. Let (G,pn, K & C K') be as in Situation 6.1.
There exists a unique map JTK,K, KAdm(p)g — K’ Adm(u)g such that the following
diagram commutes:

X1k — KAdm(u)o

’
ﬂK,K’l i”K,K’

PK
X (1) g —> K Adm(p)o.

That is, for each EKOR stratum in X(u,t)i, the projection to X(u,t)g’ is a single
EKOR stratum. Moreover, the projection map wg g+ X(, T)xk — X (U, T)k’ has finite
fibres.

6.2. Partial conjugation
To give the definition of n}(, » We use the partial conjugation method.

Let w,w' € W and s € S. We write w -, v’ if w’ = swo (s) and £(w') < £(w). Let K CS.
We write w — g, w' if there exists a sequence w = wy, wa, ..., w, = w’ such that for any
k, wy Sy w41 for some s € K. We write w Xk , w' if w—>k, w and w' =k, w

Proposition 6.3. Let (G,u,K & C K') be as in Situation 6.1. For any w € KAdm(u)o,
there exists a unique w' € K’ Adm(u)o such that w ~g 4

Proof. The uniqueness of w’ follows from [15, Cor. 2.5]. Now we prove the existence.

If o acts as id on the affine Dynkin diagram, for any s € S, Supp, (s7) = S. Thus
KAdm(u)g = {r} for any K. Now we consider the case where o = ¢y. Note that the
maximal elements in Adm(u) are

S0Sp—1Sp—2++°827,81508n-1""83T,...,8p—-18p—2"""S1T.
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Therefore,

(1) if w € Adm(u), then each simple reflection appears at most once in a reduced

expression of wr~!;

(2) for any 0< i< n—1, 88417 ¢ Adm(p). Here, by convention, we set s, = s.

We consider here the case where n = 2m for some m > 2 and K’ \ K = {s, $;n}; the
other cases follow from a similar (but simpler) argument. Let w € KAdm(u)o.

If spw > w and s, w > w, then w € K’ Adm(u)g and w’ := w is the desired element. If
sow < w and s, w > w, then sy commutes with s,, and s,,(sow) > spw. So spw € KW,
Since spw < w and w € Adm(u), s; does not occur in any reduced expression of wz~!.

Thus
_ _ -1 K' {3
Sowo (8g) = sowsg = sop(wt HNsitre™ W

and has the same length as w. Moreover, by [12, Lem. 4.5], sowsp € Adm (). So w' := sywsy
is the desired element.

If spw > w and s,, w < w, then by a similar argument s, w € K W, and w' := s, ws,, €
K" Adm(w) is the desired element. If syw < w and s,,w < w, then by a similar argument
sosmw € & W, and W' = $08,,WSmSo € K Adm(u)g is the desired element. O

Proof of Theorem 6.2 (existence and uniqueness of 7} ,,). By Theorem 3.5,
we have

Xwor= || Xew@®,

weKAdm(u)g

and all Xg ,,(t) in the union of the right-hand side are nonempty. The latter fact says
that the map px . is surjective, so n}{,K, is unique, if it exists. We define the map n}(q K-
KAdm(w)o — K’ Adm(u)g by w— w’, where w’ is the unique element in K Adm(u)o
with w ~/ , w' (cf. Proposition 6.3). Now for any gK € Xr.w(t), we have g~ 't (g) €
K . TwIlcK . Zw'Z. Therefore K K (glé) € Xk 4 (7). This proves the commutativity
of the diagram and thus shows the existence of n}{q K O

6.3. The fibres of the map 7}, .

Assume that our Tits datum is (A, o, u) = (Ap_1, co,wy) for n >3, and K'\ K C {so, s},
and if s; € K'\ K, then 5,41 ¢ K. By the proof of Proposition 6.3, if K'\ K = {s;} for
J €10, 5}, then for w’ e K" Adm(pw)o,

, I {w',sjw's;}, i w's; <w,
(nK,K’) (w) = , e ,
{w'}, if w's; > w'.
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If n=2m and K'\ K = {sg, $m}, then for w’ e K/Adm(,u)o,

{w', sow’sg, SmW Sm, SoSmW SmSo}, i w'syg < w',w's, < w,

o ) = {w', sow’sp}, if w'sp < w', w'sy, > w,
nK,K’ w - { / ’ f ’ / ’ ’
W', S w' s, }, if w'sg > w,w'sy, < w,
{w'}, if w'sy>w,ws,>uw.

6.4. The fibres of the map 7x x

Next we study the fibres of the map 7x g : X (u,7)xk = X (1, v) k. This will also finish
the proof of Theorem 6.2.

Theorem 6.4. Let be G. Let K C K’ ;Cég Let we KW and w' e K W. If w~gr 5 w
then the natural projection map Xi ., (b) = Xk 4 (b) has finite fibres.

We first recall the following result, which relates a fine affine Deligne-Lusztig variety
in the partial affine flag variety G/K to an ordinary affine Deligne-Lusztig variety in
another partial affine flag variety:

Theorem 6.5 ([9, Thm. 4.1.2)). Let K S S and w e X W. Set
K =I1(K,w,0) =max{K' C K | Ad(w)oo(K') = K'}.

Let K1 be the associated parahoric subgroup. Then the natural projection map é/lﬁl —
G/K induces an isomorphism

X1 (D) > X0 (D).

Note that for s € K, the element wo (s)w™' € W is not in general a simple reflection;
it is part of the condition in the definition of Kj that this is the case.

Remark 6.6. Since Ad(w)oo(Kl) = Ki, we have IC1 UIwI ICle(ICl), and thus
Xr, w(b) = {gIC1 | g tbo(g) = ICle(ICl)} is an ordinary affine Deligne-Lusztig variety
in G/’C1

Proposition 6.7. Let K C S and w e KW with Ad(w)oo(K) = K. Let b € G
wizzh VXw(b) # (. Then each fibre of the projection map X, (b) — Xk ,(b) consists of
#(K/L)AN@o0 elements.

Remark 6.8. Note that Ié/i is the flag variety of the reductive quotient of IC,
and Ad(w) oo induces a Frobenius morphism on the reductive quotient of K. Hence
(KC/Z)Adw)oo ig the set of rational points of a full flag variety over the finite field k.

Proof. Let Ug be the prounipotent radical of K and K= K / Ug- be the reductive quotient
of K. Let B be the image of 7 in IC Then B is a Borel subgroup of IC Since Ad(w) oo(K) =
K, the action of Ad(w) oo stabilises IC and hence is a Frobenius morphism on IC

By Lang’s theorem, any element in Ew& = Ew is of the form kwo (k)~! for some
k e K Let gf € Xy(b). Then the elements in the same fibre as gi’ are gki’ for
k~lg tbo (9)o (k) € ZwZ. Note that gf € Xw(b). So ¢ tbo(g) = ukflwa(kl)u’ for some
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ki € K and wu, v € Ug. Thus the condition kg Ybo(¢)o (k) € Zwl is equivalent to
k™ b wo (ky)o (k) € Bwo (B), where k € K such that k € kUy.. Note that

[KB € /B | k7 ki wo (ko (b) € Buo (B) = (kB e K/B |k wo (v € BJ.

The statement is proved. O

Proposition 6.9. Let w,w’ € W and K CS such that w Ao w and we K W. Then
there is a commutative diagram

Xw(b) Xw’(b)

~,

XK,w(b)

in which the horizontal arrow is a homeomorphism.

Proof. By definition, there exists a sequence w = wy,...,w, = w’ and $1,...,8,-1 € K
such that £(wy) = €(wz) =... = €(wy,) and w1 = swio(s) for 1 <k < n—1.

So it suffices to consider the case when £(w’) = £(w) and w’ = swo (s) for some s € K.
Without loss of generality, we may assume furthermore that sw < w.

By case 1 in the proof of [5, Thm. 1.6] (see also the generalisation to the affine case
[8, Proof of Cor. 2.5.3]), for any gI/I € X, (b) there exists a unique element g/I/I €
gIC /I such that g/I € Xy (b) Moreover, the map gI — g/I induces a homeomorphism
Xu(b) = X (b). As g7 g’ € KsC IC the diagram in the statement of the proposition is
commutative. O

6.5. Proof of Theorem 6.4

Let Ky = I(K,w,0) and K| = I(K',w’,0). Then we have the following commutative
diagram:

Xy () ——— X, (b)

|

X, w(b) ——= Xk o (b)

|

Xk, w (D) Xk w ().

Here the vertical maps are the projection maps. The isomorphisms Xg, (b) = Xk 1, (b)
and XK{~ w (0) = Xk 4 (b) follow from Theorem 6.5. The homeomorphism X,/ (b) = X, ()
and the commutativity of the diagram follow from Proposition 6.9. By Proposition 6.7,
the maps X,/ (b) — XK{,w'(b) and X,,(b) = Xk, »(b) have finite fibres. Hence the map
n(}é/l/j')Ad(w/)on'
8Ky /DAdwer

1R

Xk w(b) &> Xk 4 (b) has finite fibres. Moreover, each fibre consists of
elements.
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Finally, we determine explicitly, in each of the two cases of Theorem 6.2, the fibres of
the map mg k' X (1, T)x = X (W, T) k'

6.6. The case (An,l,id,a)f)

In this case, G = PGL,,. Note that Ad(r) oo acts transitively on S. For any w € W,t,
supp, (w) ;é S if and only if w=rt. Thus by Theorem 3.5, X (u,7)x = Xk -(r). We have
X ()= QI/I C G/I a finite subset consisting of n pomts For any parahorlc K, Xk (1)
is the i image of X, (1) under the natural projection map G/I — G/IC Hence X(u,t)x =
XK= QIC//C cG /IC consists of n points. More precisely, in each connected component
of é/lé there is precisely one point of X (u,7)x. Moreover, for any K g K’ ; S, the
projection map X (u,7)x — X (u, 1)k is bijective.

6.7. The case (An,l,go,a){)

We first discuss the case where K'\ K = {sp}. By assumption, s1,s,-1 ¢ K (recall that
K is o-stable). Recall the explicit description of Adm(u) obtained in the proof of
Proposition 6.3: the elements of Adm(u) are t and the elements of the form

8iSi—iy *  Si—y, T

for 0 <4 < -+ < i, <n—2 (all indices are understood in Z/nZ, and r could be 0).
An element wt € Adm(u) lies in Adm(u)g if there exists j, 0 < j < n—1, such that
jsn—j+1¢supp(w).

Let w € KAdm(u)p and v’ = n}(’ (W) € K/Adm(u)o. The proof of Proposition 6.3 also
shows that we have w’ = w or w’ = sywsy. Hence at most two K-EKOR strata lie above the
K'’-EKOR stratum attached to w’, and we have two K-EKOR strata above the K’-EKOR
stratum attached to w’ if and only if w’ # spw’sy € KAdm(u) and Ty gr(Sow'sp) = w'.
Using elementary properties of the Bruhat order and [12, Lem. 4.5], we check that this is
equivalent to w'sy < w':
7TK o (XK’ /(T)) _ XK,w/(T) u XK,sow’so (T)’ lf w/SO <w,
Xi w (7), if w'sy > w.

From the explicit description we obtain that I(K',w’,0) = I(K,w,o) or I(K',w',0) =
I(K,w,o)U{sy}, and that sy € I(K',w’,0) if and only if w'sy = spw’. Since spw’ > w’ by
assumption, in this case we have w’sy > w’, and the foregoing shows that there is a single
K-EKOR stratum above the K’-EKOR stratum for w’.

By the proof of Theorem 6.4, for g € Xk . (t) we now obtain

q+1, if I(K' w',o)=1(K,w,0)U{s},
ﬁnl_{}K,(g) =12, if w'sy < w',
1, if w'sy>w and I(K',w',0)=I1(K,w,o).

Here ¢ denotes the cardinality of the residue class field of F.
Let us express the condition w’sy = sgw’ more explicitly, using once again the explicit
description of the admissible set in this case.
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Claim. w’'sy = spw’ if and only if w' ¢ Wyt, and in this case w'sy > w’.

To prove the claim, note that for w’ ¢ Wy, the explicit description (and the assumption
that spw’ > w’) shows that w’ has the form ---s;8p--- 7, whence sow'sp =---$ps15081++- T =
w’. Since syw’ > w’ by assumption, it is also clear that w’sy > w’ in this case. On the
other hand, if w’ € Wyt, then spt < spw’ but sor L w'r~!

Altogether we have proved the following:

$1T = w'sy.

Proposition 6.10. For w' € X'Adm(u)o and g € Xg (1),

g+1, if and only if w' ¢ Wy,
@ =12 if and only if w'sy < w,

1, if and only if w' € Wyt and w'sy > w'.

See Proposition 7.9 for a proof of this proposition in terms of lattices.

The case n =2m, K'\K = {s,,} is completely analogous to the case K'\K = {s9} we
discussed before. Similarly, if n =2m for m > 2 and K'\ K = {sg, $;»}, then for w’ €
K Adm(u)o and g € Xgr,, (1), the fibre 7', (9) has 1,2,4,¢+1,2(¢+1) or (¢+1)?,
depending on which of the conditions w'sy > w', w's,, > w', £(sps1w’) = £(w’) —2 and
L(Sm Sme1w') = £(w') — 2 are satisfied.

Example 6.11. Here we consider the case where (A, o, 1) = (Ao, So,w7). In this case,
Adm(p) = {1, 89T, 817, $2T, S0S2T, $180T, 251 T }.
Let K =@ and K’ = {sp}. Then
EAdm(u)o = {7, 50T, 517, 52T, 180T},
K Adm(u)g = {t, 817, 82T, 81507}

The map n}( o sends T to T, s2T to s, both 557 and 517 to 517 and 51507 to s1807T.
Note that I(K,w,o) =@ for w € KAdm(u)p and I(K’,w,0) =9 for w =1, 517, 527, and
I(K',s1807,0) = K'. Hence the natural projection map 7wx, g/ induces isomorphisms

XK,‘L’(T) = XK’.I(T)s XK,SQT(T) = XK/,SQT(T)v XK,sl‘:(r) = XK’,slr(T)» XK,SO‘L’(T) = XK/,Sl‘[(t)v

and the projection map Xg g 501 (t) = Xk s, 5c(7) is a (¢4 1)-to-1 map, where g+1 is
the cardinality of (K'/K)Ad(s1s0m)00
In summary, the fibres of the map mx g : X ¢ (u, 7)) — X % (u, 7) g are as follows:

(1) over points in Xk (), each fibre consists of one point;
(2) over points in X/ ,-(t), each fibre consists of one point;
(3) over points in X/ - (1), each fibre consists of two points;

(4) over points in Xk’ 4, 5-(7), each fibre consists of ¢+ 1 points.
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7. Lattice interpretation of the minimal cases

In this section, we give explicit descriptions in terms of lattices for the Lubin—Tate case
and the exotic case in which discrete fibres occur. To avoid too-heavy notation, we do not
include cases arising by restriction of scalars, but discuss only the nonextended cases.

7.1. The Lubin—Tate case

In this subsection, we explain what X (u,7)x looks like in terms of a lattice description
in the Lubin-Tate case (Example 2.7), as described in Theorem 4.5. Let us consider first
the case where K is a hyperspecial maximal parahoric subgroup. In this case, we have
the following description.

Let (N, ¢) be an isocrystal of dimension n, where ¢ is a o-linear automorphism isoclinic
of slope 1/n. Then we have (for G = GL,,)

X(ur)k = | |IM | M > ¢(M), vol(M) = v}. (7.1)

veZ

The decomposition indexed by v corresponds to the decomposition of the affine
Grassmannian, or correspondingly the space of all lattices in N, into connected
components. Note that after passing to lattices, there is no dependence on K anymore.
More precisely, denote by Latt the set of all lattices in N. Viewing K as the stabiliser
of a lattice A, we have an identification GL,, (F')/K = Latt mapping g — gA. Using this
identification, we view X (u,T)x as a subset of Latt. Likewise, we have an identification
(}Ln({%')/r}ﬁ:‘1 = Latt, now mapping g — gt A, and this is the identification we use
when we want to view X (i, 7). .1 as a subset of Latt. Since the bijection GLn(F’)/K —
GL,(F)/tKt™', g gr~!, maps X (1, 7) x onto X (i, 7), .1, as subsets of Latt we have
X(u, 1)k = X (U, 1), x.-1. By iterating this, we can identify the affine Deligne—Lusztig
varieties X (u,t)k for all standard hyperspecial parahorics K.

Note that for M in X (u,t)x the index of ¢(M) in M is equal to 1.

Lemma 7.1. The chain of lattices
M2 ¢(M)D¢*(M)D...D¢" (M) D ¢™(M) =pM

determines the unique fized point under ¢ in B(PGLn,Qp), i.e., the unique point in
B(J:,ad4,Qp). In particular, each connected component of X (u,7)k consists of a single
point.

Proof. All we have to show is that ¢™ (M) = pM: after this, the lattice chain determines
an alcove in B(PGLn,@p) which is obviously fixed by ¢, i.e., lies in B(J; aq,Qp). Since
J:.aq is anisotropic, the latter building consists of only one point.

We consider the chain of lattices

M D ¢p(M)Dd>(M)+pM D ¢3(M)+pM D... D> ¢" Y (M) +pM D ¢™(M)+pM.

Claim. All inclusions are strict.
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Once the claim is proved, we conclude as follows. Since obviously all indices in this chain
are < 1, the claim implies that [M : (" (M)+pM)|=n=|M : pM|. Hence ¢" (M) +pM =
pM, ie., " (M) = pM (both have index n in M).

Proof of claim. Assume that ¢" (M) +pM = ¢" (M) +pM. Then ¢" 1 (M) +pop (M) =
¢"2 (M) + pp(M). Hence

" M) +pM = ¢" 2 (M) + pp (M) + pM = ¢" (M) + pM.

We conclude that ¢"(M) 4+ pM = ¢? (M) + pM, for any j > r. But ¢ is topologically
nilpotent, hence ¢? (M) C pM for large j. But this implies ¢" (M) C pM, which is absurd
for r<n-—1. O

The lemma implies immediately that X (u,t)x has only one element when K is an
arbitrary parahoric.

7.2. The exotic case

For the setup, we follow [28] (cf. also [3]). The case of hyperspecial level structure (which
corresponds, in terms of the notation used in the following, to the case r = 0) was analysed
in detail by Vollaard [38].

7.2.1. The isocrystal. Let F /F be the unramified quadratic extension contained in
F.Wefixn>1and 1<s<n—1. We also fix the following data:

(1) N is an F-vector space of dimension 2n together with an alternating F-bilinear
pairing (,): N x N — F.

(2) There is an F-action on N such that

(a-z,y) = (z,0(a)-y) for all x,yeN,aeF. (7.2)

(3) We have a o-linear operator ¢: N — N which commutes with the F-action and such
that all slopes of ¢ are equal to %, and which satisfies

(@@),0(y) =m-0(z,y)) forallz,yeN, (7.3)

where 7 is a fixed uniformiser of F'.

Via the F—action, N is a module over F ®p F' = F x F, i.e., it decomposes as N =
N°@® N, where F acts on N° via the inclusion F C ' and on N! via o: F — F. We
then have ¢ (N°%) = N', ¢(N) = N°. The F-action on an element z = (2%, zY) is given
by a(2° 2') = (a2° 0 (a)z!). By equation (7.2) (and using the fact that the pairing is
alternating), we obtain that N° and N! are totally isotropic subspaces.

We will consider Op-invariant Oj-lattices M. For them we obtain an analogous
decomposition M = M°@ M'. We will impose the signature condition for s, i.e., tM C
¢ (M) C M with

aM°® s (MY MO, (7.4)
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Here the upper indices indicate the length as Op-modules of the corresponding factor
modules.

For a lattice M C N, we denote by M"Y its dual with respect to the form (,), i.e.,
MY ={zeN|{x,M)C Oy}

We will impose the following condition:

o There exists an Op-stable self-dual lattice M C N such that 1M C ¢(M) C M and
satisfying the signature condition for s.

In the setting of the following remark, this condition means that the data arise from
a p-divisible group (with an Oj-action and a p-principal polarisation), as in [33]. See
Remark 7.6 for a discussion of this assumption in terms of group theory.

Remark 7.2. Let F'=Q,. Then the tuple (N, (, ),¢) is the isocrystal of a supersingular
p-divisible group of height 2n over Fp with Z,2-action which satisfies the determi-
nant condition for signature (s,n — s), with a quasi-polarisation compatible with the
Z,2-action (cf. [38, Def. 1.1]). In [38], p-divisible groups are considered which admit
a p-principal polarisation. These correspond to self-dual lattices, i.e., MY = M. Here
we will consider more general parahoric level structures. In the case of a maximal but
nonhyperspecial level structure, the level structure can be seen as a (non-p-principal)
polarisation.

7.2.2. The space of lattices. Now let us fix an integer r, 0 < 7 < n/2. We will see
how this corresponds to a choice of maximal rational parahoric level structure.
Consider the following set of pairs of lattices in N:

F2 = {(wr My € My C My) | M; stable under Oz, M C*" M), M} C*" M,

ey (7.5)
My =n My’ for some c € Z}.

By mapping (M; € M) € F2 to (M C MY, ¢), we obtain a bijection between F7} and
the set

FRIO.—(rAC BC?* A,¢)| B,AcC N° lattices, c € Z}. (7.6)

This set of lattices will be identified later with the set of k-points of the corresponding
partial affine flag variety.

7.2.3. The action of Frobenius. The operator ¢ on N induces an action on the
set F127). In fact, for (M; € My) € F27 with My = 7 M,’, we have ¢(Ms) = p(m M) =
7°t1¢ (M), To describe this action in terms of the bijection Ft27) = Frh0 we introduce
the following notation.

Let T=7"'¢? be a o2-linear automorphism of N° which has all slopes zero. Let C =
(N9 Also, let

h(z,y) =8 '~ Nz, py),
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where 6 € O; is such that o (§) = —§. Then the restriction of h to C is a Hermitian form
on C. On N°, the Hermitian nature of h is given by

hz,y) =o(h(y, 7" (2))). (7.7)
Definition 7.3. For a lattice L C N°, we denote by
F={zeN’ |z (z.¢(1)) € Op}
the dual of L with respect to the form h, which is again a lattice in N°.
Note that
(L) = o(L). (7.8)

Lemma 7.4. For (My C M) € F?7) corresponding to (B C A,c) € F20 the chain
(¢ (M) C ¢ (Ma)) corresponds to (™ ¢A)F C (w~°B), c+1).

Proof. We need to check ¢ (M;)° = (m=¢MP)* and ¢(Ma)? = (m=¢MP)*. Now ¢ (M;)° =
(f)(Mll), and

(M), m~ 1P (M) = o (M}, 1~ My)) = o (M, (M)°)) = Op,
by equation (7.3), so qb(Mll) = (JT_CM2O)n. The computation for ¢ (M>)° is similar. O
7.2.4. The parahoric RZ-space. The k-valued points of the (relative) RZ-space

which we want to describe correspond to those points in 2} (or equivalently in F27-0)
which are Dieudonné modules of signature (s,n — s):

N =N ={((M; € M) e FPV | w M; € ¢p(M;) € M;,i =1,2). (7.9)

Here ¢ (M;)° C Ml-0 has colength s and ¢ (M;)* C Mz-1 has colength n —s. By Lemma 7.4,
we can identify N with a subset of F27:0  as follows:

N={BCAc)eF2 0| xBCnA* C* BjmnAC n°B* C* A). (7.10)

7.2.5. Reduction to the case ¢=0. We have
N=| N

ceZ

where for ¢ € Z we write

N.={(BCACN)|(BCA,c)eF?I xBCrn°A*C B,nACn°B* C A).
Lemma 7.5.
(1) If nc is odd, then N, =.

(2) If nc is even, then there exists an automorphism j of N compatible with ¢ and the
pairing {, ) (and hence with the pairing h and the —* construction) such that the map
(B C A)— (jB CjA) is an isomorphism N, = Nj.
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Proof. Part (1) follows by a comparison of indices between A, B, A*, B* and M, similarly
as in [38, Lem. 1.7]. Part (2) is proved in [38, Lem. 1.17]. O

From now on we assume ¢ = 0, so we consider the set
No=NPV=(mACBC?> ACN® 7B C A*C® B,mAC B C° A). (7.11)

This is the description given in [28] (cf. [3]).? Note that the Hasse invariant of C is given
by inv(C) = (=1)°.

7.2.6. Nonmaximal level structure. Combining the foregoing data for more than
one 7, we get analogous descriptions of the RZ-spaces N, N with more general
parahoric level structure R C {0,...,[n/2]}. For instance, combining the cases r = 0 and
r =1, we obtain a nonmaximal parahoric case, given as the set of diagrams

By CcBy C Al

U U U (7.12)

AL cB. c Bl
Here all horizontal inclusions have index 1 and it is understood that 7 A; € B;. The index
of the vertical inclusions in this diagram is equal to s.

7.2.7. Description of fibres. From now on we restrict to the case s =1, i.e., to
signature (1,n —1). Let us describe explicitly, in terms of lattices, the projection

NORU{O} N NOR

for a level structure R C {1,...,[n/2]} (i.e., 0 &€ R) such that 1 € R, between spaces with
parahoric level structures, which is given by forgetting the lattice at position 0. In terms
of the group-theoretic description to be discussed later, this case corresponds to K'\ K =
{so}. In other words, we need to describe, for a diagram

Bl C B() C A1
U U y (7.13)
AY cB c B
of lattices in N° with all inclusions of index 1 and w A; € By, how many choices there are
for By when A; and Bj are fixed. (All the other positions which might be present in R
are irrelevant for determining the fibre.)
We distinguish cases, depending on whether B; € Bf or not.
First case: B; € Bl. In this case, we have A® = BN B} D 1 A;. Thus A;/A% is a
k-vector space with a ‘Hermitian’ form, and BS / Aﬁ C Bf / Aﬁ is an isotropic line.

Claim. There are exactly ¢+ 1 such lines.

3In [3], pairs M; C My are also considered, where Mlo - M2O has odd colength.

https://doi.org/10.1017/51474748020000730 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000730

Extremal cases of Rapoport—Zink spaces 1759

Proof of claim. By assumption, Al/ATi = Bl/ATi EBBf/Anl, and the restriction of the
pairing to Bf / At1 X Bf / Aﬁ is nondegenerate. The entirety of all nontrivial subspaces of
Bf / Aﬁ is a projective line. Mapping a line L to L* C Bf / Aﬁ defines a twisted Frobenius on
this projective line over , i.e., a k-structure on this projective line (cf. [38, Lem. 2.12]).
The isotropic lines correspond to the rational points with respect to this k-structure.
Over a finite field, every form of P! is P!, so there are ¢+ 1 points.

Second case: B; C Bf . In this case, the only possibilities for By are By = Bf or
By = r’le (which can equivalently be expressed as Bl = By). In fact, if By # Bf , then
By + B = Ay, and similarly, if By # Bg , then By 4+ Bj = By, so from both inequalities
together we obtain Btt B+ Btt + B‘j Ay, an obvious contradiction.

Depending on whether B; = ‘L’(Bl) or not, we have one or two points in the fibre.

7.2.8. Description of fibres: General case. If n is odd, then the case considered in
the previous section is the only possible case. If n = 2m is even, the case of forgetting L,
is completely analogous to the case of forgetting Lyg.

Finally, if n is even, there is the case of forgetting Ly and L,,. This case corresponds to
the case K'\ K = {sg, s, }. Since forgetting Ly and forgetting L,, are independent of each
other, the fibres in this case are just products of fibres arising in the case of forgetting
one lattice of the chain. In particular, we see that the possible cardinalities of fibres are
1,2,4, ¢g+1,2(¢g+1) and (¢+1)%

7.2.9. Connection with group theory. For this subsection, the condition s =1 plays
no role. Let V be an n-dimensional F-vector space with an alternating bilinear form
(,): VxV — F such that (av,w) = (v,0(a)w) for all a € Z:", v,w, € V, and let G be
the associated group of similitudes of this pairing (cf. [39, §2.1]). As before, we write
G= G(Qp). Setting N = V Qg F and extending the pairing, we obtain a 2n-dimensional
F-vector space N with an action of F and a pairing which satisfy properties (1) and (2)
in Section 7.2.1. Conversely, starting with N and a pairing satisfying (1) and (2) and
choosing a F-subvector space V C N such that V ®p F =N and the pairing restricted
to V x V takes values in F', we obtain data as before.

We assume that V contains a self-dual Op-lattice Ly, and we fix a self-dual ‘standard
lattice chain’ of Op-lattices in V containing Ly. This gives us a standard Iwahori
subgroup. As in the previous sections, we have the extended affine Weyl group W, the
set S of simple affine reflections, and so on.

By restricting to part of the standard lattice chain, we can identify each F") as a
quotient of G by the standard parahoric subgroup of type K = K"} ={0,...,n —1}\
{r,n—r}ifr>0,or K=K ={1,...,n—1} if r =0. We obtain analogous identifications
for a nonmaximal parahoric level structure.

Now suppose that N = V ®p F comes equipped with an operator ¢, as in property (3)
of Section 7.2.1. We write F' = bo, where b € GL(N) and 0 =id®o. Then equation (7.3)
amounts to saying that b € G with multiplier ¢(b) = . The condition that ¢ be isoclinic
is equivalent to requiring that b is basic. Conversely, starting with a basic element b € G
with multiplier 7, we can define ¢ = bo.
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According to the choice of the integer s, 1 < s < n— 1, which defines the signature
condition, we define the cocharacter uy = w). We denote by p its conjugacy class.

Remark 7.6. To explain the connection with the setup discussed before, we mention
the following more specific facts.

(i) Given the vector space V with the pairing (, ), the existence of a self-dual lattice is
equivalent to the existence of a hyperspecial parahoric subgroup in G defined over
F. This in turn is equivalent to G being quasi-split (over F).

(ii) We have [b] € B(G, ) if and only if X (u,b)x # @ (for any/every K; see [40]). Since
there is a unique basic element in B(G, ), we see that the o-conjugacy class [b] is
uniquely determined by s under the condition X (u, b) x # 9.

(iii) The following proposition says that X (u,b)x # @ if and only if there exists a self-
dual Dieudonné module satisfying the signature condition corresponding to .. The
latter condition is the condition which we imposed in Section 7.2.1.

The map g = (¢° ¢") — (g% c(g)) gives an isomorphism G} 5 GL(N9) x G,, i of
algebraic groups over F. Via this isomorphism, we can also view F7 as a partial
affine flag variety for the group GL(N®) x G,,. - This corresponds to the identification
‘/—_'{27”} — ]:'{27‘},0'

COI}SideI‘ the space N C F as defined previously, for a level structure corresponding to
K cCS.

Proposition 7.7. In the setting already outlined,
N = X (18, b) geun
as subsets of the corresponding partial affine flag variety F over F.

Proof. Inside the partial flag variety, for both these sets, their definition can be expressed
by imposing conditions on the relative position between the partial lattice chain and
its image under Frobenius. For A"} the condition is that this relative position be ju-
permissible in the sense of [26]. For X (u,b) ki, the condition is that it must be u-
admissible. By [26] the two conditions coincide. (Note that because of the identification
Gy = GL(NY) x G,, r» it is enough to know this for GLy,.) O

By analogy with the decomposition N'?7 = L N2}, the space X (i, b) xir decomposes
as a union of spaces of the form X (u, b) k1~ for a unitary group, rather than a group of
unitary similitudes.

The group Jp, the o-centraliser of b, can be identified in this context with the unitary
similitude group of the Hermitian space C.

7.2.10. Description of fibres and the EKOR stratification. Let us discuss the
case of ‘forgetting Ly’ with the connection to group theory in mind. As before, we assume
s = 1. (The other cases can be handled similarly.) Again as before, fix a level structure
R C{1,...,[n/2]} such that 1 € R.
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Recall our terminology of KR and EKOR strata (see Section 2.5). In terms of
lattices, the KR stratification on the Iwahori level space N™ = X (u, b) is given by the
relative position of L, and Lf. The EKOR stratification on X (u,b)x likewise induces
a stratification on the corresponding A space, which we can describe as the coarsest
stratification such that the projection of every KR stratum is a union of EKOR strata
(cf. [22, §6.2]). For w € KAdm(u), the index set for the EKOR stratification, the projection
of the KR stratum for w is equal to the EKOR stratum for w, i.e., the partial lattice
chains in the EKOR stratum for w are precisely those chains which can be extended to
a full lattice chain L, such that the relative position of L, and L is equal to w.

As the standard lattice chain we choose

A, =--- Cdiag(p,1,...,1) C diag(l,...,1) C diag(1,...,1,p ) C---,

where diag() denotes a diagonal matrix and a matrix is understood as a lattice by taking
the lattice generated by its column vectors.
Let t be the matrix

1

so that TA; = A;11. We can also view 7 as a length 0 element of the Iwahori-Weyl group
of G.
The simple reflections are given as follows:

1
1 1 P

S1

5 52

Il
—
\.CIJ
[=)
Il

Proposition 7.8. With notation as in diagram (7.13), each of the following conditions
describes a union of EKOR strata:

(1) B € B!, By =1(B)).
(2) Bi S Bf, Bi #1(B).
(3) Bi € B;.

The fibres of the projection wx, k' have cardinality 1 in case (1), cardinality 2 in case (2)
and cardinality ¢+ 1 in case (3).

As before, ¢ denotes the cardinality of the residue class field of F.
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Proof. Via our choice of standard lattice chain, the alcove expressions for the identity
elements of W and of t are, respectively,

ale(id)e: .oy (12,0072), (L,007D), ™), ("D, —1), ..,
ale(Da: .y (1®,0079), AG,072), (1,00D), (™),

Here we use the ‘alcove notation’ of [26]. Similarly, any w’ € KAdm(u) gives rise to such an
alcove expression (alc(w’);) with each alc(w’); € Z", and w’ is determined by this datum.
The fact that w’ € Adm(u) translates to the condition alc(id) < ale(w’) < ale(id) + (1),
where < means that for each index, the respective entries are <. The condition By C Bf
translates to (1,0"~Y) > alc(w’)_;, which together with the admissibility implies that
ale(w’)_1 = (0") or alc(w’)_1 = (1,00"=2, —1). The latter case is not possible because
weXW.

Now assume that B; ¢ Bf; then alc(w’)_; has the form (0,0%,1,0=*=3) —1) for some
i > 0. Since these conditions are constant on each KR stratum, and are phrased in terms
of the indices 1, —1 of the lattice chain only, they describe unions of EKOR strata.

Now assume that B; C Bf, so alc(w’)_; = (0). Then Bf = By, so the condition B; =
7(B1) becomes B; = B, which is equivalent to alc(w’)g = (1,0~ D). Again, this clearly
describes a union of EKOR strata. (Note that at this point By C Bf implies Bf = By,
i.e., we do not see the possibility By = t‘le in the second case of Section 7.2.7. This is
because we are not considering the full fibre here, only the EKOR strata for w’, for level
K and K'.) O

We now recover the characterisation of the loci of different fibre cardinalities as unions
of EKOR strata, which we proved group-theoretically as Proposition 6.10. (But note
that in the lattice context we did not re-prove Theorem 6.2, because we did not separate
the unions of EKOR strata where the fibre cardinality is constant into individual EKOR
strata.)

Proposition 7.9. Fiz a point in a parahoric RZ-space Ny given by a diagram

---.C By c A C---
y y (7.14)
. C Ai C Bf C---

which lies in the EKOR stratum for w' € KAdm(u). Then

e B C Bf, By = t(By) if and only if w' € Wyt and w'sy > w’, if and only if the fibre
cardinality is 1.

e B C Bf, By # t(By) if and only if w'sy < w', if and only if the fibre cardinality is 2.
e B Z Bf if and only if w' & Wot, if and only if the fibre cardinality is ¢+ 1.

Proof. First note that by the proof of Proposition 7.8, By C Bf is equivalent to alc(w’)_1 =
(0™) or, in other words, w’' € Wyt. This already proves the third statement. Now if
w' € Wot, then £(w’) is the number of inversions of the permutation v := w't~!. We
have By = t(B;) if and only if alc(w’)g = (1,0~ D), if and only if v(1) = 1. In this case,
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w’sg = vs1 T has length £(w’) 4+ 1. On the other hand, if v(1) # 1, then by the admissibility
of w', v(1) =2, so w'sy = vsy T has length £(w’) — 1.

It remains to prove that w’ ¢ Wyt implies w’sy > w’. As we have already found, w’ & Wyt
means that alc(w’)g = (0,...,0,1,0...,0) with the 1 in position 7 > 1. We have alc(w’); =
alc(w’sg); for all ¢ # 0, and hence alc(w’); < ale(w'sg)g < ale(w’)_1 and alc(w'sg)g #
alc(w’)_1. Thus the only possibility for alc(w’sg)g is (1,0,...,0,1,0,...,0, — 1), whence
w'sy ¢ Adm(w). This is only possible if w'sy > w'. O

7.2.11. The EKOR stratification in the case of signature (1,2). In the case
n =3, we can describe explicitly all the KR and EKOR strata (cf. Example 6.11). As a
preparation, we write down explicitly the KR strata in terms of lattices. In this section,
we consider the full affine flag variety for GL3 over F. The set of k-valued points is the
set of full periodic lattice chains L,. Since all lattice chains are periodic, we usually only
consider degrees 1, 0 and —1.

Lemma 7.10. Let L,, L, be lattice chains and denote by inv(L,, L)) € W their relative
position.

1) inv(L,, L)) =t if and only if L, = L1 for i =1,0, —1 (equivalently: for all ).

2) inv(L,, L)) € {sot, 7} if and only if L) = Ley(=mL_1) and Ly = L.

(1)

(2)

3) inv(L,, L)) € {s17,t} if and only 1 =Lo(=mLl_1) and L' | = Lyg.

L, L) €{ }if and only if L] = L L aLl =1L
inv(L,, L)) € {s2t,7} if and only of L' { = Lo an =1.

4 L, L) €{ }if and only if L' { = L dLy=1L

(5)

5) inv(L,, L) € {51507, 0T, 517, 7} if and only if L] = Lo(=nwL_y).

The lemma describes all KR strata for w € Adm(u)g. We omit the easy proof. As
a consequence, we obtain the following description of the EKOR strata in ./\/52}. (It is
possible to characterise the EKOR strata by other conditions, in the style of the original
definition of the EO stratification in the Siegel case — see, for instance, [30]; we have made
a choice which is close to the criteria we found earlier for the cardinality of the fibres of
the projection from the Iwahori space.)

Proposition 7.11. A point in /\/32}, gien by a diagram

Bl C A1
U U (7.15)
A% c B

lies in the EKOR stratum attached to

(1) 7 if and only if pA; = Ati, B, C Bf, By =1t(By),

(2) sit if and only if By C Bf, By = ©(By) (and on this stratum mw Ay = Ati),
(3) sot if and only if T Ay # Aﬁ (and on this stratum By C Bf, By =1(By)),
(4)

s180T if and only if By & Bf (and on this stratum w Ay = Aji)
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8. Proof of Theorems 1.1 and 1.2

In this section, we deduce Theorems 1.1 and 1.2 from Theorems 4.1 and 4.2, respectively.
Let (G, ) be such thaﬁt G is quasi-simple and u noncentral. Write G =~ResF/FG, for a
finite field extension F' and an absolutely quasi-simple group G over F. We also write
n = (ity), where u, are cocharacters 9f G. Here ¢ runs over Homp(F, F'). Let F; be tEe
maximal unramiﬁe~d subextension of F, d =[F;: F], and fix an embedding of Fy into F.
Let G4 = RQSF/Fd G. Then G =Resp,,r(Gg), and the Tits datum over F' of (G, i) is equal
to (ReSFd/F(AGd’Gd)’(Ed,i)i% where A(;d is the absolute Dynkin diagram of G4 ®p, I
with its action o4 of the Frobenius over F; and where, for i =0,...,d — 1, we denote by
Hy the element in the translation lattice corresponding to g = (y),. Here ¢ runs

over those elements of Hom F([%', 7) whose restriction to Fy is equal to o*. Note that AG J

coincides with the absolute local Dynkin diagram Aé of G® P F, where F=F®p ” Fis
the completion of the maximal unramified extension of F (cf. [36, §1.13]).

Now let (G,u) satisfy the conclusions of Theorems 4.1 and 4.2. In the case of
Theorem 4.1, it follows that (Agd,ad) = (Zln,l,id). Furthermore, by changing the
embedding of F,; into f, we deduce from Hy = (wY,0,...,0) that for ¢ #0, 1% is central
and then that py ; is central (cf. Lemma 2.3). From Ryo= wy, we similarly deduce that

there exists a unique ¢y € Homp, (F,F) such that Hgo = ;] and p, is central for all
¢ € Homp, (F,F)\{go} (cf. Lemma 2.2 and the table right before [21, Lem. 5.4]). It also
follows that Gad = PGL,,, and Theorem 1.1 follows.

In the case of Theorem 4.2, and excluding the case treated in Theorem 4.1, it follows
that (Agd,ad) = (An,l,go). Analogously to the case just treated, we obtain that there
exists a unique ¢q € Homp (F, f) such that pu,, = @) and p, is central for all ¢ # ¢
(cf. Lemma 2.2). It follows that G.q is an outer twist of PGL,, by an unramified quadratic
extension F’ of F. Hence Gnq = U(V)aq, for an F '/ F-Hermitian vector space V. The
condition on (K, K’) in Theorem 1.2 follows directly from Theorem 4.1, and implies that
the Hermitian space V is split (existence of a lattice which is self-dual or self-dual up to
a scalar). Theorem 1.2 is proved.

Part 3. Maximal dimension

In this part, we consider the problem opposite to the one of the previous part: When is
X (i, b))k of maximal dimension?

9. Dimension of affine Deligne-Lusztig varieties

9.1. Admissible sets

In this subsection, we introduce a dimension notion for certain subsets of G. We follow
[18, §2.5]. We view G as the set of k-valued points of the loop group of G and equip it

with the ind-topology. Then the closure IaT is equal to the (perfect) scheme Ux/gmfx’i',
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and a subset V is closed if and only if its intersection with Zz7 is closed for the Zariski
topology, for all z € W.

A subset V of G is called admissible® if for any w e W, the set V NZwI is stable under
the right action of an open compact subgroup K., which contains a congruence subgroup
I, of G. This is equivalent to asking that for any w € W, the set V NZwZ be stable under
the rlght action of an open compact subgroup K., which contains a congruence subgroup
I, of G. We say that V is bounded if V NZwZ = for all but finitely many w € W.

For any compact open subgroup K of G, we define

dimg V = sup,, dim((V NZwZ)/K,) — dim(K/K.,),

where K,, is chosen as in the foregoing and such that Ko< K.
This definition is applicable in our case because of the following fact:

Theorem 9.1 ([19, Thm. A.1]). Any o-conjugacy class in G is an admissible subset.

We also recall the following fact. Note that in [18] the notation Xk ., (b) has a different
meaning than here.

Theorem 9.2 ([18, Thm. 2.23]). Let [b] € B(G). Then for every w € Adm(u),
dimz(ZwZ N [b]) = dim X, (b) + (vs, 20).
Furthermore, for a o-stable parahoric subgroup K of é,

dimg (K Adm(u)K N [b]) = dim X (u, b) x + (ve, 20).

9.2. Closure relations of fine affine Deligne—Lusztig varieties

We recall from [15, §4] the partial order on ¥ W. Let w,w € KW. Then ' <go w if
there exists € Wx such that zw’o (z) ' < w. The relation to the closure relation is given
by the following fact:

Theorem 9.3 ([17, Prop. 2.5], [18, Thm. 2.11]). For w € KW, the closure of K -o ZwlL
s given as follows:

K-»Iwl = | ] Ko Zw'T.
{w'eX W\w’ﬁK‘ow}
We also need the following fact:

Theorem 9.4 ([18, Thm. 2.5]). There is a disjoint sum decomposition into locally closed
subsets

IéAdm(M)lé = I_l K-y Z2T.
zeKAdm(u)

Furthermore, dim,é(lé o LaT) = 2(z), for any v € KAdm(u).

4This notion of admissibility is not related to the u-admissible set.
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From these facts we can now deduce the following statement:

Proposition 9.5. The admissible set IéAdm(/L)lé 18 equidimensional with
dimg (K Adm(u)K) = (11, 2p).

The irreducible components of IéAdm(/L)lC are the KK = K - T Jor A € Wo(p) with
the KW,

Proof. If t* € X W, then the maximal element in Wxt* Wx is wxt*, where wy is the
longest element in Wy. In this case, KK = Twg t*T and (wi t*) = L(wg) + L(t*) =
€(wg) + £(t4). Hence dimg (Kt*K) = (%) = (u,2p). Moreover, K -, Zt*Z ¢ Kt*K and
dimg (K -5 Zt1) = €(t*) = £(t4). Thus Kt*K = K -, Zt'7.

We have KAdm(w)K = Usc WO(M)IGU%, and each K#*K is irreducible. If A € Wx (),
then Kt*K = Kt* K. It remains to show that for any A, there exists A’ € Wi (A) with
e KW,

Let w € Wk such that wt* € K W. Then by definition, for any simple root @ in K we
have that (wt*)™'(a) = (t*)"'w~!(@) is a positive root in the affine root system. Hence
(=x, w™(a)) > 0. This is equivalent to saying that (w(A),a) < 0. Hence (t*™)~H () is a
negative root. Thus t*® e X W. This finishes the proof. O

Corollary 9.6. The dimension of X (u,b)k is bounded as
dim X (u, b) k < (1, 2p).

If equality holds, then b is basic.

Proof. By Theorem 9.2, we have
dim X (11, b) x = dimg (K Adm(p)K N [b]) — (5, 2p)
< dimg (K Adm(u)K) — (vp, 2p)
= (K, 2p) — (s, 2p),

where we used Proposition 9.5 in the last line. If dim X (u, b) xk = (u,2p), we have (vy,2p0) =
0 and thus [b] is the unique basic o-conjugacy class in B(G, u). O

Remark 9.7. Whereas l%Adm(,u)l% is equidimensional, the corresponding statement is
not true for X (u, b) k.

10. Statement of results

10.1. Criterion for maximal dimension
We introduce
W () k. on = (A € Wo(w) | t* € KW, Wy, 1) 1s finite} 10.)

={re Wo) | t* € “Adm(u)o},
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where we use the notation of equation (3.1) in the first line and of equation (3.3) in
the last line. We simply write W ()gn for W(w)y fn. Note that since t* is an element
of Adm(u) of maximal length, it is a maximal element of ¥Adm(u)y with respect to
the partial order <g ,. The following theorem gives a classification of those cases when
equality holds in Corollary 9.6.

Theorem 10.1. Let K be a o -stable parahoric subgroup of G of type K, and [b] € B(G, ).
If dim X (w, b)) = (n,2p), then [b] = [t] is basic, J. is quasi-split and p is minuscule.
When K is an Iwahori subgroup, then the converse holds.

For general K, dim X (u, b) k = (u,2p) if and only if [b] is basic and W () k. fin #P. In
this case, the irreducible components of X (u,b)x of dimension (u,2p) are the irreducible
components of Xy p.(b), where » € W(@) i fin-

The proof is given in Section 12.

10.2. Classification of maximal equidimensional cases

The following theorem gives a classification of all cases when X (u, ) g is equidimensional
of maximal dimension:

Theorem 10.2. Assume that G is quasi-simple over F' and that u is not central. Write
the Tits datum of (G, ) as (Rest/p(A,Ud),(/Ll,...,/Ld)).

Then X (u,t) K is equidimensional of dimension equal to (u,2p) if and only if we are
in one of the following cases:

(1) The tuple (A,0q) is (An_1, On_1), where 0,1 denotes rotation by n—1 steps, precisely
one w; s noncentral (say (1) and w1 = wy. Furthermore, K = .

(2) The tuple (A, 04) is (;13,92,@), where oo denotes rotation by two steps, precisely one
W; is noncentral (say p1) and w1 = wy. Furthermore, K = (.

(3) The tuple (A,04) is (An_1,id), there exist i # i’ such that w; is central for all j # 1,4’
and (i, i) = (@7, ) _1). Furthermore, K = @.

The proof is given in Section 13.

Example 10.3. Here we consider the example of Stamm from [35, Thm. 3]. The
corresponding Tits datum is (A,{A}), where A is of type A; x ;11, S = {s0, s1, sor» $1'},
A = ((1,0),(1,0)) and we consider the Iwahori level structure K = . The Frobenius
morphism o induces a bijective map on S, which permutes sy with sy and s; with sy/.
Let t be the length 0 element in W with k(t) = k(A). Then the action of Ad(tr) on S
permutes sy with s; and sy with sp/. Therefore the action of Ad(t) oo permutes sy with
s and s; with sy. We have

Adm(p) = {t, 57,517, 50T, 51T, S050' T, S051'T, $150' T, $151' T }.

In this case, fAdm(u)i'ﬂ [z] = 7:'50 sl/rfui’sl so/rf and i’so sl/rfﬂi’sl so/rf =7¢Z. Hence
X (u, ) has two irreducible components, both of dimension 2, and their intersection is of
dimension 0.
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On the other hand, if K = {sg, sy}, then

KAdm(p) = {t, s17, 817, s151/T).

In this case, K Adm(x)KN [t] = K- ZsitLUK - Zs11L and Ko Zs1tZNK -5 Lsytl =
K .- ZtT. Hence X (u, )k has two irreducible components, both of dimension 1, and their
intersection is of dimension 0.

Example 10.4. Here we consider the case (;ln,l X Zln,llgo,,(a)f,wxfl),ﬂ) for n > 3,
where l¢g is the automorphism of An_l X ;1”_1 which exchanges the two factors. By
Theorem 10.1, ifg\K contains {s;, s;+1, Sir, Si+1y } for some 4, then X (u, 7) ¢ has dimension
(,2p). But only when K =@ is X (u, 1)) equidimensional of dimension (u,2p).

11. Critical index set

11.1. Critical index set

Recall that a denotes the base alcove. For any z € W, we define the critical index set for
x by

Crit(z) ={v | v is a common vertex of a and z(a)}. (11.1)
Note that if z = wt for w € W, and 7 € , Crit(z) = Crit(w), and this is a nonempty

set if and only if Wyyppw) is finite.

11.2. Quasi-rigid set

Let t € Q, i.e., a length 0 element in W. We introduce the quasi-rigid set for t as follows:
Q-Rig(r) = {wt with w € Wy | Wsupp(w) is finite}. (11.2)

In other words, Q-Rig(t) = Q-Rig(1)t consists of all elements = in W,7 such that the
critical index set for x is nonempty. y
For any length-preserving automorphism 6 of W, we introduce the 8-rigid set for t:

Rig(7,0) = {z € Wot | Wsupp, @ is finite} (11.3)

(cf. [4]). Note that

supp(w) C supp, () = Ujez(Ad(t) 06)" supp(w),

supp(w) = suppage)-1 (WT).
Hence
(1) for any length-preserving automorphism 6 of W, Q-Rig(t) D Rig(z,0); and
(2) Q-Rig(v) = Rig(r, Ad(t)"1).

The following theorem compares Adm(u) and Q-Rig(t):

Theorem 11.1. Assume that W is irreducible. Let I{ C S with Wy finite, i.e., K ;&S
Then KAdm(u) C Q-Rig(t) if and only zf (Ao, )= (An_1, c1,wy) (up to isomorphism),
in which case KAdm(u) = Q-Rig(z) N K W.
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Figure 1. Admissible set (shaded grey) for Bg, n= w{, and quasi-rigid set for T = 7 (%) (inside the thick
lines).

Remark 11.2. The case where K = is Proposition 5.3. The proof of that proposition
does not show the general case, since there are fewer elements in ¥Adm(u) as K becomes
larger. Therefore we have to use more advanced techniques here.

Proof of Theorem 11.1. Let H be a connected reductive group over F' with Iwahori-
Weyl group over F isomorphic to W and where the induced action of the Frobenius on
4 equals Ad(r)~!. By item (2) we have Q-Rig(r) = Rig(zr,0). Hence, by assumption,
for any = € KAdm(u), Wsupp, (z) is finite. Hence, by Proposition 3.2, K.y IazT C [z]. By
equation (2.12), we see that X (u, b) xk =@ if b is not basic. By Theorem 2.4, B(G, n) = {[z]}
is then a singleton. Then by [25, §6], (A, ) = (A,_1, ¢1,@Y) (up to isomorphism). O

Remark 11.3. The concept of a critical index is due to Drinfeld [6]. The fact that in
the Drinfeld case (A4,,_1, ¢1,wy) any element of ¥Adm(u) has a critical index is crucial in
his proof of p-adic uniformisation of the Drinfeld RZ-space. The proof in [6] is by linear
algebra. Note that Theorem 11.1 answers the question raised in [34, §3].

Note that the study of Q-Rig(r) can be reduced to the case where G is adjoint and w
is irreducible~. The following result describes the translation elements in Q-Rig(t) in the
case where W is irreducible:

Proposition 11.4. Suppose that W is irreducible. Let t* be a translation element in
W, and let T € Q with t € W,t. Then t* € Q-Rig(t) if and only if there exists a length-
preserving automorphism 0 of W such that O(A) is a dominant minuscule coweight.

Furthermore, if t* is noncentral, then t* has exactly one critical index, and the critical
index corresponds to a special verter.
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As the proof will show, if G is adjoint and @ exists, then 6 can be chosen as conjugation
by a length 0 element of W.

Proof. If () is dominant minuscule, then we have t/® = t/wg wy for some v/ € Q and
K CS. Thus t* =60~ (t'wg wp) =0~ (r")0 " (wk wp). Since t* € W,t, we have 071 (¢/) = 1.
In this case, t* = 10 N (wx wy) = (t0~ N (wx wo)T 1) 7. Moreover, supp(r0 ™ (wrx wy)t ™) =
Ad(1) 06~1(S). Therefore t* € Q-Rig(t).

Now we prove the other direction. Suppose that t* € Q-Rig(r). Let a' = t*(a) be the
alcove obtained from the base alcove a by translation. Then a and a’ have a common
vertex, say v.

Vv
Note that the vertices of a are ((:C—lﬂ) for i € S and 0. Here g is the highest root and w,’

\%

is the fundamental coweight associated to i. Thus the vertices of a’ are ﬁ +XrforjesS
Y,

and A. Then we have one of the following;:

v v 24 . .
(1) v:ﬁ andk:ﬁ—m for some i # j €8,
1’ 1’ 77
o
(2) v=Ar= L

\2

— - %
(3) v=0and A = WA O

(4) v=1=0.

In case (1), we have = (A ;) € Z and ﬁ = — (A, o) € Z, where o; is the simple
5

root associated to the simple reflection s;. Thus both w; and a)Jv are minuscule coweights.
Hence both v and v — A are special vertices in the base alcove. In cases (2)—(4), we can
show by a similar (but easier) argument that v and v — A are still special vertices in the
base alcove.

The group of length 0 elements acts transitively on the set of special vertices of a, so
after applying the length-preserving automorphism of W induced by such an element, we
may assume that v — A is the origin in the base alcove. In other words, v = A is a special
vertex in the base alcove, and hence A is a minuscule coweight (recall that we excluded
the possibility that A is central in our assumptions). O

Corollary 11.5. Assume that W is irreducible and t* is non-central. If K C S with
K D supp(t*t~!), then K =S.

Proof. By Proposition 11.4, supp(t*t=!) =S or S\ {s} for some simple reflection s,

corresponding to a special vertex. Thus if K O supp(t*t~1), then supp(t*t~!) = S\{s}
and K =S. O

12. Maximal dimension

In this section, we prove Theorem 10.1.
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12.1. Preparations

The following result gives an explicit description of the set W(E)ﬁn introduced in
Section 10.1:

Proposition 12.1. Suppose that G is quasi-simple over F, i.e., o acts transitively on the
set of irreducible components of W. Suppose that w is noncentral in G, i.e., the restriction

of u to some irreducible component of W is noncentral. Then
W (sin = {1 € Wo(p) | t* has an Ad(v) oo -stable critical index).

In particular, for any A € W (fin, A is minuscule, t* has a unique Ad(t) oo -stable critical
index and the corresponding vertex is special.

Proof. Without loss of generality, we may assume that G is adjoint. In this case, W =
Wl X 17[/'2 X - X Wd and gzgl XSQ X ~~~Sd, where Wl = Wg =..= Wd are irreducible.
We have ®= (w1, 2, ..., 0q). We may assume that wp is noncentral in Wl. Let 7 =
(11,72, ...,T4)- 5

For any subset K €S, Wk is finite if and only if in each component of the Dynkin
diagram there is at least one vertex not contained in K. Hence, as we have remarked
before, A has a critical index if and only if Wy,,,41,-1 is finite. In the case where case
the critical index is unique, we have that supp(t*) = supp, (¢*) if and only if the critical
index is Ad(t) oo-stable.

Since u is noncentral, elements of Wy(u) have at most one critical index, and we obtain
that the_right—hand side is a subset of W(M)ﬁn.

Conversely, let A = (A1,A9,...,14) € Wo_(p,) be an element in W(u)g,. By Proposi-
tion 11.4, py is minuscule, A; is of the form 6, (1) and th has a unique critical
index. Note that supp(t*'7; Hh=§ \ {s1} for some simple reflection s; that corresponds
to the critical index of t*1. For 1 < i < d, let s; = (Ad(z) o 0)i1(s;) € W;. Then
g\{Sl,SQ,...,Sd} C suppa(t*). Note that for any K 2 g\{Sl,SQ,...,Sd}, Wy is an infinite
group. Thus we have g\{31,32, ..., 84} = supp, (t*). In particular, (Ad(t) o0)?%(s1) = s1.
And for each 1 < i < d, either A; is central or A; is minuscule noncentral and s; is the
simple reflection corresponding to the critical index of t*:. Hence t* has a critical index
which corresponds to s1s;---sq. Moreover, by construction, this is the unique Ad(t)oco-
stable critical index.

The final part follows from Proposition 11.4, or from the equality of the two sets, since
all elements of the right-hand side have these properties. O

Proposition 12.2. The set W(w)an is nonempty if and only if J; is quasi-split and p
minuscule.

Proof. Since [1] is basic, J; is an inner form of G. It is quasi-split if and only if there
exists a collection IT C S of special vertices, one in each connected component of the
affine Dynkin diagram, such that Ad(t) oo (IT) = II, i.e., the subset is fixed by the
twisted Frobenius corresponding to J.. If W(u)g, is nonempty, then p is minuscule
and Proposition 12.1 implies that J; is quasi—spﬁt. N
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Conversely, suppose that J; is quasi-split and that p is minuscule, so that ¢ has a

critical index. Applying Proposition 12.1, it is enough to show that with IT C S as before,
there exists a length-preserving automorphism 6 of W and A € Wy (w) such that 6(1) =

and I[1= S\supp(t‘) We may assume that G is adjoint. Then the subgroup of length 0
elements of W acts transitively on the set of special vertices of the base alcove. Let 6 be
induced by a length 0 element and such that A := 67! (u) satisfies IT = S\supp(t)‘). Then
A € Wo(p) and hence 1 € W(@)fin- B O

12.2. Proof of Theorem 10.1

First assume that b is basic and W (i) k. an # 9. By Proposition 3.2, K- It'I [z] for
A € W(p) k. fin- By Theorems 9.2 and 9.4, we see that dim X (u, b) x = (11,2p). For K = @,
if J; is quasi-split and p is minuscule, then Proposition 12.2 shows W(w)n # @ and
hence dim X (u, b)x = (,u, 20).

Now suppose that dim X (u,b)x = (u,2p). By Corollary 9.6, [b] = [r] is basic. We
next claim that the irreducible components of X (u,7)x of dimension (u,2p) are the
irreducible components of the X ;. (7) of dimension (u,2p), where A € W () i in- Indeed,
by equation (2.12), N

Xwor= || Xk,

[E€KAdII1(/,L)

Now for z € KAdm(p), dim Xk (1) < dim X, () = dlmI(Ia:Iﬁ [z]) < dlmI(Ia:I) ={(z),
using Theorem 9.2 for the first and Theorem 9.4 for the final equality, which proves the
claim. In particular, W ()i, fn # 9. On the other hand, Xy ;. (7) is equidimensional. In
fact, X 12 (7) is a disjoiﬁt union of copies of a classical Deligne-Lusztig variety by [10
Prop. 5.7] and [9, Thm. 4.1.1, Thm. 4.1.2].

Finally, the map X (i, b) = X (u, b) i is surjective (cf. [19, Thm. 1.1]). Hence we deduce
from dim X (i, b) x = (u,2p) that dim X (u, b) = (u,2p). The previous reasoning applied
to K = ¢ implies W(uw)g, # ¥, and hence we deduce from Proposition 12.2 that J, is
quasi-split and p minuscule. Theorem 10.1 is proved. O

Remark 12.3. For any (G, ) such that p is minuscule, there exists an inner form H of G
such that dim X% (u, ) = (u,2p), namely the one with Frobenius Ad(t)oo. In particular,
this applies when G splits over F', because then u = u.

13. Maximal equidimension

In this section, we prove Theorem 10.2.

13.1. Reduction to the fully Hodge—Newton decomposable case

Suppose that X (u, b) x is equidimensional of dimension equal to (u,2p). By Theorem 10.1,
[b] = [r] is basic and

Xwor= |J Xeo@.

reWW K, fin

https://doi.org/10.1017/51474748020000730 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000730

Extremal cases of Rapoport—Zink spaces 1773

We claim that (G, ) is of fully Hodge—-Newton decomposable type. In fact, by Theorem 3.1
it is enough to show that whenever w € KAdm(u) satisfies Xx ., (t) # @, then Wesupp, (w)
is finite. But then Xk .,() € X(u,7)x and the equation gives Xx ., (1) € Xy p(7) for
some A € W (i) k fin- Now Theorem 9.3 shows that

K.y ITHT = |_| K-y I21,
{zeK Wiz=k o, t4}

and this implies that

X, o (1) C | ] X2 (D).

{zeK Wiz=f 4}

We obtain that w < , t* for some A € W (@) i fin. This implies supp, (w) € supp, (t),
50 Wiupp, (w) is finite.
Hence, by Theorem 3.5,

Xwor= || Xeab.

zeKAdm(u)g

In particular, we have that X (u, b) k¢ is equidimensional of dimension equal to (u,2p) if
and only if the following condition is satisfied:

(*) The set of mazimal elements of KAdm(u)o with respect to the partial order <y o is
equal to {t* | € W (W) K fin}-

We first check which cases satisfy (%) under the additional assumption that wu is
noncentral in every irreducible component: in Sections 13.2 and 13.3 we go through the
irreducible cases, and in Section 13.4 we check the remaining case, the Hilbert—Blumenthal
case. Finally, in Section 13.5 we explain how to deduce the general case where u is allowed
to have central components.

13.2. Candidates for the irreducible cases

We first consider the case where W is irreducible. Since X (u, )k has dimension (u,2p),
we have W (@) i fin # . By Proposition 12.1, Ad(t) oo fixes a special vertex in the affine

Dynkin diagram of W. The fully Hodge—Newton decomposable cases with W irreducible
and where Ad(t) oo fixes a special vertex can be extracted from the table in Theorem 3.3
and are as follows (see the explanation after Theorem 3.4 for the notation):

(i) (Ap_1,0n-1,0Y) for n >2,
(il) (Agm, so,@Y) for m > 1,
(iii) (A3, 50, @y),

(iv) (As,02,),

(v) (Bn,Ad(tl),wY) for n > 3,
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(Vi) (Ch, Ad(t2), ),

(vii) (Dp, co.@Y) for n > 4.
Next we check when (%) is satisfied.

13.3. Case-by-case analysis

13.3.1. (An_l,Ad(rn_l),a)i/) for n > 2. Here the only possible K is @ and K =7. This
is the Drinfeld case, and B(G,u) consists of a single element, namely [z]. In this case,
fAdm(,u)f C [r] and X (u,7) is equidimensional of dimension equal to (u,2p).

13.3.2. (Agm,gg,a)f) for m > 1. In this case, §Ad(®eo — {sm+1}. Thus the only
‘Eranslation element in Adm(u)g is t*, where A = Ad(rp)(a)y) € S\sm} 77 and supp(t*t™1) =
S\ {sm+1}. Therefore if 1 € W(w)k fin, then K C S\ {sn}. Since K = o (K), we have

K cC g\ {Sms Sm+1). In this case, spme17 € FAdm(u)o and spy417 ﬁK,G t*. This contradicts

().

13.3.3. (43, 50.@y). In this case, SAd(eo — {s1,s3}. Thus the only translation elements
in Adm(u)g are s1528081T and s3s959s3T. Therefore if W(W) i fin # 9, then s; ¢ K or
s3 ¢ K. Since K =0 (K), both s; and s3 are not in K. In this case, s;537 € FAdm(u)o,
8183T ﬁK,(, 81828081 T and 81837 ﬁK,g $3828083T. This contradicts ().

13.3.4. (Ag,Ad(l’Q),a)g . We first consider the case where K = . In this case, the
maximal elements in KAdm(u)o are s2818382T, 835250537, S0515350T and s;825051 7, and
(%) is satisfied.

If K ={so, 52}, then the maximal elements in KAdm(u)g are 3250537, 15250517, $15350T
and s183827. This contradicts (x).

13.3.5. (Bn,Ad(tl),a)f) for n > 3. By Proposition 12.1, W(w)sn = {0}, Ad(t1)(w))}.
Note that
1 € SW and supp(t‘”yr’l) =S\ {s1};
tAdED©]) ¢ S 7 and supp(+AdD@ -1y = s,

Thus if Adm(u)o contains some of these translation elements and K = o (K), then
K CS\{s0,s1}. In this case, sps17 € KAdm(w)o, 0517 Zk.0 t*1 and sps1T Ko gAd @)
This contradicts (x).

13.3.6. (C’z,Ad(rg),wg). In this case, SAd@eo — {s0,51,82}. The only translation ele-
ments in Adm(u)g are sgs180T and sos1597. Therefore if W) i fin # 9, then so ¢ K or
so ¢ K. Since K =0 (K), both sy and sy are not in K. In this case, spsot € FAdm(w)o,
8082T ﬁK,U Sp8180T and SySoT ﬁK,U 8281 89T. This contradicts ().

13.3.7. (D, co,wy) for n>4. In this case, the special vertices that are fixed by Ad(z)o
o are n—1 and n. By Propositions 11.4 and 12.1, the elements of W (u)sn are of the
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form 6(u), where 0 runs over a length-preserving automorphism such that 6 o Ad(t)(S) is
Ad(7) oo-stable. In this case, 0 sends the vertices {0, 1} to the vertices {n —1,n}. We have
that K C S\ {sp_1} or K C S\ {s,}. Since K = (K), we have K C S\ {sn_1,5n}. Then
we have s,_15,7 € FAdm(u)o. On the other hand, we have supp(t?@ 1) c S\ {85,_1} or
supp(t!® 1) ¢ g\{sn}. Thus $,-18,7 AK,0 t9W  This contradicts (*).

13.4. The reducible case

We consider the case where W is reducible (cf. Theorem 3.4). Let us first assume that
wu is noncentral in each factor, so it is of type (A1 % An_l,lgo, (wy, ;. _1)). There are
two copies of the affine Dynkin diagram of type A,_1, and we label the vertices by i and
i’, respectively, where 7,7’ € Z/nZ. The Frobenius o acts by !¢y, which exchanges the
vertex ¢ with 4’ for any i. The Ad(t)oo-orbits on S are {si,8¢4—1y} fori e Z/nZ. If K =0,
then the maximal elements in KAdm(,u)o are (8;8i—1 - Si—n+2) (Si—n+1y *** S(i=2y S(i—=1y') T
for ¢ € Z/nZ. They are all translation elements. Hence (x) is satisfied.

Now suppose that K # @. Without loss of generality, we may assume that {sg, sy} C
K. Then (sp—18n—2---52)(81/82 - S(n—1y)T is a maximal element in KAdm(uw)o. This
contradicts (x).

13.5. The general case

Finally, let us reduce the general case to the case where p is noncentral in each component.
Given (G, u), we may assume that G is adjoint, and we construct (G, i) as in Section 2.7.
Since we have already shown that (G,u) is fully Hodge—Newton decomposable, u is
minute. This implies that p’ is minute, and hence we see that the Dynkin type of (G/, 1)
is one of the types in Theorem 3.3. The only possibilities for (G, i) then are the following:

o All p, except for one, are central, and the component where p is noncentral is as in
Theorem 3.3.

o All u,, except for two, are central, and the two components where p is noncentral give
rise to the Hilbert-Blumenthal case (A4,,—1 X 4,,—1, (@), w,/_)).

The components where p is central do not contribute to the set KAdm(u)g, so the
analysis of whether (x) is satisfied is exactly the same as in the previous sections.
14. Lattice interpretation of the maximal equidimensional cases

In this section, we go through the list in Theorem 10.2 under the assumption that u is

noncentral in each factor of W and give lattice interpretations of X (u,7)x in each case.

14.1. The Drinfeld case

Let (N,¢) be an F-vector space of dimension n, equipped with a o-linear automorphism
isoclinic of slope 0. Then we have

X(u.r)k = |_|{IMe | Mii1 D ¢(M;). Vi, vol(Mp) = v}. (14.1)

veZ
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Here M, is a periodic Op-lattice chain with period n. The decomposition indexed by v
corresponds to the decomposition of the affine flag variety into connected components.

In this case, we can identify the set in equation (14.1) as the set of points of a m-adic
formal scheme, as follows. We fix an embedding of F into an algebraic closure @p of
Qp. Let B be a central division algebra over F' with invariant 1/n. Up to isomorphism,
there is a unique special formal Op-module of F-height n? over F, (cf. [33, Lem. 3.60]).
Taking this as a framing object over F,,, we obtain a formal scheme N over Spf O which
represents the functor of special formal Op-modules together with a quasi-isogeny framing
(cf. [33, § 3.59]). It is a m-adic formal scheme [33, Prop. 3.62] which is flat over O [33,
§ 3.69, Thm. 3.72]. Then the set in equation (14.1) can be identified with J\/‘(I_Fp)7 and the
elements of the set in equation (14.1) for v = 0 with the connected component N°(F,) of
height zero elements. Indeed, let F'/F be an unramified subfield of B of degree n, with a
fixed embedding F' <> F', and let T denote a uniformiser in Op which satisfies TT" = 7
such that IT normalises £ and induces on F the Frobenius generator of the Galois group
Gal(F/F). Let (f/, @) be the F-isocrystal of the framing object. Let

= @ Vi
keZ/n

be the eigenspace decomposition under F. Then @ is an endomorphism of degree 1,
and so is I1. Then set N = 170, ¢ =TT"'®. The decomposition Or ®op Op = ®rez/n Of
induces for the Op-Dieudonné module M of a special formal Op-module in A (IF‘,,) a

decomposition
= @ i
keZ/n

Then ®(M;) C Mk+1 and TT(My) C Mk+1, with both inclusions of colength 1. Then the
lattice chain M, in the set in equation (14.1) is given as M; = H’if\/[[i], where [i] € Z/n
denotes the residue class of .

The formal scheme N is an RZ-space szp, corresponding to the following RZ-data D
(cf. [33, Def. 3.18]). Let V be a free B-module of rank 1. Let V =V ®p F. Let b e GLg(V)
such that the relative isocrystal (17, b(id ® o)) is isoclinic of slope 1/n. The conjugacy
class u is given by (1,0,...,0) for the fixed embedding of F' into @p in an identification of
GL5(V) with GL,, after extension of scalars to F, and trivial for all other embeddings
of F into Qp. The integral RZ-data Dy, are given by the unique maximal order Op of B
and the periodic lattice chain £L={I1"Op | i € Z}.

14.2. The case D2/4
Let (N,¢) be an isocrystal of dimension 4, where ¢ is a o-linear automorphism isoclinic
of slope 0. Then we have
X (1) = |_|[{M0 | Miya D ¢(M;), Vi, vol(My) = v}. (14.2)
VEZ

Here M, is a periodic lattice chain with period 4. The decomposition indexed by v
corresponds to the decomposition of the affine flag variety into connected components.
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14.3. The Hilbert—Blumenthal case

Let (N, ¢) be a o 2-isocrystal of dimension n, where ¢ is a o 2-linear automorphism isoclinic
of slope 0. Then we have

Xk =| (M M) | mp(M;) € M] C* M;. Vi, vol(Mp) = v}. (14.3)

vEZ

Here M, and M, are maximal periodic lattice chains in N. The decomposition indexed by
v corresponds to the decomposition of the affine flag variety into connected components.

15. Application to p-adic uniformisation

In this section we assume F = Q,. As explained in Section 14.1, the RZ-space
corresponding to case (1) of Theorem 10.2 is w-adic. In this section we explain various
criteria which show that the corresponding sets in cases (2) and (3) of Theorem 10.2 do not
come from RZ-spaces which are w-adic formal schemes. Here we implicitly appeal to the
uniqueness result [21, Prop. 4.4] that the RZ-space (which a priori depends on integral
RZ-data Dgz,; cf. [21]) depends only on the tuple (G, i, b, K). To apply this result, we
assume that G splits over a tamely ramified extension of F'.

15.1. Via change of parahoric

We note the following consequence of Theorem 10.2:

Corollary 15.1. Assume that G is quasi-simple over F and that p is noncentral. Then
X (u, 1)k 18 equidimensional of dimension equal to {u,2p) for every parahoric subgroup
K if and only if the pair (A, o) is isomorphic to Rest/F(;ln,l,Qn,l), where as before
On—1 denotes rotation by n—1 steps and Fy/F is unramified of degree d. Writing u =
(1, .-+, q), there is a unique i such that w,; is noncentral and w; = wy. In this case,
K =0 corresponds to the unique parahoric subgroup.

The significance of this corollary is given by the following fact. Let E be the reflex field
of (G, ), i.e., the field of definition of u. Let X be a formal scheme over Spf O, with
underlying reduced scheme X (u,7)x. We assume that X is flat over Spf Oy and that its
generic fibre, i.e., the associated rigid space X', is smooth of dimension (u,2p). Let 7 be
a uniformiser of Oj,. Assume that the formal scheme X is 7-adic, i.e., 7 generates an ideal
of definition of X. Equivalently, the ideal J of X (u,t)x satisfies 7 =rad(xOx) (radical
ideal). Then X (u,7)k is equidimensional of dimension (u,2p). Indeed, then X (u,7)x
coincides with the special fibre of X, which is equidimensional of the same dimension as
its generic fibre.

Let K C K'. Let X (resp., X') be a normal flat formal scheme over Spf Oj with
underlying reduced scheme X (u,t)g (resp., X(u,7)k’), and let f: X — X’ be a proper
morphism inducing the natural map X (u,7)x — X(u,7)g’ and such that f is a finite
morphism in the generic fibres. Let J (resp., J') be the ideal of definition of X (resp.,
x).
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Lemma 15.2. The equality J = rad(mwOx) holds if and only if J' =rad(wxOx).

In other words, X is a w-adic formal scheme if and only if X’ is.

Proof. Assume J' =rad(wOx/). The morphism f is adic, hence f*(7’) is an ideal of
definition of X which is contained in J, as the latter is a maximal ideal of definition.
Hence J = rad(mwOx) is clear. For the other direction, let f: X — X’ be the Stein
factorisation of f. Then the normality of X’ implies f,(Ox) = O On the other hand,
for the maximal ideal of definition J' of X, we have J' C f*(f*(j ’)) C f.(J). Hence
J c f*(j) f*(rad(rcOx)) = rad(nf*(Ox)) =rad(rOy), and hence X’ is w-adic. But
the normality of X' implies that Ox N7 Og = 7O, . Hence, since X’ is a w-adic formal
scheme, so is X'. O

15.2. Via formal branches
In this subsection, we argue via the local structure of RZ-spaces. Let (G, u, K) be the
corresponding local model triple over F', and M'°¢(G, ) ¥ be the local model over O, in

the sense of [21]. Then the special fibre MIOC(G,M)K is a closed subset of the loop group
partial affine flag variety LG'/L1K,

A, )k ={gK € G'/K' | g € K Adm(u)K'}. (15.1)

By the local model diagram, the singularities of the RZ-space M(G, u, b) ¢ corresponding
to (G, u, b, K) are modeled by M'°¢(G, u)x. More precisely, for any z € M(G, u, b) x (k),
there exists y € M¢(G, u)k (k) such that the strict Henselisations at z and at y are
isomorphic. Furthermore, for b = t, under the identification M(G, 1, 7) g (k) = X (1, 7)
the point zp = eK is realised by the point yo = v € A(u,7)x. Hence we have an
identification

{formal branches of the special fibre of M(G, i, 7)x through zp} =

X (15.2)
{extreme elements of “Adm(u)}.
On the other hand, the extreme elements of “Adm(u) can be identified with
KAdm(n) == {r € Wo(p) |t € K W}, (15.3)

Therefore, we deduce from Theorem 10.1 the following criterion:

Theorem 15.3. The RZ-space M(G,u,t)g is m-adic if and only if the inclusion
W (W K fin C KAdm(w)® is an equality.

This theorem again excludes cases (2) and (3) of Theorem 10.2. Indeed, in these cases
K =@ and the following elements are in Adm(u)°\ W (u)gan:
Case (2): s15352507. N
Case (3): S0Sn—1* 250 S(n—1y * $2/T-

Here, in the last line, we use the notation from Section 13.4.
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15.3. Via non-Archimedean uniformisation

To put the foregoing results into context, let us explain how to view Theorem 10.2 using
global methods, i.e., the theory of Shimura varieties. This allows us to ‘see’ all Newton
strata at once, which is not possible within one fixed RZ-space.

In each case of Theorem 10.2, we can construct a Shimura pair (G, {hg}) of PEL-type
which yields after localisation at p the pair (G,u). Let K=KPK, C G(Ay) = G(A}’Z) X
G(Qp), with K, = K. Let E=E(G, {hg}) be the global Shimura field and fix an embedding
Qc @p which determines a p-adic place v of E with £ =E,.

Let Sk =S (G, {hg})k be the Pappas—Zhu model of the Shimura variety S(G, {hg})x over
Og. Then the Newton map

8k Sk(Fp) — B(G,p) (15.4)

is surjective (cf. [23, §9]). In case (1) of Theorem 10.2, the set B(G,u) consists only
of the unique basic element [r] of B(G,p) (cf. [25]); in cases (2) and (3) there are
additional elements besides [t] (in case (2), one additional element). It follows that
in cases (2) and (3), the closed subset Sk pasic With SKbasic(Fp) = Sﬂgl([t]) is a proper
closed subset of the special fibre Sk of Sk. Hence, in cases (2) and (3), the formal
completion Sg /Sk basic 18 @ formal scheme over Spf Of that is not mw-adic. However, by
non-Archimedean uniformisation [33, Ch. 6], there is an isomorphism of formal schemes
over Spf Oy,

S2 /5y pasic XSpt 05 SPE Oy = GQ\[M(G, 11, T) ¢ x G(A]) /KP].

It follows in cases (2) and (3) that the formal scheme M(G, u, 1)k is not m-adic.

16. Proof of Theorems 1.4 and 1.5

For Theorem 1.4, all that remains to be shown after Theorem 10.1 is the assertion
that W(u)k an parametrises the orbits of J;(F) on the set of irreducible components
of dimension (11,2p) of X (u,b) k.

By Theorem 10.1, the union of the irreducible components of maximal dimension is
equal to Uy W) K fin Xk 4+(b). Note that each X 4(b) is stable under the action of J; (F).
Moreover, the natural map from the set of irreducible components of X k. (b) to the set of
irreducible components of Xy ,4(b) is bijective and Jy, (F')-equivariant. It remains to show
that for any X € W(w)k an, J»(F) acts transitively on the set of irreducible components
of Xy (b). N

The natural projection map é/j — é/l& induces the surjection X;x(b) — Xy 42 (b), and
this map is J (F)-equivariant. Moreover, since A € W(E)K!ﬁn, Wsuppa(t)“) is finite. By [9,
Prop. 2.2.1], we have X, (b) = J,(F) xR ¥ (1) where K is the parahoric subgroup
associated to supp, (t*) and Y (w) is the classical Deligne-Lusztig variety associated to
w in the finite dimensional flag variety K/Z. By [29, Ex. 3.10 d)] (cf. also [7, Cor. 1.2]),
Y (w) is irreducible. Hence J,(F') acts transitively on the set of irreducible components
of X,.(b), and hence transitively on the set of irreducible components of Xy ;. ().

Theorem 1.5 is deduced from Theorem 10.2 just as Theorems 1.1 and 1.2 are deduced
from Theorems 4.1 and 4.2. Corollary 1.6 follows from Theorem 1.5 by the observation
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that in cases (2) and (3) there are F-rational parahoric level structures other than the
Iwahori level (cf. Corollary 15.1).

Theorem 1.7 follows from the fact that the integral RZ-data Dz, are of extended
Drinfeld type if (G, u, K) is of type (1) in Theorem 1.4 (here the key is the fact that
we assume that the first entry of a rational RZ-datum is a field extension of Q,, so that
the case of a fake unitary group is excluded).
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