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1728 U. Görtz et al.

6 Proof of (2)⇒ (1) in Theorem 4.2 1747

7 Lattice interpretation of the minimal cases 1754

8 Proof of Theorems 1.1 and 1.2 1764

Part 3. Maximal dimension 1764

9 Dimension of ADLV 1764

10 Statement of results 1766

11 Critical index set 1768

12 Maximal dimension 1770

13 Maximal equidimension 1772

14 Lattice interpretation of the maximal equidimensional cases 1775

15 Application to p-adic uniformisation 1777

16 Proof of Theorems 1.4 and 1.5 1779

References 1780

1. Introduction

Let F be a non-Archimedean local field and let G be a connected reductive group over

F . Let μ be a conjugacy class of cocharacters of G (over the algebraic closure F ), and
let b ∈G(F̆ ), where F̆ denotes the completion of the maximal unramified extension of F .

The main character of this paper is the set

X (μ,b)K =XG(μ,b)K := {gK̆ ∈G(F̆ )/K̆ | g−1bσ(g) ∈ K̆Adm(μ)K̆}. (1.1)

Here K denotes an F -rational parahoric level structure of G, with corresponding standard

parahoric subgroup K̆ ⊂ G(F̆ ). Also, Adm(μ) denotes the μ-admissible subset of the
Iwahori–Weyl group of G. (See Section 2 for details on this notion and other notation

used here.) By [19, Thm. A], X (μ,b)K is nonempty if and only if [b] ∈ B(G,μ) (i.e., [b]
is neutral acceptable), which we assume from now on.
The set in (1.1) has a geometric structure: if F is a function field, then X (μ,b)K

is a finite-dimensional closed subscheme of the partial affine flag variety G(F̆ )/K̆,

locally of finite type over the algebraic closure of the residue field of F . If F is p-
adic, then the partial affine flag variety and its finite-dimensional closed subscheme

X (μ,b)K have to be understood in the sense of Bhatt and Scholze [1, Def. 9.4] and Zhu

[41, Thm. 0.1] as a perfect scheme.
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The interest in the set in (1.1) comes from the fact that in the case of a p-adic field

and when μ is minuscule, sets of this form arise as the set of geometric points of the

underlying reduced set of a Rapoport–Zink formal moduli space of p-divisible groups (cf.
[32, §4]). Something analogous holds in the function-field case for formal moduli spaces

of shtukas (cf. [37]; in this case, the minuscule hypothesis can be dropped). Both classes

of formal schemes are very mysterious. In fact, we know explicitly these formal schemes
essentially only in two cases: the Lubin–Tate case and the Drinfeld case. In the Lubin–

Tate case, the formal scheme is a disjoint union of formal spectra of formal power series

rings with coefficients in OF̆ , hence the underlying reduced scheme is just a disjoint union
of points. In the Drinfeld case, the formal scheme is π -adic and the underlying reduced

set is a disjoint union of special fibres of the Deligne–Drinfeld formal model of the p-adic
half-space corresponding to the local field F .

In this paper, we address the question of classifying the cases when X (μ,b)K has
minimal dimension zero (as in the Lubin–Tate case) or maximal dimension 〈μ,2ρ〉 (as in
the Drinfeld case).

Let us first discuss our results pertaining to the case of dimension zero. For the group
G, we denote by {ω∨i } the set of fundamental coweights, where i runs over the index set

of the simple roots. Here we use the same labeling as Bourbaki [2, Plate I–X].

Theorem 1.1 (cf. Theorem 4.1). Assume that G is quasi-simple over F and that μ

is noncentral. Let b be basic and let K be an F -rational parahoric level structure. Then

X (μ,b)K is zero-dimensional if and only if Gad is isomorphic to ResF̃/F (PGLn), for some

n and some finite extension F̃ of F , and there exists a unique F -embedding ϕ0 : F̃ → F
such that μad,ϕ is trivial for ϕ 	= ϕ0 and μad,ϕ0 = ω∨1 .

Here we write, for any F̃ -group G̃, a cocharacter μ of ResF̃/F (G̃) as μ = (μϕ)ϕ for

cocharacters μϕ of G̃, where ϕ runs over HomF (F̃,F ).
In particular, if G is absolutely quasi-simple, then the Lubin–Tate case (Example 2.7)

is the only one when the dimension of X (μ,b)K is zero. In general, when the dimension

of X (μ,b)K is zero, then μ is automatically minuscule. Also, the statement that the

dimension of X (μ,b)K is zero is independent of the choice of K . The case (G,μ) that
appears in Theorem 1.1 is called the extended Lubin–Tate case (we use the term extended

because there is an extension F̃/F involved).

When we vary K , we obtain the transition morphisms πK,K ′ : X (μ,b)K → X (μ,b)K ′ ,
whenever K ⊂K ′. In the extended Lubin–Tate case, the fibres of πK,K ′ are finite for any
K � K ′. For the next statement, let us exclude this case.

Theorem 1.2 (cf. Theorem 4.2). Assume that G is quasi-simple over F and that μ

is noncentral. Let b be basic. Also, exclude the extended Lubin–Tate case discussed in

Theorem 1.1. Fix a pair K � K ′ of F -rational parahoric level structures.

Then the fibres of πK,K ′ are all finite if and only if Gad is isomorphic to ResF̃/F (G̃ad),

where F̃ is a finite extension of F and where G̃ad is the adjoint group of a unitary

group associated to a split F̃ ′/F̃ -Hermitian vector space V for an unramified quadratic

extension F̃ ′/F̃ , and the following two conditions are satisfied:
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• There exists a unique F -embedding ϕ0 : F̃ → F such that μad,ϕ is trivial for ϕ 	= ϕ0 and

μad,ϕ0 = ω∨1 .

• The pair (K,K ′) satisfies the following: let the maximal unramified subextension Fd

of F̃/F have degree d . Correspondingly, write K and K ′ as K = (K1, . . . ,Kd ) and

K ′ = (K ′
1, . . . ,K

′
d ), where the entries are parahoric subgroups of ResF̃/Fd

(G̃ad).
1 Then

K ′
1 \K1 ⊂ {s0,s n

2
}, and if si ∈K ′

1 \K1, then si+1 /∈K1.

Both implications of the theorem are interesting. Indeed, in the case singled out by

the theorem, assume for simplicity that F̃ = F and consider a maximal self-dual periodic

lattice chain

{. . . ⊂�−2 ⊂�−1 ⊂�0 ⊂�1 ⊂�2 ⊂ . . .}
in V . The case when K ′ \K = {s0} is given as follows: K ′ stabilises a subchain �I which

contains �1 but not the self-dual lattice �0, and K stabilises �0 in addition to �I .

Under these conditions, the theorem states the following. Let N be an F̆ , vector space

of dimension 2dimV , equipped with an action of F̃ and an alternating bilinear form
〈, 〉 which is Hermitian with respect to the F̃ -action. Let φ be a σ -linear automorphism

of N which commutes with the F̃ -action and which is isoclinic of slope 1/2 and such

that 〈φ(x ),φ(y)〉 = πσ(〈x,y〉) for all x,y ∈ N . Here π denotes a uniformiser in F . Let
MI be a self-dual chain of OF̆ -lattices in N which are invariant under OF̃ , of type �I .

Assume that πMi ⊂ φ(Mi)⊂1 Mi for all i ∈ I . Then there are only finitely many ways

of completing the chain MI to a self-dual chain by adding a self-dual lattice M0 such
that πM0 ⊂ φ(M0)⊂1 M0.

The case when K ′ \K = {sm} when n = 2m is similar (with a self-dual lattice replaced

by a lattice which is self-dual up to a scalar); and the case when K ′ \K = {s0,sm} when
n = 2m is a concatenation of the previous cases.
From a global perspective, i.e., the point of view of Shimura varieties, Theorem 1.1

implies that the only cases where the basic locus is zero-dimensional are those which

at the fixed prime p give rise to the extended Lubin–Tate case. This is the situation
considered by Harris and Taylor in [14].

Now let us discuss our results pertaining to the case of maximal dimension. First, we

have the following well-known upper bound on the dimension of X (μ,b)K . As usual, ρ

denotes the half sum of all positive roots, and by 〈μ,2ρ〉 we mean the value of 2ρ on a

dominant representative of μ.

Proposition 1.3 (cf. Corollary 9.6). The dimension of X (μ,b)K is bounded as

dimX (μ,b)K ≤ 〈μ,2ρ〉.
If equality holds, then b is basic.

It is thus a natural question to ask in which cases this upper bound is attained. A

well-known example is the Drinfeld case, but there are other cases, too.

1Note that ResF̃/Fd
(G̃ad) has affine Dynkin type Ãn−1; we use standard notation for the simple

reflections in this case.
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Theorem 1.4 (cf. Theorem 10.1). Assume that G is quasi-simple over F and that μ

is not central. If dimX (μ,b)K = 〈μ,2ρ〉, then b is basic, the σ -centraliser group Jb is

a quasi-split inner form of G and μ is minuscule (in the échelonnage root system2; see
Section 2.2). If K = ∅ is the Iwahori level, the converse holds.

For a general parahoric level, dimX (μ,b)K = 〈μ,2ρ〉 if and only if b is basic and

W (μ)K,fin 	= ∅. In this case, the orbits of the action of Jb(F ) on the set of irreducible
components of X (μ,b)K of dimension 〈μ,2ρ〉 are parametrised by the finite set W (μ)K,fin.

We refer to equation (10.1) for the definition of W (μ)K,fin, a finite set of translation
elements, which is related to Drinfeld’s notion of a critical index (see Proposition 12.1).

The constraints on (G,μ,b,K ) imposed by Theorem 1.4 are in fact quite weak. For

instance, if (G,μ,b) is such that μ is minuscule, b is basic and G is split over F̆ , then
there always exists an inner form H of G such that dimXH(μ,b)∅ = 〈μ,2ρ〉.
On the other hand, the condition that dimX (μ,b)K be equidimensional of maximal

dimension is much stronger.

Theorem 1.5 (cf. Theorem 10.2). Assume that G is quasi-simple over F and that μ

is not central. Let b ∈ G(F̆ ) be a representative of the unique basic element in B(G,μ).
Then X (μ,b)K is equidimensional of dimension equal to 〈μ,2ρ〉 if and only if the triple

(Gad,μad,K ) is isomorphic to one of the following:

(1)
(
ResF̃/F (D×

1/n)ad,ω
∨
1 (ϕ0),∅

)
.

(2)
(
ResF̃/F PGL2(D1/2),ω

∨
2 (ϕ0),∅

)
.

(3)
(
ResF̃/F (PGLn),μ,∅).

Here F̃ denotes a finite extension of F , and for an adjoint reductive group G̃ over F̃ and

a cocharacter μ̃ of G̃ and an embedding ϕ0 : F̃ →F , we denote by μ̃(ϕ0) the cocharacter μ

of ResF̃/F (G̃) with μϕ = 0 for ϕ 	= ϕ0 and μϕ0 = μ̃. Furthermore, D1/n denotes the central

division algebra over F̃ with invariant 1/n, and D×
1/n the algebraic group over F̃ associated

to its multiplicative group. In case (3), there are two embeddings ϕ0,ϕ1 : F̃ →F such that
their restrictions to the maximal unramified subextension of F̃/F are distinct, and the

cocharacter μ is given as follows: μϕ0 = ω∨1 and μϕ1 = ω∨n−1 and μϕ = 0 for ϕ /∈ {ϕ0,ϕ1}.
Case (1) is the extended Drinfeld case. Case (2) is somewhat surprising and was

unknown to us before. Case (3) in the case of an unramified quadratic extension F̃/F is

the Hilbert–Blumenthal case. It was discovered by Stamm [35] in the caseG=ResF̃/F GL2.

It is remarkable that in all three cases, the parahoric level structure K is the Iwahori

level. This implies the following characterisation of the Drinfeld case:

Corollary 1.6 (cf. Corollary 15.1). Assume that G is quasi-simple over F and that

μ is not central. Then X (μ,τ)K is equidimensional of dimension equal to 〈μ,2ρ〉 for
every F -rational parahoric level structure K if and only if (Gad,μad) is isomorphic to(
ResF̃/F (D×

1/n)ad,ω
∨
1 (ϕ0)

)
.

2The latter condition implies that μ is minuscule but is slightly stronger if G does not split

over F̆ .

https://doi.org/10.1017/S1474748020000730 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000730


1732 U. Görtz et al.

One of our motivations for this paper was to characterise the Drinfeld case. Scholze
suggested characterising it through the dimension of its underlying reduced scheme.

Theorem 1.5 shows that this is not quite possible, but Corollary 1.6 shows that it is

possible when K is varying.
As a consequence of Corollary 1.6, we can characterise the Drinfeld case as the only

Rapoport–Zink space which is a π -adic formal scheme. We place ourselves in the context

of [21, §4]; in particular, in the rational RZ-data (F,B,V ,(, ), ∗,G,{μ},[b]), the first entry
F is a field. Also, RZ-spaces are modeled on the local models of [21, §2.6]; hence we make
a tame ramification hypothesis (cf. [21]).

Theorem 1.7. Let DZp be integral RZ-data such that the associated reductive group G is

connected and quasi-simple over Qp , and the associated cocharacter μ is noncentral. Let

E be its reflex field and let MDZp
be the associated RZ-space, a formal scheme flat over

Spf OĔ . Then MDZp
is a π-adic formal scheme if and only if DZp is of extended Drinfeld

type, in which case MDZp
is isomorphic to the disjoint sum of copies of 
̂n

E ⊗̂OE OĔ ,

where 
̂n
E is the Deligne–Drinfeld formal model of the Drinfeld half-space attached to E .

Here the integral RZ-data are said to be of extended Drinfeld type if the rational RZ-

data are of type (EL) with B = D1/n , dimB (V ) = 1, μ = ω∨1 (ϕ0) and b basic, and the

integral RZ-data are given by a complete periodic OB -lattice chain in V .

Through Rapoport–Zink uniformisation, this theorem implies that there is no
p-adic uniformisation of Shimura varieties beyond the Drinfeld case. Note that the

characterisation of p-adic uniformisation through the fact that the basic Newton stratum

makes up the whole special fibre leads to Kottwitz’s determination of all uniform pairs
(G,μ) (cf. Section 15.3 and [25, §6]). It appears interesting to us that one can also

characterise the Drinfeld case in a purely local way, without relating it to a Shimura

variety.
This paper consists of three parts. In the first part, we provide the necessary background

and introduce the terminology used. The second part is devoted to the case of dimension

zero. In Section 4, we discuss the main results of this part; Sections 5 and 6 are devoted

to the proofs. In Section 7, we explain in lattice-theoretic terms the minimal cases of
Theorems 1.1 and 1.2. In Section 8, we give the proofs of Theorems 1.1 and 1.2. The third

part is devoted to the case of maximal dimension. In Section 9, we recall the dimension

theory of some subsets of Ğ and prove Proposition 1.3. In Section 10, we discuss the main
results of this part. Section 11 is preparatory for the proof but also contains results on

Drinfeld’s critical index set which are of independent interest (in particular, we solve a

problem posed 20 years ago in [34, §3]). In Section 12, we give the proof of Theorem 1.4,
and in Section 13 the proof of Theorem 1.5. In Section 14, we explain the equi-maximal

cases in lattice-theoretic terms. In Section 15, we discuss various ways of singling out

the Drinfeld case among the three cases occurring in the classification of Theorem 1.5.

Section 16 gives the proofs of the results for the case of maximal dimension.

Notation. For a local field F , we denote by OF its ring of integers and by k its residue

field. We denote by F̆ the completion of the maximal unramified extension, by OF̆ or ŎF

its ring of integers and by σ its Frobenius generator of Gal(F̆/F ).
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Part 1. Background

2. Preliminaries

2.1. The Iwahori–Weyl group

Let F be a non-Archimedean local field and F̆ be the completion of the maximal
unramified extension Fun of F . We denote by σ its Frobenius morphism, and by π ∈OF

a uniformiser. Let G be a connected reductive group over F . We fix a σ -stable Iwahori

subgroup Ĭ of Ğ =G(F̆ ).
We fix a maximal torus T which after extension of scalars is contained in a Borel

subgroup of G⊗F F̆ , and such that Ĭ is the Iwahori subgroup fixing an alcove a in the

apartment attached to the split part of T . The Iwahori–Weyl group is defined by

W̃ =N (F̆ )/(T (F̆ )∩ Ĭ)

(cf. [13], [36, §1]). Let W0 =N (F̆ )/T (F̆ ). Then we have

W̃ =X∗(T )�0 �W0, (2.1)

where �0 = Gal(F/Fun). The splitting depends on the choice of a special vertex of the

base alcove a that we fix in the sequel. When considering an element λ ∈ X∗(T )�0 as an

element of W̃ , we write tλ.
Let S̃ be the set of simple reflections in W̃ determined by the base alcove a and S =

S̃∩W0. For any subset K of S̃, we denote by WK the subgroup of W̃ generated by simple

reflections in K . We also denote by KW̃ the set of representatives of minimal length of

the cosets WK \W̃ . If WK is a finite group, we denote by K̆ the corresponding standard
parahoric subgroup.

The Iwahori–Weyl group is a quasi-Coxeter group. More precisely,

W̃ =Wa �
, (2.2)

where Wa is the affine Weyl group with set S̃ as simple reflections and 
 is the set
of elements stabilising the base alcove a (cf. [18, §2.2]). The length function on Wa is

extended to W̃ by 
(wτ)= 
(w), for w ∈Wa and τ ∈
. For w ∈ W̃ , we denote by τ(w)

its image in 
.

2.2. Admissible sets and acceptable sets

Let μ be a conjugacy class of cocharacters of G. We can always choose an F̆ -rational
representative μ+ in this conjugacy class. We make a definite choice as follows. We identify

X∗(T )�0,R with the standard apartment (the apartment attached to the split part of T ),

using our choice of special vertex of a. We then fix the unique Weyl chamber containing

a, which we declare to be the dominant Weyl chamber. Then μ+ is to be chosen such that
tμ+a= μ++a is contained in the dominant Weyl chamber. We denote by μ the image in

X∗(T )�0 of μ+.

Remark 2.1. The choice of dominant Weyl chamber determines a Borel subgroup B
of G⊗F F̆ containing T . Note that μ is equal to the image in X∗(T )�0,R of the B-

antidominant representative of the conjugacy class μ ⊂ X∗(T )! This phenomenon is

https://doi.org/10.1017/S1474748020000730 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000730


1734 U. Görtz et al.

already visible when G is split and is reflected by the minus sign in [36, Eqn. (5), p. 31].

The minus sign in turn is forced upon us by [36, Eqn. (4)], which could not possibly extend

to the noncommutative normaliser if the left-hand side were replaced by sXαs−1. This
means that for λ ∈ X∗(T ), the element λ(π) acts on the apartment for T by translation

by −λ, i.e., as the element t−λ.

It also means that even for a split group, the values 〈μ,α〉 and 〈μ,α〉 for a root α differ
by sign.

If μ is minuscule, then μ is minuscule; but the converse does not hold (cf. the table
just before [21, Lem. 5.4]. More precisely, we have the following:

Lemma 2.2. Write Gad =ResF̃/F (G̃ad), where the F̃ -group G̃ad is absolutely simple. Let

the maximal unramified subextension Fd of F̃/F have degree d , and write correspondingly

μ= (μ
1
, . . . ,μ

d
), where the entries μ

i
correspond to the various embeddings ιi : Fd → F̆ .

If μ is minuscule, then for every i there exists an embedding ϕi,0 : F̃ → F inducing ιi
such that μϕ = 0 for every ϕ 	= ϕi,0 inducing ιi and with μϕi,0 minuscule.

Proof. One is immediately reduced to the case where F̃/F is totally ramified – that

is, d = 1; therefore, we may drop the index i . Let T̃ be a maximal torus of G̃ which
after extension to F̆ is contained in a Borel subgroup, and let T =ResF̃/F (T̃ ). The sum

homomorphism X∗(T )= Ind�̃0
�0

(
X∗(T̃ )

)→X∗(T̃ ) induces an identification

X∗(T )�0 =X∗(T̃ ). (2.3)

Here �̃0 =Gal(F/F̃un). Under the identification of equation (2.3), we have μ=∑
ϕ μ+,ϕ .

From this the claim follows easily.

Furthermore, we have the following:

Lemma 2.3. With notation as before, μ is central if and only if μ is central.

Proof. If μ is central, then clearly μ is central. Conversely, assuming that μ is central,
we need to show that 〈μ+,α〉 = 0 for every (absolute) root α. Assume by contradiction

that 〈μ+,α〉 < 0 for some α (cf. Remark 2.1). Let us write [μ] when considering μ as

an element of X∗(T )
�0
Q . We want to show that the relative root res(α) defined by α by

restriction to X∗(T )
�0
Q takes a strictly positive value on [μ]. However, with μ+, also every

Galois translate of μ+ under an element of �0 is antidominant; and [μ] is the average
over the �0-orbit of μ+. But then res(α) takes a strictly positive value on [μ], and this

contradicts the assumption that μ is central.

The μ-admissible set is defined by

Adm(μ)= {w ∈ W̃ | w � tx (μ) for some x ∈W0} (2.4)

(cf. [31, §3]). For λ a cocharacter (rather than a conjugacy class of cocharacters), we

denote by Adm(λ) the admissible set of the conjugacy class of λ. Let B(G) be the set of
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σ -conjugacy classes in Ğ . Kottwitz [24, 25] gave a description of the set B(G). It uses

the Kottwitz map,

κ : B(G)→ π1(G)�, (2.5)

where � is the Galois group of F over F . Any σ -conjugacy class [b] is determined by two
invariants:

• the element κ([b]) ∈ π1(G)� and

• the Newton point νb in the dominant chamber of X∗(T )�0 ⊗Q.

The set of neutrally acceptable σ -conjugacy classes is defined by

B(G,μ)= {[b] ∈ B(G) | κ([b])= κ(μ),νb � μ�}, (2.6)

where μ� = [� : Stab�(μ+)]−1 ∑
γ∈�/Stab�(μ+) γ (μ+) is the Galois average of μ+, an element

of X∗(T )�0 ⊗Q∼=X∗(T )�0 ⊗Q.

2.3. Affine Deligne–Lusztig varieties

The affine Deligne–Lusztig variety (for the Iwahori subgroup) associated to w ∈ W̃ and

b ∈ Ğ is

Xw (b)= {g Ĭ ∈ Ğ/Ĭ | g−1bσ(g) ∈ Ĭw Ĭ} (2.7)

(cf. [31, §4]). Then Xw (b) is a subset of the set of Fp-points of the affine flag variety of G.

If F is of equal characteristic, then by the affine flag variety we mean the ‘usual’ affine flag
variety; in the case of mixed characteristic, this notion should be understood in the sense

of perfect schemes, as developed by Zhu [41, Thm. 0.1] and by Bhatt and Scholze [1, Def.

9.4]. More precisely, Xw (b) is the set of Fp-points of a locally closed (perfect) subscheme
of the affine flag variety, locally (perfectly) of finite type over Fp and of finite dimension,

which we denote by the same symbol. This follows from [34, Thm. 1.4]. In fact, the main

theorem of that paper implies that Xw (b) is contained in a union
⋃

g∈G(F ) gC̄ , for some

Schubert variety C̄ . Since for any g ∈G(F ) there are only finitely many g ′ ∈G(F ) such

that gC̄ and g ′C̄ have nonempty intersection, this union is a k -scheme locally of finite

type, and of finite dimension, and hence so is Xw (b).
Denote by Jb the σ -centraliser group of b, an algebraic group over F with F -rational

points

Jb(F )= {g ∈G(F̆ ) | g−1bσ(g)= b}. (2.8)

Then Jb(F ) acts on Xw (b). Let K ⊂ S̃ such that WK is finite, with corresponding standard

parahoric subgroup K̆⊂ Ğ . Here and whenever we consider the space X (μ,b)K , we assume

that σ(K )=K . We set

X (μ,b)K = {gK̆ ∈ Ğ/K̆ | g−1bσ(g) ∈ K̆Adm(μ)K̆}. (2.9)

For K = ∅, we write simply X (μ,b) for X (μ,b)K . Then X (μ,b) is a union of affine

Deligne–Lusztig varieties.

We will need the following result (conjectured in [27, 31]):
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Theorem 2.4 ([19]). Let K ⊂ S̃ such that σ(K )=K and WK is finite. Then X (μ,b)K 	= ∅
if and only if [b] ∈ B(G,μ).

2.4. Fine affine Deligne–Lusztig varieties

We recall the definition of fine affine Deligne–Lusztig varieties inside the partial affine
flag variety Ğ/K̆ (cf. [9, §3.4]). For K ⊂ S, w ∈ KW̃ and b ∈ Ğ , the associated fine affine

Deligne–Lusztig variety is

XK,w (b)= {gK̆ | g−1bσ(g) ∈ K̆ ·σ Ĭw Ĭ}. (2.10)

Note that we have the decomposition of the partial affine flag variety Ğ/K̆ into ordinary
affine Deligne–Lusztig varieties (for the parahoric subgroup associated to K ),

Ğ/K̆ =
⊔

x∈WK \W̃ /WK

{gK̆ | g−1bσ(g) ∈ K̆x K̆}.

An ordinary affine Deligne–Lusztig variety decomposes in turn into a disjoint sum of fine
affine Deligne–Lusztig varieties,

{gK̆ | g−1bσ(g) ∈ K̆x K̆} =
⊔

w∈KW̃∩WKxWK

XK,w (b) (2.11)

(cf. [9, §3.4]).

2.5. The decomposition of X (μ,b)K

We set

KAdm(μ)=Adm(μ)∩KW̃ .

It is proved in [19, Thm. 6.1] that KAdm(μ)=WK Adm(μ)WK ∩KW̃ . Hence

X (μ,b)K =
⊔

w∈KAdm(μ)

XK,w (b). (2.12)

We can read definition (2.10) as saying that XK,w (b) is the image of Xw (b) under the

projection map Ğ/Ĭ → Ğ/K̆. We call this decomposition the EKOR stratification, and

accordingly call the subsets XK,w (b) the EKOR strata inside X (μ,b)K . If K = ∅, we
speak of the KR stratification and KR strata instead. These stratifications are the ‘local

analogues’ of the stratifications defined in the global context in [22]. But since here we

always fix a σ -conjugacy class [b], an EKOR stratum in our context really corresponds
to the intersection of a global EKOR stratum with the Newton stratum attached to [b].
In [9, §5.1], EKOR strata were called EO strata.

2.6. Tits data

We recall the notion of Tits data and Coxeter data from [21, Def. 5.3]. For an affine

Coxeter system (Wa,S̃), we denote by W0 the finite Weyl group, and by W̃ the associated

extended affine Weyl group and by X∗ the translation lattice of W̃ .
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Definition 2.5.

(i) A Tits datum (over F̆ ) is a pair (�̃,λ), where �̃ is a local Dynkin diagram and λ is

a W0-conjugacy class in X∗.

(ii) A Coxeter datum (over F̆ ) is a pair ((Wa,S̃),λ), where (Wa,S̃) is an affine Coxeter

system and λ is a W0-conjugacy class in X∗.

A Tits datum yields a Coxeter datum by forgetting the arrows in the Dynkin diagram.
In general, different Tits data may give rise to the same Coxeter datum. However, in

type A and more generally for any simply laced Dynkin diagram, the Coxeter datum

determines the Tits datum uniquely.
We need to generalise this notion as follows, to cover also the situation over F . Over F̆ ,

simple adjoint groups are classified up to isomorphism by their (absolute) local Dynkin

diagram (cf. [36, §4.2]). Over F , we need to take into account the case of groups which are
not residually split. In [36, §4.3], Tits gives the classification in terms of the ‘local index’

and ‘relative local Dynkin diagram’. Here we choose to work instead with the absolute

local Dynkin diagram (i.e., the affine Dynkin diagram attached to G over F̆ ), together

with the diagram automorphism induced by Frobenius. This datum is determined by
G/F (up to isomorphism), and determines the group G over F up to isomorphism.

Definition 2.6.

(i) A Tits datum over F is a triple (�̃,δ,λ), where �̃ is an absolute local Dynkin diagram,

δ is a diagram automorphism of �̃ and λ is a W0-conjugacy class in the coweight
lattice X∗ of �̃.

(ii) A Coxeter datum over F is a tuple ((Wa,S̃),δ,λ), where (Wa,S̃) is an affine Coxeter

system, δ is a length-preserving automorphism of Wa and λ is a W0-conjugacy class
in X∗.

Note that a Tits datum over F gives rise to a Coxeter datum over F . In [21], the notion of

enhanced Tits and Coxeter data was used, where an enhanced datum in addition specifies
a parahoric level structure. Note that for an enhanced Coxeter datum ((Wa,S̃),λ,K ) in

the sense of [21, Def. 5.3], the associated parahoric subgroup is the one generated by

the Iwahori and all simple affine reflections which are not contained in K , a convention
opposite to the one used in this paper.

Next we explain the notion of restriction of scalars of Dynkin types over F (i.e., Dynkin

types together with a diagram automorphism) along an unramified field extension. It

models the form of the extended affine Weyl group of a group which arises as such a
restriction of scalars. Let Fd/F denote the unramified extension of degree d , and let (�̃,δd )

be a local Dynkin diagram with diagram automorphism δd . We then define ResFd /F (�̃,δd )

as the Dynkin type

�̃1×·· ·× �̃d

with diagram automorphism δ, where �̃i = �̃ for all i , δ is given by id : �̃i → �̃i+1
for i = 1, . . . ,d −1 and δd : �̃d → �̃1. So δ permutes the components cyclically, and the

restriction of δd to any component is equal to δd .

https://doi.org/10.1017/S1474748020000730 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000730


1738 U. Görtz et al.

Specifying a translation element for ResFd /F (�̃,δd ) amounts to giving a tuple
(λ1, . . . ,λd ) consisting of d translation elements for �̃. It is central (resp., minuscule)

if and only if all the λi are central (resp., minuscule).

Example 2.7 (The Lubin–Tate case). This is the case with Tits datum (Ãn−1,id,ω
∨
1 ).

The corresponding group is GLn . This is a fully Hodge–Newton decomposable case
(Section 3), and is even of Coxeter type in the sense of [9, §5.1] (and in this case the

Coxeter property holds for arbitrary parahoric level). See Section 4.2 for a discussion of

this case as a ‘minimal dimension’ case, and Section 7.1 for a ‘lattice description’ of the
Lubin–Tate case.

Similarly, we have the extended Lubin–Tate case (ResFd /F (Ãn−1,id),(ω∨1 ,0, . . . ,0)).

Example 2.8 (The Drinfeld case). Here we consider the Tits datum (Ãn−1,�n−1,ω
∨
1 ),

where �n−1 denotes rotation by n−1 steps, �n−1(s0)= sn−1, and so on. The corresponding

algebraic group is the group of units of a central division algebra of invariant 1/n. This
is a fully Hodge–Newton decomposable case (Section 3), and even a ‘Coxeter’ case (for
arbitrary parahoric level). See Section 14 for a ‘lattice description’ of the Drinfeld case.

Similarly, we have the extended Drinfeld case (ResFd /F (Ãn−1,ς1),(ω
∨
1 ,0, . . . ,0)).

2.7. Reduction to F̆ -simple groups

Let us recall the construction of [10, §3.4]. Given an F -simple group G of adjoint type

together with a conjugacy class μ of cocharacters, we can decompose

GF̆ =G1×·· ·×Gd,

where the Gi are simple algebraic groups over F̆ and where the Frobenius σ induces maps

Gi → Gi+1 (with indices viewed in Z/d). Let Fd denote the unramified extension of F
of degree d in F̆ . We denote by G′ the algebraic group over Fd , with (G′)F̆ = G1, with

Frobenius given by (σ d )|G1 . In other words, we write G=ResFd /F (G′) for a quasi-simple

group over Fd which stays quasi-simple over F̆ . Correspondingly, the Tits datum of G

arises by restriction of scalars along Fd/F as defined in Section 2.6.

We also define μ′ =∑d
i=1 σ i

0(μ+), where σ0 denotes the L-action (cf. [10, Def. 2.1]), i.e.,

the Frobenius action corresponding to the quasi-split inner form of G.
Now suppose that K = (K1, . . . ,Kd ) is an F -rational parahoric level structure for G.

Then K1 is an Fd -rational parahoric level structure for G′.
We now consider the special situation that μ = (μ1, . . . ,μd ) is a conjugacy class of

cocharacters of G where μi is central for all i > 1. Let τ = (τ1, . . . ,τd ) be a σ -conjugacy

class in B(G,μ); we may choose τi central for all i > 1. Let τ ′ =�τi (this is well defined,

as only one of the τi is noncentral).
Then it is easy to see that projection to the first factor induces an isomorphism

XG(μ,τ)K ∼=XG′(μ′,τ ′)K1 . Examples of this situation are the extended Lubin–Tate case

and the extended Drinfeld case already mentioned in the examples.
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Moreover, if K ′ = (K ′
1, . . . ,K

′
d ) is another F -rational parahoric level and K ⊆K ′, then

we likewise have XG(μ,τ)K ′ ∼=XG′(μ′,τ ′)K ′
1
and we obtain a commutative diagram

XG(μ,τ)K

��

∼= �� XG′(μ′,τ ′)K1

��
XG(μ,τ)K ′

∼= �� XG′(μ′,τ ′)K ′
1
,

where the vertical maps are the natural projections.

3. Fully Hodge–Newton decomposable case

3.1. The σ -support

For w ∈ Wa , we denote by supp(w) the support of w , i.e., the set of i ∈ S̃ such that

si appears in some (or equivalently, every) reduced expression of w . For any length-

preserving automorphism θ of W̃ , we set

suppθ (wτ)=
⋃
n∈Z

(Ad(τ )◦ θ)n(supp(w)). (3.1)

This applies in particular to the Frobenius action σ . Then suppσ (wτ) is the minimal

Ad(τ )σ -stable subset J of S̃ such that wτσ ∈WJ � 〈τσ 〉.

3.2. Classification of fully Hodge–Newton decomposable pairs (G,μ)

In [10], the notion of a fully Hodge–Newton decomposable pair (G,μ) is introduced.
We refer to [10, Def. 3.1] for the definition. Here we use the following equivalent

characterisations [10, Thm. B, Thm. 3.3]:

Theorem 3.1. Let (G,μ) be a pair as before, with G quasi-simple over F , and let K ⊂ S̃
with σ(K )=K and WK finite. The following are equivalent:

(1) The pair (G,μ) is fully Hodge–Newton decomposable.

(2) For each w ∈Adm(μ), there exists a unique [b] ∈ B(G,μ) such that Ĭw Ĭ ⊂ [b].

(3) For each w ∈ KAdm(μ) with XK,w (τ ) 	= ∅, the set Wsuppσ (w) is finite.

Here τ denotes a representative of the unique basic element [τ ] in B(G,μ).

In particular, condition (3) is independent of K .

In particular, in this case, for any K ⊂ S̃ with WK finite and any w ∈ KAdm(μ), there

exists a unique [b] ∈ B(G,μ) such that K̆ ·σ Ĭw Ĭ ⊂ [b]. This gives us a natural map

KAdm(μ)→ B(G,μ), w �→ [w ]. (3.2)
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We will later use the following statement:

Proposition 3.2 ([10, Prop. 5.6, Lem. 5.8]). Let x ∈ W̃ . The following are equivalent:

(1) K̆ ·σ Ĭx Ĭ ⊂ [τ ].

(2) κ(x )= κ(τ) and Wsuppσ (x ) is finite.

(3) κ(x )= κ(τ) and Ad(x )◦σ fixes a point in the closure of the base alcove.

In the next two theorems, we give the classification of the fully Hodge–Newton

decomposable cases following [10, Thm. 3.5].

Theorem 3.3. Assume that G over F is absolutely simple and that μ is not central.
Then (G,μ) is fully Hodge–Newton decomposable if and only if the associated Tits datum

is one of the following:

(Ãn−1,id,ω
∨
1 ) (Ãn−1,�n−1,ω

∨
1 ) (Ãn−1,ς0,ω

∨
1 )

(Ã2m−1,�1ς0,ω
∨
1 ) (Ãn−1,id,ω

∨
1 +ω∨n−1)

(Ã3,id,ω
∨
2 ) (Ã3,ς0,ω

∨
2 ) (Ã3,�2,ω

∨
2 )

(B̃n,id,ω∨1 ) (B̃n,Ad(τ1),ω
∨
1 )

(C̃n,id,ω∨1 ) (C̃2,id,ω
∨
2 ) (C̃2,Ad(τ2),ω

∨
2 )

(D̃n,id,ω∨1 ) (D̃n,ς0,ω
∨
1 )

Theorem 3.4. Assume that G is quasi-simple over F and that μ is not central. Then the

pair (G,μ) is fully Hodge–Newton decomposable if and only if the associated Tits datum
is of type (ResFd /F (�̃,δ),(μ1, . . . ,μd )), where one of the following two possibilities occur.

(1) There is a unique i such that μi is noncentral and (�̃,δ,μi ) is one of the triples listed

in Theorem 3.3.

(2) (�̃,δ) = (Ãn−1,id) and there exist i 	= i ′ such that μi = ω∨1 , μi ′ = ω∨n−1 and μj is

central for all j 	= i,i ′.

Here we use the same labelling of the Coxeter graph as Bourbaki [2, Plate I–X]. If

ω∨i is minuscule, we denote the element τ(tω∨i ) ∈ 
 by τi ; conjugation by τi is a length-
preserving automorphism of W̃ , which we denote by Ad(τi). For type An , Ad(τi) is the

rotation of the affine Dynkin diagram by i steps (i.e., s0 is mapped to si , s1 is mapped

to si+1, etc.), and we denote it by �i instead. Let ς0 be the unique nontrivial diagram
automorphism for the finite Dynkin diagram if W0 is of type An,Dn (with n � 5) or

E6. For type D4, we also denote by ς0 the diagram automorphism which interchanges α3
and α4.
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If we assume that μ is noncentral in every component of the affine Dynkin diagram, the
fully Hodge–Newton decomposable cases are the cases in Theorem 3.3 and the Hilbert–

Blumenthal case (Ãn−1× Ãn−1,
1ς0,(ω

∨
1 ,ω∨n−1)), where the automorphism 1ς0 on Ãn−1×

Ãn−1 is the automorphism which exchanges the two factors.
To derive Theorem 3.4 from Theorem 3.3, note that for a group G which is quasi-simple

over F but not over F̆ , we can apply the construction in [10, §3.4] (cf. Section 2.7). We

then have that G′ is quasi-simple over F̆ and that μ is minute if and only if μ′ is minute
(cf. [10, Def. 3.2 and §3.4]). Applying Theorem 3.3 to (G′,μ′), we obtain Theorem 3.4.

3.3. Basic case

Let τ = τ(μ) ∈ 
 be the length-0 element in W̃ such that Adm(μ) ⊂Waτ . Then [τ ] is
the unique basic σ -conjugacy class in B(G,μ).

Set

KAdm(μ)0 = {w ∈ KAdm(μ) |Wsuppσ (w) is finite}. (3.3)

If (G,μ) is fully Hodge–Newton decomposable, the set KAdm(μ)0 is just the fibre over

the unique basic element of B(G,μ) of the map in (3.2).
The following result is proved in [10, Thm. B (5)]:

Theorem 3.5. Suppose that (G,μ) is a fully Hodge–Newton decomposable pair. Then

X (μ,τ)K =
⊔

w∈KAdm(μ)0

XK,w (τ ),

and XK,w (τ ) 	= ∅ for all w ∈ KAdm(μ)0.

Part 2. Minimal dimension

In this part we determine those cases when X (μ,b)K is zero-dimensional, in case b is basic.

When b is basic, we also determine the cases when the transition morphism X (μ,b)K →
X (μ,b)K ′ has finite fibres.

4. Statement of results

4.1. Change of parahoric

In this section, we are concerned with the following two theorems.

Theorem 4.1. Assume that G is quasi-simple over F and that μ is not central. Let

K � S̃ be σ -stable. The following are equivalent:

(1) dimX (μ,τ)K = 0.

(2) (G,μ) is of extended Lubin–Tate type, i.e., (�̃,σ,μ) = (ResFd /F (Ãn−1,id),

(ω∨1 ,0, . . . ,0)) for a finite unramified extension Fd/F .

See Example 2.7 for a discussion of the (extended) Lubin–Tate case. We will prove a

stronger version of this theorem later (see Theorem 4.5).
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For any σ -stable subsets K � K ′ ⊂ S̃, we denote by

πK,K ′ : X (μ,τ)K →X (μ,τ)K ′ (4.1)

the projection map.

Theorem 4.2. Assume that G is quasi-simple over F and that μ is not central. Let K �
K ′ � S̃ be σ -stable parahoric level structures. Write the Tits datum of (G,μ) in the form

(ResFd /F (�̃,σ ),(μ1, . . . ,μd )), and correspondingly write the parahoric level structures as
K = (K1,K2, . . . ,Kd ), K ′ = (K ′

1,K
′
2, . . . ,K

′
d ). Then the following are equivalent:

(1) The projection X (μ,τ)K →X (μ,τ)K ′ has discrete fibres.

(2) There exists a unique j such that μj is noncentral, we have μj = ω∨1 and

• σ acts as id on the affine Dynkin diagram or

• n � 3 and the action of σ on Ãn−1 preserves s0 and induces the nontrivial diagram
automorphism ς0 on An−1. Furthermore, the pair (K1,K ′

1) satisfies Condition 4.3.

Here is the Condition 4.3 that appears in Theorem 4.2, case (2):

Condition 4.3. Every element of K ′
1 \K1 is fixed by σd , and if si ∈K ′

1 \K1, then si+1 /∈
K1.

Note that K and K ′ are assumed to be σ -stable, so requiring that the inclusion K ′ � S̃
be strict implies that in each connected component of S̃ there exists a vertex not lying in
K ′, and similarly for the inclusion K � K ′.

Remark 4.4. Let us enumerate the cases for the second alternative in Theorem 4.2,

case (2), when G is quasi-simple over F̆ . By assumption K and K ′ are σ -stable; also,

the corresponding algebraic group is a quasi-split unitary group which splits over an
unramified quadratic extension.

• n odd : In this case, σ(s0)= s0 and σ(s1)= sn−1. Then K ⊂ S̃\ {s0,s1,sn−1} is σ -stable

and K ′ =K ∪{s0}.
Extreme case n = 3; then K = ∅, K ′ = {s0}.

• n = 2m even: In this case, σ(s0) = s0,σ (sm) = sm and σ(sm+1) = sm−1. Then the
following three possibilities occur:

(i) K ⊂ S̃\ {s0,s1,sn−1} is σ -stable and K ′ =K ∪{s0}.
(ii) K ⊂ S̃\ {sm−1,sm,sm+1} is σ -stable and K ′ =K ∪{sm}.
(iii) K ⊂ S̃\ {s0,s1,sm−1,sm,sm+1,sn−1} is σ -stable and K ′ =K ∪{s0,sm}.
Extreme case n = 4,m = 2; then for (K,K ′) the following possibilities occur: (∅,{s0}) or
(∅,{s2}) or (∅,{s0,s2}) or ({s2},{s0,s2}) or ({s0},{s0,s2}).
The proof of Theorem 4.2 will occupy the next two sections. In the rest of this section,

we give more details on the two alternatives of the theorem.
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4.2. The Lubin–Tate case

Theorem 4.5. Assume that G is quasi-simple over F and that μ is not central. The

following are equivalent:

(1) The pair (G,μ) is of extended Lubin–Tate type (cf. the statement of Theorem 4.1).

(2) dimX (μ,τ)K = 0 for some parahoric K .

(3) dimX (μ,τ)K = 0 for all parahorics K .

(4) The projection X (μ,τ)K →X (μ,τ)K ′ has finite fibres for all K � K ′.

(5) The projection X (μ,τ)K →X (μ,τ)K ′ is a bijection for all K � K ′.

Proof. (3)⇒ (2) and (5)⇒ (4) are obvious.

(1)⇒ (3) & (5): This follows from Remark 4.6.

(2)⇒ (1): This is Theorem 4.1.
(4) ⇒ (1): By Theorem 4.2, the Dynkin type is ResFd /F (Ãn−1,σd ), with σd = id or

σd = ς0 (up to isomorphism). Moreover, as we may take K = {s0}, Condition 4.3 implies

that σd cannot be ς0. Hence σ = id.

Remark 4.6. Properties (3) and (5) in Theorem 4.5 are well known in the Lubin–Tate

case, and we explain this in terms of lattices in Section 7. Alternatively, we could apply

the methods of [9, §6.3], with Case 1 for i = 1 (cf. also [10]). There is only one basic EKOR
stratum in this case. (Note that EKOR strata were called EO strata in [9].) Let J= Jτ be

the σ -centraliser of τ (cf. equation (2.8)). The index set for the stratification in a single

connected component is a quotient of J(F )1 by a parahoric subgroup (where J(F )1 is
the kernel of the Kottwitz homomorphism). Since J(F )1 is anisotropic, this quotient is a

single point, so the EKOR stratification has a single stratum. This stratum is attached

to the length 0 element τ , thus the corresponding classical Deligne–Lusztig variety is just

a point. Note that this argument can be applied to arbitrary parahoric level structures,
not only maximal parahoric as in the setting of [9]. By either of the two methods, we

obtain the more precise statement that X (μ,τ)K has only one point in each connected

component of the affine flag variety.
Using the construction in Section 2.7, the result can be generalised to the extended

Lubin–Tate case, where a restriction of scalars is allowed.

4.3. The exotic case

The second alternative in Theorem 4.2, where Condition 4.3 is relevant, will be studied

in detail in Section 6.4 in group-theoretic terms and in Section 7.2 in terms of lattices.
Using either approach, we will determine the cardinalities of the fibres of the map πK,K ′ .
If #(K ′

1 \K1) = 1, then the fibre cardinalities are 1, 2 and qd + 1. If #(K ′
1 \K1) = 2,

then each fibre is naturally a product of two sets as in the first case, so the cardinalities
which occur are 1, 2, 4, qd +1, 2(qd +1) and (qd +1)2. We give precise criteria in group-

theoretic terms as well as in lattice terms for which case occurs when (see Section 6.7 and

Proposition 7.9).
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5. Proof of (1)⇒ (2) in Theorems 4.1 and 4.2

In this section, we prove the implications (1)⇒ (2) in Theorem 4.1 and Theorem 4.2. We
will handle both theorems simultaneously by allowing K = S̃, with the convention that

X (μ,τ)S̃ = Ğ/Ğ is a single point. Hence the condition that the map πK,S̃ has discrete

fibres is equivalent to the condition that dimX (μ,τ)K = 0.
We assume that μ is not central.

5.1. Preparations

We start with some properties of the admissible set.

Lemma 5.1 ([23, Lem. 6.6]). For any s ∈ S̃, sτ ∈Adm(μ).

Lemma 5.2. Let W be an irreducible Coxeter group and S be the set of simple reflections.
Let K � S; then there exists a Coxeter element c ∈ KW .

Proof. Let � be the Coxeter graph associated to the Coxeter system (W ,S). The vertices

are S. The two simple reflections s,t are connected in � if and only if the order of st in

W is at least 3. In this case, the edge is labeled by the order of st .
Let s ∈ S−K . We reorder the simple reflections of S in the following way: let r1 = s,

and for any i � j , the distance between ri and s in the graph � is less than or equal to

the distance between rj and s. Let n be the cardinality of S. Set c = r1r2 · · ·rn . Then it is

easy to see that for any i 	= 1, rir1r2 · · ·rn is a reduced expression of ric and thus ric > c.
So c ∈ KW .

Proposition 5.3. Suppose that G is quasi-simple over F̆ and that μ is noncentral. If

(�̃,μ) 	= (Ãn−1,ω
∨
1 ) or (Ãn−1,ω

∨
n−1) for some n, then there exists w ∈Adm(μ) such that

supp(wτ−1)= S̃.

Remark 5.4.

(1) Note that (Ãn−1,ω
∨
1 ) and (Ãn−1,ω

∨
n−1) are isomorphic. We often mention only one

of these two isomorphic pairs.

(2) In Theorem 11.1, we will prove a stronger statement by a different method.

We decided to keep the present proof, because it is simpler and uses only the
combinatorics of the affine Weyl group.

Proof. Let w0 be the longest element in W0 and K = {s ∈ S | sw0(μ) = w0(μ)}. By [20,

Thm. 2.2], we have 
(wKw0tw0(μ))= 
(tw0(μ))−
(wKw0) and wKw0tw0(μ) ∈ SW̃ . Here wK

denotes the longest element in WK . Then we have

supp(tw0(μ)τ−1)= supp(wKw0)∪ supp(wKw0tw0(μ)τ−1).

Since μ is noncentral, we have K � S. By Lemma 5.2, there exists an element c ∈W0
such that 
(cwK ) = 
(c)+ 
(wK ). In particular, wK c−1 � w0 and c−1 � wKw0. Hence

supp(wKw0)= S.
If μ is nonminuscule, we have wKw0tw0(μ)τ−1 	= 1. Since wKw0tw0(μ) ∈ SW̃ , we have

S̃\S⊂ supp(wKw0tw0(μ)τ−1). Thus supp(tw0(μ)τ−1)= S̃.
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Now we assume that μ is minuscule. Then tw0(μ) =wKw0τ , where K = S\{s} for certain
s ∈ S. Let s0 be the unique element in S̃\S and s ′ = τs0τ−1 ∈ S. Then we have

ts0w0(μ) = s0wKw0s ′τ .

If W̃ is of type Ãn−1 and μ /∈ {ω∨1 ,ω∨n−1}, then by direct computation, supp(wKw0s ′)= S
and thus supp(ts0w0(μ)τ−1) = S̃. If W̃ is not of type Ã, then by the explicit formula for

the reduced expressions of wKw0 given in [16, §1.5], we still have supp(wKw0s ′)= S and
supp(ts0w0(μ)τ−1)= S̃.

Lemma 5.5. Let W̃ be the Iwahori–Weyl group of type Ãn−1. If μ is noncentral and not
equal to ω∨1 or ω∨n−1, then for any s,s ′ ∈ S̃, ss ′τ ∈Adm(μ).

Proof. If s commutes with s ′, then by Proposition 5.3 there exists w ∈Adm(μ) such that

s,s ′ ∈ supp(wτ−1) and hence ss ′ � wτ−1. So ss ′τ � w and ss ′τ ∈Adm(μ).

Let τ1 be the automorphism of W̃ sending s0 to s1, s1 to s2, . . . , sn−1 to s0. Then
the conjugation action of τ1 preserves μ and we have τ1 Adm(μ)τ−1

1 = Adm(μ). Since τ1
acts transitively on S̃, it suffices to show that there exists j with 0 � j � n−1 such that

sj sj+1τ,sj+1sj τ ∈Adm(μ). Here, by convention, we set sn = s0.
Let κ : W̃ → Z/nZ be the Kottwitz map (cf. expression (2.5)). Let i = κ(μ). If

i /∈ {0,1,n − 1}, then μ+ � ω∨i . By direct computation, s0s1τ,s1s0τ � tω∨i and hence

s0s1τ,s1s0τ ∈Adm(ω∨i )⊂Adm(μ).

If i = 0, then μ+ � ω∨1 +ω∨n−1. By direct computation, s1s2τ,s2s1τ � tω∨1+ω∨n−1 and hence

s1s2τ,s2s1τ ∈Adm(ω∨1 +ω∨n−1)⊂Adm(μ).

If i = 1 and μ+ 	= ω∨1 , then μ+ � ω∨2 +ω∨n−1. By direct computation, s0s1τ,s1s0τ �
tω∨2+ω∨n−1 and hence s0s1τ,s1s0τ ∈Adm(ω∨2 +ω∨n−1)⊂Adm(μ).
If i = n−1 and μ+ 	=ω∨n−1, then μ+ � ω∨1 +ω∨n−2. By direct computation, s0s1τ,s1s0τ �

tω∨1+ω∨n−2 and hence s0s1τ,s1s0τ ∈Adm(ω∨1 +ω∨n−2)⊂Adm(μ).

Proposition 5.6. Let K � K ′ ⊆ S̃ be σ -stable. If sτσ (s) ∈Adm(μ) for some s ∈K ′ \K ,
then the projection πK,K ′ : X (μ,τ)K →X (μ,τ)K ′ has nondiscrete fibres.

Proof. Let K̆s be the standard parahoric subgroup generated by Ĭ and s. We then have

K̆s ·σ Ĭτ Ĭ ⊆ Ĭs Ĭτ Ĭσ(s)Ĭ ⊆ Ĭτ Ĭ ∪ Ĭsτ Ĭ ∪ Ĭτσ (s)Ĭ ∪ Ĭsτσ (s)Ĭ ⊆ K̆Adm(μ)K̆.

By definition, τ ∈Adm(μ). By Lemma 5.1, sτ,τσ (s) ∈Adm(μ). By assumption, sτσ (s) ∈
Adm(μ). Hence K̆sK̆/K̆⊆X (μ,τ)K , and this is a subset of dimension 1 which maps to a

point in X (μ,τ)K ′ .

5.2. Reduction to the case where G is quasi-simple over F̆
From now on we assume that condition (1) in either Theorem 4.1 or Theorem 4.2 holds

for K � K ′ ⊆ S̃. We may assume that G is adjoint, so we can write GF̆ =G1×·· ·Gd for

F̆ -simple groups Gi .
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Correspondingly, W̃ is of the form

W̃ = W̃1×W̃2×·· ·×W̃d,

where W̃1 ∼= W̃2 ∼= ·· · ∼= W̃m are the extended affine Weyl groups with connected Dynkin

diagram. Since G is quasi-simple over F , we have (up to renumbering, if necessary)

σ(W̃1)= W̃2, . . . ,σ (W̃d−1)= σ(W̃d ),σ (W̃d )= σ(W̃1).
Write μ = (μ1, . . . ,μd ) and τ = (τ1, . . . ,τd ). Since by assumption μ is noncentral, at

least one of the μi is noncentral in W̃i . Suppose that there is more than one noncentral

μi . Without loss of generality, we may assume that μ1 is noncentral in W̃1 and that i
is the smallest positive integer > 1 such that μi is noncentral in W̃i . Then Ad(τj ) is the
identity group automorphism on W̃j for 1 < j < i .
Let s be a simple reflection of W̃1 that is contained in K ′ \K . Let

Z = {(g,σ (g), . . . ,σ i−2(g),1, . . . ,1) | g ∈ K̆s}.
Then Z ⊂ K̆′ and Z K̆/K̆ ⊂ K̆′/K̆ is 1-dimensional. By direct computation, Z ·σ τ ⊂
Ĭsτσ i−1(s)Ĭ. By Lemma 5.1, sτ1 ∈ Adm(μ1) and τiσ

i−1(s) ∈ Adm(μi). Therefore
sτσ i−1(s) ∈Adm(μ). Hence Z K̆/K̆⊆X (μ,τ)K , and this is a subset of dimension 1 which

maps to a point in X (μ,τ)K ′ .
It follows that μi is noncentral W̃i for a unique i , say i = 1. We can thus carry out the

construction in Section 2.7 and find an algebraic group G′ over Fd and a commutative

diagram

XG(μ,τ)K

πK,K ′
��

∼= �� XG′(μ′,τ ′)K1

πK1,K ′
1

��
XG(μ,τ)K ′

∼= �� XG′(μ′,τ ′)K ′
1
.

It is then enough to show property (2) in Theorem 4.1 or Theorem 4.2, respectively, for

the F̆ -simple group G′.

5.3. Reduction to the case (Ãn−1,ω
∨
1 )

Now we assume that G is quasi-simple over F̆ . Let s ∈K ′ \K . Suppose that the projection

πK,K ′ : X (μ,τ)K → X (μ,τ)K ′ has discrete fibres. By Proposition 5.6, we then have

sτσ (s) /∈Adm(μ). We distinguish cases.

Case (I): s commutes with τσ (s)τ−1.
By Proposition 5.3, if (�̃,μ) 	= (Ãn−1,ω

∨
1 ) or (Ãn−1,ω

∨
n−1) for some n, then there

exists w ∈ Adm(μ) with supp(wτ−1) = S̃. Hence sτσ (s) � w and sτσ (s) ∈ Adm(μ): a

contradiction.

Case (II): s does not commute with τσ (s)τ−1.
Then W̃ is of type Ãn , C̃2n+1 or D̃2n+1. If W̃ is of type C̃2n+1 or D̃2n+1, then

{s,τσ (s)τ−1} = {sn,sn+1}. Then by direct computation, snsn+1τ,sn+1snτ ∈ Adm(μ) for

any minuscule or quasi-minuscule coweight μ. For general μ, there exists a minuscule
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or quasi-minuscule coweight μ′ such that μ � μ′. Hence Adm(μ′) ⊂ Adm(μ) and
snsn+1τ,sn+1snτ ∈ Adm(μ): a contradiction. If W̃ is of type Ãn−1 but μ+ is not ω∨1
or ω∨n−1, then by Lemma 5.5, sτσ (s) ∈Adm(μ): a contradiction.

In summary, we may now assume that (�̃,μ)= (Ãn−1,ω
∨
1 ).

5.4. The case (Ãn−1,ω
∨
1 )

If (�̃,μ) = (Ãn−1,ω
∨
1 ), then s does not commute with τσ (s)τ−1. Indeed, assume that s

does commute with τσ (s)τ−1. The maximal elements in Adm(μ) are τsn−1sn−2 · · ·s1,
τsn−2sn−3 · · ·s0, . . . ,τs0s−1 · · ·s−(n−2). If s = τσ (s)τ−1, then sτσ (s) = τ ∈ Adm(μ): a

contradiction to Proposition 5.6. If s 	= τσ (s)τ−1, then since s commutes with τσ (s)τ−1,

we have n � 3 and hence t1t2τ ∈Adm(μ) for any t1,t2 ∈ S̃ with t1t2 = t2t1. We again have
sτσ (s) ∈Adm(μ): a contradiction to Proposition 5.6.

We deduce that σ = id,σ = ς0 (for n � 3) or σ = Ad(τn−2). Now Ad(τn−2) acts on the

affine Dynkin diagram by sending s2 to s0, s3 to s1, . . . , s1 to sn−1. By direct computation,
if σ =Ad(τn−2), then sτσ (s) ∈Adm(μ): a contradiction to Proposition 5.6.

If σ = ς0, then sτσ (s) /∈ Adm(μ) if and only if s = s0 for n odd and s = s0 or s = sm
for n = 2m even. Now assume that K ′ \K ⊂ {s0,s n

2
}, and let us check Condition 4.3 on

(K,K ′). We argue by contradiction.
If s0 ∈ K ′ \K and s1 ∈ K , then K̆s0,s1 ⊂ K̆′, where K̆s0,s1 is the standard parahoric

subgroup generated by Ĭ and s0,s1. We have

Ĭs0τ Ĭ ⊂ K̆s0,s1 ·σ τ ⊂ K̆′ ·σ τ .

Since s0τ ∈Adm(μ), the set

{g ∈ K̆′/K̆ | g−1τσ (g) ∈ K̆ ·σ Ĭs0τ Ĭ}
is a one-dimensional subvariety of X (μ,τ)K in the fibre over K̆′/K̆′ ∈ X (μ,τ)K ′ : a
contradiction.

If n = 2m is even, sm ∈K ′ \K and sm+1 ∈K , then K̆sm,sm+1 ⊂ K̆′ and

Ĭsmτ Ĭ ⊂ K̆sm,sm+1 ·σ τ ⊂ K̆′ ·σ τ .

Since smτ ∈Adm(μ), the set

{g ∈ K̆′/K̆ | g−1τσ (g) ∈ K̆ ·σ Ĭsmτ Ĭ}
is a one-dimensional subvariety of X (μ,τ)K in the fibre over K̆′/K̆′ ∈ X (μ,τ)K ′ : a
contradiction.

6. Proof of (2)⇒ (1) in Theorem 4.2

Similarly as before, we may assume that G is quasi-simple over F̆ .

6.1. Compatibility of the map pK,τ

Assume that we are in the following situation:
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Situation 6.1. Let (G,μ) and K � K ′ � S̃ be σ -stable and such that we are in either of
the following two cases:

• (The Lubin–Tate case) The associated Coxeter datum is isomorphic to (Ãn−1,id,ω
∨
1 ).

• (The exotic case) The associated Coxeter datum is isomorphic to (Ãn−1,ς0,ω
∨
1 ), n � 3

and Condition 4.3 is satisfied.

Then by Theorem 3.3, the pair (G,μ) is fully Hodge–Newton decomposable. By

Theorem 3.5,

X (μ,τ)K =
⊔

w∈KAdm(μ)0

XK,w (τ ),

and we define the map pK,τ : X (μ,τ)K → KAdm(μ)0 by mapping all points in XK,w (τ )

to w . We prove the following compatibility result for the maps pK,τ when K varies:

Theorem 6.2. Let (G,μ,K � K ′) be as in Situation 6.1.

There exists a unique map π ′
K,K ′ : KAdm(μ)0 → K ′ Adm(μ)0 such that the following

diagram commutes:

X (μ,τ)K
pK,τ ��

πK,K ′
��

KAdm(μ)0

π ′K,K ′
��

X (μ,τ)K ′
pK ′,τ �� K ′ Adm(μ)0.

That is, for each EKOR stratum in X (μ,τ)K , the projection to X (μ,τ)K ′ is a single
EKOR stratum. Moreover, the projection map πK,K ′ : X (μ,τ)K → X (μ,τ)K ′ has finite

fibres.

6.2. Partial conjugation

To give the definition of π ′
K,K ′ , we use the partial conjugation method.

Let w,w ′ ∈ W̃ and s ∈ S̃. We write w s−→σ w ′ if w ′ = swσ(s) and 
(w ′) � 
(w). Let K ⊂ S̃.
We write w →K,σ w ′ if there exists a sequence w = w1,w2, . . . ,wn = w ′ such that for any

k , wk
s−→σ wk+1 for some s ∈K . We write w ≈K,σ w ′ if w →K,σ w ′ and w ′ →K,σ w .

Proposition 6.3. Let (G,μ,K � K ′) be as in Situation 6.1. For any w ∈ KAdm(μ)0,
there exists a unique w ′ ∈ K ′ Adm(μ)0 such that w ≈K ′,σ w ′.

Proof. The uniqueness of w ′ follows from [15, Cor. 2.5]. Now we prove the existence.

If σ acts as id on the affine Dynkin diagram, for any s ∈ S̃, suppσ (sτ) = S̃. Thus
KAdm(μ)0 = {τ } for any K . Now we consider the case where σ = ς0. Note that the
maximal elements in Adm(μ) are

s0sn−1sn−2 · · ·s2τ,s1s0sn−1 · · ·s3τ, . . . ,sn−1sn−2 · · ·s1τ .
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Therefore,

(1) if w ∈ Adm(μ), then each simple reflection appears at most once in a reduced

expression of wτ−1;

(2) for any 0 � i � n−1, sisi+1τ /∈Adm(μ). Here, by convention, we set sn = s0.

We consider here the case where n = 2m for some m � 2 and K ′ \K = {s0,sm}; the
other cases follow from a similar (but simpler) argument. Let w ∈ KAdm(μ)0.

If s0w > w and smw > w , then w ∈ K ′ Adm(μ)0 and w ′ := w is the desired element. If
s0w < w and smw > w , then s0 commutes with sm and sm(s0w) > s0w . So s0w ∈ K ′W̃ .

Since s0w < w and w ∈ Adm(μ), s1 does not occur in any reduced expression of wτ−1.

Thus

s0wσ(s0)= s0ws0 = s0(wτ−1)s1τ ∈ K ′
W̃

and has the same length as w . Moreover, by [12, Lem. 4.5], s0ws0 ∈Adm(μ). So w ′ := s0ws0
is the desired element.
If s0w > w and smw < w , then by a similar argument smw ∈ K ′W̃ , and w ′ := smwsm ∈

K ′ Adm(μ)0 is the desired element. If s0w < w and smw < w , then by a similar argument

s0smw ∈ K ′W̃ , and w ′ := s0smwsms0 ∈ K ′ Adm(μ)0 is the desired element.

Proof of Theorem 6.2 (existence and uniqueness of π ′
K,K ′). By Theorem 3.5,

we have

X (μ,τ)K =
⊔

w∈KAdm(μ)0

XK,w (τ ),

and all XK,w (τ ) in the union of the right-hand side are nonempty. The latter fact says
that the map pK,τ is surjective, so π ′

K,K ′ is unique, if it exists. We define the map π ′
K,K ′ :

KAdm(μ)0 → K ′ Adm(μ)0 by w �→ w ′, where w ′ is the unique element in K ′ Adm(μ)0
with w ≈K ′,σ w ′ (cf. Proposition 6.3). Now for any gK̆ ∈ XK,w (τ ), we have g−1τσ (g) ∈
K̆ ·σ Ĭw Ĭ ⊂ K̆′ ·σ Ĭw ′Ĭ. Therefore πK,K ′(gK̆) ∈ XK ′,w ′(τ ). This proves the commutativity

of the diagram and thus shows the existence of π ′
K,K ′ .

6.3. The fibres of the map π ′
K,K ′

Assume that our Tits datum is (�̃,σ,μ)= (Ãn−1,ς0,ω
∨
1 ) for n � 3, and K ′ \K ⊂ {s0,s n

2
},

and if si ∈ K ′ \K , then si+1 /∈ K . By the proof of Proposition 6.3, if K ′ \K = {sj } for
j ∈ {0, n

2 }, then for w ′ ∈ K ′ Adm(μ)0,

(π ′
K,K ′)−1(w ′)=

{
{w ′,sjw ′sj }, if w ′sj < w ′,
{w ′}, if w ′sj > w ′.
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If n = 2m and K ′ \K = {s0,sm}, then for w ′ ∈ K ′ Adm(μ)0,

(π ′
K,K ′)−1(w ′)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{w ′,s0w ′s0,smw ′sm,s0smw ′sms0}, if w ′s0 < w ′,w ′sm < w ′,
{w ′,s0w ′s0}, if w ′s0 < w ′,w ′sm > w ′,
{w ′,smw ′sm}, if w ′s0 > w ′,w ′sm < w ′,
{w ′}, if w ′s0 > w ′,w ′sm > w ′.

6.4. The fibres of the map πK,K ′

Next we study the fibres of the map πK,K ′ : X (μ,τ)K → X (μ,τ)K ′ . This will also finish

the proof of Theorem 6.2.

Theorem 6.4. Let b ∈ Ğ. Let K ⊆ K ′ � S̃. Let w ∈ KW̃ and w ′ ∈ K ′W̃ . If w ≈K ′,σ w ′,
then the natural projection map XK,w (b)→XK ′,w ′(b) has finite fibres.

We first recall the following result, which relates a fine affine Deligne–Lusztig variety

in the partial affine flag variety Ğ/K̆ to an ordinary affine Deligne–Lusztig variety in
another partial affine flag variety:

Theorem 6.5 ([9, Thm. 4.1.2]). Let K � S̃ and w ∈ KW̃ . Set

K1 = I (K,w,σ )=max{K ′ ⊂K |Ad(w)◦σ(K ′)=K ′}.
Let K̆1 be the associated parahoric subgroup. Then the natural projection map Ğ/K̆1 →
Ğ/K̆ induces an isomorphism

XK1,w (b)
∼=−→XK,w (b).

Note that for s ∈ K , the element wσ(s)w−1 ∈ W̃ is not in general a simple reflection;

it is part of the condition in the definition of K1 that this is the case.

Remark 6.6. Since Ad(w) ◦ σ(K1) = K1, we have K̆1 ·σ Ĭw Ĭ = K̆1wσ(K̆1), and thus

XK1,w (b) = {gK̆1 | g−1bσ(g) = K̆1wσ(K̆1)} is an ordinary affine Deligne–Lusztig variety
in Ğ/K̆1.

Proposition 6.7. Let K ⊂ S̃ and w ∈ KW̃ with Ad(w) ◦ σ(K ) = K . Let b ∈ Ğ
with Xw (b) 	= ∅. Then each fibre of the projection map Xw (b) → XK,w (b) consists of

�(K̆/Ĭ)Ad(w)◦σ elements.

Remark 6.8. Note that K̆/Ĭ is the flag variety of the reductive quotient of K̆,

and Ad(w) ◦ σ induces a Frobenius morphism on the reductive quotient of K̆. Hence
(K̆/Ĭ)Ad(w)◦σ is the set of rational points of a full flag variety over the finite field k .

Proof. Let UK̆ be the prounipotent radical of K̆ and K̆∼= K̆/UK̆ be the reductive quotient

of K̆. Let B be the image of Ĭ in K̆. Then B is a Borel subgroup of K̆. Since Ad(w)◦σ(K )=
K , the action of Ad(w)◦σ stabilises K̆ and hence is a Frobenius morphism on K̆.
By Lang’s theorem, any element in K̆wK̆ = K̆w is of the form kwσ(k)−1 for some

k ∈ K̆. Let g Ĭ ∈ Xw (b). Then the elements in the same fibre as g Ĭ are gk Ĭ for

k−1g−1bσ(g)σ (k) ∈ Ĭw Ĭ. Note that g Ĭ ∈ Xw (b). So g−1bσ(g) = uk−1
1 wσ(k1)u ′ for some
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k1 ∈ K̆ and u,u ′ ∈UK̆. Thus the condition k−1g−1bσ(g)σ (k) ∈ Ĭw Ĭ is equivalent to

k−1k−1
1 wσ(k1)σ (k) ∈ Bwσ(B), where k ∈ K̆ such that k ∈ kUK̆. Note that{
kB ∈ K̆/B | k−1k−1

1 wσ(k1)σ (k) ∈ Bwσ(B)} ∼= {kB ∈ K̆/B | k−1wσ(k)w−1 ∈ B
}
.

The statement is proved.

Proposition 6.9. Let w,w ′ ∈ W̃ and K ⊂ S̃ such that w ≈K,σ w ′ and w ∈ KW̃ . Then
there is a commutative diagram

Xw (b) ��

����
���

���
��

Xw ′(b)

�����
���

���
�

XK,w (b)

in which the horizontal arrow is a homeomorphism.

Proof. By definition, there exists a sequence w = w1, . . . ,wn = w ′ and s1, . . . ,sn−1 ∈ K
such that 
(w1)= 
(w2)= . . . = 
(wn) and wk+1 = swkσ(s) for 1 � k � n−1.
So it suffices to consider the case when 
(w ′)= 
(w) and w ′ = swσ(s) for some s ∈K .

Without loss of generality, we may assume furthermore that sw < w .

By case 1 in the proof of [5, Thm. 1.6] (see also the generalisation to the affine case

[8, Proof of Cor. 2.5.3]), for any g Ĭ/Ĭ ∈ Xw (b) there exists a unique element g ′Ĭ/Ĭ ∈
gK̆s/Ĭ such that g ′Ĭ ∈ Xw ′(b). Moreover, the map g Ĭ → g ′Ĭ induces a homeomorphism
Xw (b)→ Xw ′(b). As g−1g ′ ∈ K̆s ⊂ K̆, the diagram in the statement of the proposition is

commutative.

6.5. Proof of Theorem 6.4

Let K1 = I (K,w,σ ) and K ′
1 = I (K ′,w ′,σ ). Then we have the following commutative

diagram:

Xw ′(b)
∼= ��

��

Xw (b)

��
XK1,w (b)

∼= �� XK,w (b)

��
XK ′

1,w ′(b)
∼= �� XK ′,w ′(b).

Here the vertical maps are the projection maps. The isomorphisms XK1,w (b)∼= XK,w (b)

and XK ′
1,w ′(b)∼=XK ′,w ′(b) follow from Theorem 6.5. The homeomorphism Xw ′(b)∼=Xw (b)

and the commutativity of the diagram follow from Proposition 6.9. By Proposition 6.7,

the maps Xw ′(b)→ XK ′
1,w ′(b) and Xw (b)→ XK1,w (b) have finite fibres. Hence the map

XK,w (b) → XK ′,w ′(b) has finite fibres. Moreover, each fibre consists of
�(K̆′1/Ĭ)Ad(w ′)◦σ
�(K̆1/Ĭ)Ad(w)◦σ

elements.
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Finally, we determine explicitly, in each of the two cases of Theorem 6.2, the fibres of
the map πK,K ′ : X (μ,τ)K →X (μ,τ)K ′ .

6.6. The case (Ãn−1,id,ω
∨
1 )

In this case, G = PGLn . Note that Ad(τ ) ◦σ acts transitively on S̃. For any w ∈Waτ ,

suppσ (w) 	= S̃ if and only if w = τ . Thus by Theorem 3.5, X (μ,τ)K = XK,τ (τ ). We have

Xτ (τ )=
Ĭ/Ĭ ⊂ Ğ/Ĭ a finite subset consisting of n points. For any parahoric K , XK,τ (τ )

is the image of Xτ (τ ) under the natural projection map Ğ/Ĭ→ Ğ/K̆. Hence X (μ,τ)K =
XK,τ =
K̆/K̆ ⊂ Ğ/K̆ consists of n points. More precisely, in each connected component

of Ğ/K̆ there is precisely one point of X (μ,τ)K . Moreover, for any K � K ′ � S̃, the
projection map X (μ,τ)K →X (μ,τ)K ′ is bijective.

6.7. The case (Ãn−1,ς0,ω
∨
1 )

We first discuss the case where K ′ \K = {s0}. By assumption, s1,sn−1 /∈ K (recall that

K is σ -stable). Recall the explicit description of Adm(μ) obtained in the proof of

Proposition 6.3: the elements of Adm(μ) are τ and the elements of the form

sisi−i1 · · ·si−ik τ

for 0 < i1 < · · · < ir � n − 2 (all indices are understood in Z/nZ, and r could be 0).
An element wτ ∈ Adm(μ) lies in Adm(μ)0 if there exists j , 0 � j � n − 1, such that

j,n− j +1 /∈ supp(w).

Let w ∈ KAdm(μ)0 and w ′ = π ′
K,K ′(w) ∈ K ′Adm(μ)0. The proof of Proposition 6.3 also

shows that we have w ′ =w or w ′ = s0ws0. Hence at most two K -EKOR strata lie above the

K ′-EKOR stratum attached to w ′, and we have two K -EKOR strata above the K ′-EKOR

stratum attached to w ′ if and only if w ′ 	= s0w ′s0 ∈ KAdm(μ) and π ′
K,K ′(s0w ′s0) = w ′.

Using elementary properties of the Bruhat order and [12, Lem. 4.5], we check that this is

equivalent to w ′s0 < w ′:

π−1
K,K ′

(
XK ′,w ′(τ )

)= {
XK,w ′(τ )�XK,s0w ′s0(τ ), if w ′s0 < w,

XK,w ′(τ ), if w ′s0 > w .

From the explicit description we obtain that I (K ′,w ′,σ )= I (K,w,σ ) or I (K ′,w ′,σ )=
I (K,w,σ )�{s0}, and that s0 ∈ I (K ′,w ′,σ ) if and only if w ′s0 = s0w ′. Since s0w ′ > w ′ by
assumption, in this case we have w ′s0 > w ′, and the foregoing shows that there is a single

K -EKOR stratum above the K ′-EKOR stratum for w ′.
By the proof of Theorem 6.4, for g ∈XK,w ′(τ ) we now obtain

�π−1
K,K ′(g)=

⎧⎪⎨⎪⎩
q+1, if I (K ′,w ′,σ )= I (K,w,σ )�{s0},
2, if w ′s0 < w ′,
1, if w ′s0 > w ′ and I (K ′,w ′,σ )= I (K,w,σ ).

Here q denotes the cardinality of the residue class field of F .

Let us express the condition w ′s0 = s0w ′ more explicitly, using once again the explicit

description of the admissible set in this case.
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Claim. w ′s0 = s0w ′ if and only if w ′ /∈W0τ , and in this case w ′s0 > w ′.

To prove the claim, note that for w ′ /∈W0τ , the explicit description (and the assumption

that s0w ′ > w ′) shows that w ′ has the form · · ·s1s0 · · ·τ , whence s0w ′s0 = ·· ·s0s1s0s1 · · ·τ =
w ′. Since s0w ′ > w ′ by assumption, it is also clear that w ′s0 > w ′ in this case. On the

other hand, if w ′ ∈W0τ , then s0τ � s0w ′ but s0τ 	� w ′τ−1s1τ = w ′s0.
Altogether we have proved the following:

Proposition 6.10. For w ′ ∈ K ′Adm(μ)0 and g ∈XK,w ′(τ ),

�π−1
K,K ′(g)=

⎧⎪⎨⎪⎩
q+1, if and only if w ′ /∈W0τ,

2, if and only if w ′s0 < w ′,
1, if and only if w ′ ∈W0τ and w ′s0 > w ′.

See Proposition 7.9 for a proof of this proposition in terms of lattices.
The case n = 2m, K ′\K = {sm} is completely analogous to the case K ′\K = {s0} we

discussed before. Similarly, if n = 2m for m � 2 and K ′ \K = {s0,sm}, then for w ′ ∈
K ′ Adm(μ)0 and g ∈ XK ′,w ′(τ ), the fibre π−1

K,K ′(g) has 1,2,4,q + 1,2(q + 1) or (q + 1)2,
depending on which of the conditions w ′s0 > w ′, w ′sm > w ′, 
(s0s1w ′) = 
(w ′)− 2 and


(smsm+1w ′)= 
(w ′)−2 are satisfied.

Example 6.11. Here we consider the case where (�̃,σ,μ)= (Ã2,ς0,ω
∨
1 ). In this case,

Adm(μ)= {τ,s0τ,s1τ,s2τ,s0s2τ,s1s0τ,s2s1τ }.
Let K = ∅ and K ′ = {s0}. Then

KAdm(μ)0 = {τ,s0τ,s1τ,s2τ,s1s0τ },
K ′

Adm(μ)0 = {τ,s1τ,s2τ,s1s0τ }.
The map π ′

K,K ′ sends τ to τ , s2τ to s2τ , both s0τ and s1τ to s1τ and s1s0τ to s1s0τ .
Note that I (K,w,σ )= ∅ for w ∈ KAdm(μ)0 and I (K ′,w,σ )= ∅ for w = τ,s1τ,s2τ , and

I (K ′,s1s0τ,σ )=K ′. Hence the natural projection map πK,K ′ induces isomorphisms

XK,τ (τ )∼=XK ′,τ (τ ), XK,s2τ (τ )∼=XK ′,s2τ (τ ), XK,s1τ (τ )∼=XK ′,s1τ (τ ), XK,s0τ (τ )∼=XK ′,s1τ (τ ),

and the projection map XK,s1s0τ (τ )→ XK ′,s1s0τ (τ ) is a (q +1)-to-1 map, where q +1 is

the cardinality of (K̆′/K̆)Ad(s1s0τ)◦σ .
In summary, the fibres of the map πK,K ′ : XG(μ,τ)K →XG(μ,τ)K ′ are as follows:

(1) over points in XK ′,τ (τ ), each fibre consists of one point;

(2) over points in XK ′,s2τ (τ ), each fibre consists of one point;

(3) over points in XK ′,s1τ (τ ), each fibre consists of two points;

(4) over points in XK ′,s1s0τ (τ ), each fibre consists of q+1 points.
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7. Lattice interpretation of the minimal cases

In this section, we give explicit descriptions in terms of lattices for the Lubin–Tate case
and the exotic case in which discrete fibres occur. To avoid too-heavy notation, we do not

include cases arising by restriction of scalars, but discuss only the nonextended cases.

7.1. The Lubin–Tate case

In this subsection, we explain what X (μ,τ)K looks like in terms of a lattice description

in the Lubin–Tate case (Example 2.7), as described in Theorem 4.5. Let us consider first

the case where K is a hyperspecial maximal parahoric subgroup. In this case, we have

the following description.
Let (N ,φ) be an isocrystal of dimension n, where φ is a σ -linear automorphism isoclinic

of slope 1/n. Then we have (for G=GLn)

X (μ,τ)K =
⊔
v∈Z
{M |M ⊃ φ(M ), vol(M )= v}. (7.1)

The decomposition indexed by v corresponds to the decomposition of the affine

Grassmannian, or correspondingly the space of all lattices in N , into connected
components. Note that after passing to lattices, there is no dependence on K anymore.

More precisely, denote by Latt the set of all lattices in N . Viewing K as the stabiliser

of a lattice �, we have an identification GLn(F̆ )/K ∼= Latt mapping g �→ g�. Using this
identification, we view X (μ,τ)K as a subset of Latt. Likewise, we have an identification

GLn(F̆ )/τK τ−1 ∼= Latt, now mapping g �→ gτ�, and this is the identification we use

when we want to view X (μ,τ)τK τ−1 as a subset of Latt. Since the bijection GLn(F̆ )/K →
GLn(F̆ )/τK τ−1, g �→ gτ−1, maps X (μ,τ)K onto X (μ,τ)τK τ−1 , as subsets of Latt we have
X (μ,τ)K = X (μ,τ)τK τ−1 . By iterating this, we can identify the affine Deligne–Lusztig

varieties X (μ,τ)K for all standard hyperspecial parahorics K .

Note that for M in X (μ,τ)K the index of φ(M ) in M is equal to 1.

Lemma 7.1. The chain of lattices

M ⊃ φ(M )⊃ φ2(M )⊃ . . . ⊃ φn−1(M )⊃ φn(M )= pM

determines the unique fixed point under φ in B(PGLn,Q̆p), i.e., the unique point in
B(Jτ,ad,Qp). In particular, each connected component of X (μ,τ)K consists of a single

point.

Proof. All we have to show is that φn(M )= pM : after this, the lattice chain determines

an alcove in B(PGLn,Q̆p) which is obviously fixed by φ, i.e., lies in B(Jτ,ad,Qp). Since

Jτ,ad is anisotropic, the latter building consists of only one point.

We consider the chain of lattices

M ⊃ φ(M )⊃ φ2(M )+pM ⊃ φ3(M )+pM ⊃ . . . ⊃ φn−1(M )+pM ⊃ φn(M )+pM .

Claim. All inclusions are strict.
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Once the claim is proved, we conclude as follows. Since obviously all indices in this chain
are ≤ 1, the claim implies that [M : (φn(M )+pM )]= n = [M : pM ]. Hence φn(M )+pM =
pM , i.e., φn(M )= pM (both have index n in M ).

Proof of claim. Assume that φr (M )+pM = φr+1(M )+pM . Then φr+1(M )+pφ(M )=
φr+2(M )+pφ(M ). Hence

φr+1(M )+pM = φr+2(M )+pφ(M )+pM = φr+2(M )+pM .

We conclude that φr (M )+ pM = φj (M )+ pM , for any j ≥ r . But φ is topologically

nilpotent, hence φj (M )⊂ pM for large j . But this implies φr (M )⊂ pM , which is absurd
for r ≤ n−1.

The lemma implies immediately that X (μ,τ)K has only one element when K is an
arbitrary parahoric.

7.2. The exotic case

For the setup, we follow [28] (cf. also [3]). The case of hyperspecial level structure (which
corresponds, in terms of the notation used in the following, to the case r = 0) was analysed
in detail by Vollaard [38].

7.2.1. The isocrystal. Let F̃/F be the unramified quadratic extension contained in

F̆ . We fix n � 1 and 1 � s � n−1. We also fix the following data:

(1) N is an F̆ -vector space of dimension 2n together with an alternating F̆ -bilinear
pairing 〈, 〉 : N ×N → F̆ .

(2) There is an F̃ -action on N such that

〈a · x,y〉 = 〈x,σ (a) ·y〉 for all x,y ∈N ,a ∈ F̃ . (7.2)

(3) We have a σ -linear operator φ : N →N which commutes with the F̃ -action and such

that all slopes of φ are equal to 1
2 , and which satisfies

〈φ(x ),φ(y)〉 = π ·σ(〈x,y〉) for all x,y ∈N , (7.3)

where π is a fixed uniformiser of F .

Via the F̃ -action, N is a module over F̃ ⊗F F̆ = F̆ × F̆ , i.e., it decomposes as N =
N 0⊕N 1, where F̃ acts on N 0 via the inclusion F̃ ⊂ F̆ and on N 1 via σ : F̃ → F̆ . We

then have φ(N 0) = N 1, φ(N 1) = N 0. The F̃ -action on an element x = (x0,x 1) is given

by a(x0,x 1) = (ax 0,σ (a)x 1). By equation (7.2) (and using the fact that the pairing is
alternating), we obtain that N 0 and N 1 are totally isotropic subspaces.

We will consider OF̃ -invariant OF̆ -lattices M . For them we obtain an analogous

decomposition M =M 0⊕M 1. We will impose the signature condition for s, i.e., πM ⊂
φ(M )⊂M with

πM 0 ⊂n−s φ(M 1)⊂s M 0. (7.4)
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Here the upper indices indicate the length as OF̆ -modules of the corresponding factor
modules.

For a lattice M ⊂ N , we denote by M ∨ its dual with respect to the form 〈, 〉, i.e.,
M ∨ = {x ∈N | 〈x,M 〉 ⊆OF̆ }.
We will impose the following condition:

• There exists an OF̃ -stable self-dual lattice M ⊂ N such that πM ⊂ φ(M) ⊂ M and
satisfying the signature condition for s.

In the setting of the following remark, this condition means that the data arise from

a p-divisible group (with an OF̃ -action and a p-principal polarisation), as in [33]. See

Remark 7.6 for a discussion of this assumption in terms of group theory.

Remark 7.2. Let F =Qp . Then the tuple (N ,〈, 〉,φ) is the isocrystal of a supersingular

p-divisible group of height 2n over Fp with Zp2 -action which satisfies the determi-
nant condition for signature (s,n − s), with a quasi-polarisation compatible with the

Zp2 -action (cf. [38, Def. 1.1]). In [38], p-divisible groups are considered which admit

a p-principal polarisation. These correspond to self-dual lattices, i.e., M ∨ = M . Here
we will consider more general parahoric level structures. In the case of a maximal but

nonhyperspecial level structure, the level structure can be seen as a (non-p-principal)
polarisation.

7.2.2. The space of lattices. Now let us fix an integer r , 0 � r � n/2. We will see

how this corresponds to a choice of maximal rational parahoric level structure.

Consider the following set of pairs of lattices in N :

F {2r} = {(πM2 ⊆M1 ⊆M2) | Mi stable under OF̃, M 0
1 ⊆2r M 0

2 , M 1
1 ⊆2r M 1

2 ,

M2 = πcM ∨
1 for some c ∈ Z}. (7.5)

By mapping (M1 ⊆M2) ∈F {2r} to (M 0
1 ⊆M 0

2 ,c), we obtain a bijection between F {2r} and
the set

F {2r},0 := {(πA⊆ B ⊆2r A,c) | B,A⊂N 0 lattices,c ∈ Z}. (7.6)

This set of lattices will be identified later with the set of k -points of the corresponding

partial affine flag variety.

7.2.3. The action of Frobenius. The operator φ on N induces an action on the

set F {2r}. In fact, for (M1 ⊆M2) ∈F {2r} with M2 = πcM ∨
1 , we have φ(M2)= φ(πcM ∨

1 )=
πc+1φ(M1)

∨. To describe this action in terms of the bijection F {2r} ∼−→F {2r},0, we introduce
the following notation.

Let τ= π−1φ2 be a σ 2-linear automorphism of N 0 which has all slopes zero. Let C =
(N 0)〈τ〉. Also, let

h(x,y)= δ−1π−1〈x,φy〉,
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where δ ∈O×
F̃

is such that σ(δ)=−δ. Then the restriction of h to C is a Hermitian form

on C . On N 0, the Hermitian nature of h is given by

h(x,y)= σ
(
h(y,τ−1(x ))

)
. (7.7)

Definition 7.3. For a lattice L⊂N 0, we denote by

L� = {x ∈N 0 | π−1〈x,φ(L)〉 ⊆OF̆ }
the dual of L with respect to the form h, which is again a lattice in N 0.

Note that

(L�)� = τ(L). (7.8)

Lemma 7.4. For (M1 ⊆ M2) ∈ F {2r} corresponding to (B ⊆ A,c) ∈ F {2r},0, the chain

(φ(M1)⊆ φ(M2)) corresponds to ((π−cA)� ⊆ (π−cB)�,c+1).

Proof. We need to check φ(M1)
0 = (π−cM 0

2 )� and φ(M2)
0 = (π−cM 0

1 )�. Now φ(M1)
0 =

φ(M 1
1 ), and

〈φ(M 1
1 ),π−c−1φ(M 0

2 )〉 = σ(〈M 1
1 ,π−cM 0

2 〉)= σ(〈M 1
1 ,(M ∨

1 )0〉)=OF̆

by equation (7.3), so φ(M 1
1 )= (π−cM 0

2 )�. The computation for φ(M2)
0 is similar.

7.2.4. The parahoric RZ-space. The k -valued points of the (relative) RZ-space
which we want to describe correspond to those points in F {2r} (or equivalently in F {2r},0)
which are Dieudonné modules of signature (s,n− s):

N =N {2r} = {(M1 ⊆M2) ∈ F {2r} | πMi ⊆ φ(Mi)⊆Mi,i = 1,2}. (7.9)

Here φ(Mi)
0 ⊆M 0

i has colength s and φ(Mi)
1 ⊆M 1

i has colength n− s. By Lemma 7.4,

we can identify N with a subset of F {2r},0, as follows:

N = {(B ⊆A,c) ∈ F {2r},0 | πB ⊆ πcA� ⊆s B,πA⊆ πcB � ⊆s A}. (7.10)

7.2.5. Reduction to the case c = 0. We have

N =
⊔
c∈Z

Nc,

where for c ∈ Z we write

Nc = {(B ⊆A⊂N ) | (B ⊆A,c) ∈ F {2r},0, πB ⊆ πcA� ⊆ B,πA⊆ πcB � ⊆A}.
Lemma 7.5.

(1) If nc is odd, then Nc = ∅.
(2) If nc is even, then there exists an automorphism j of N compatible with φ and the

pairing 〈, 〉 (and hence with the pairing h and the −� construction) such that the map

(B ⊆A) �→ (jB ⊆ jA) is an isomorphism Nc ∼=N0.
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Proof. Part (1) follows by a comparison of indices between A, B , A�, B � and M, similarly

as in [38, Lem. 1.7]. Part (2) is proved in [38, Lem. 1.17].

From now on we assume c = 0, so we consider the set

N0 =N {2r}
0 = {πA⊆ B ⊆2r A⊂N 0 | πB ⊆A� ⊆s B,πA⊆ B � ⊆s A}. (7.11)

This is the description given in [28] (cf. [3]).3 Note that the Hasse invariant of C is given

by inv(C )= (−1)s .

7.2.6. Nonmaximal level structure. Combining the foregoing data for more than

one r , we get analogous descriptions of the RZ-spaces NR, NR
0 with more general

parahoric level structure R ⊆ {0, . . . ,[n/2]}. For instance, combining the cases r = 0 and

r = 1, we obtain a nonmaximal parahoric case, given as the set of diagrams

B1 ⊂ B0 ⊂ A1
∪ ∪ ∪
A�

1 ⊂ B �
0 ⊂ B �

1.
(7.12)

Here all horizontal inclusions have index 1 and it is understood that πA1 ⊆B1. The index
of the vertical inclusions in this diagram is equal to s.

7.2.7. Description of fibres. From now on we restrict to the case s = 1, i.e., to

signature (1,n−1). Let us describe explicitly, in terms of lattices, the projection

NR∪{0}
0 →NR

0

for a level structure R ⊆ {1, . . . ,[n/2]} (i.e., 0 	∈ R) such that 1 ∈ R, between spaces with
parahoric level structures, which is given by forgetting the lattice at position 0. In terms

of the group-theoretic description to be discussed later, this case corresponds to K ′ \K =
{s0}. In other words, we need to describe, for a diagram

B1 ⊂ B0 ⊂ A1
∪ ∪ ∪
A�

1 ⊂ B �
0 ⊂ B �

1

(7.13)

of lattices in N 0 with all inclusions of index 1 and πA1 ⊆B1, how many choices there are

for B0 when A1 and B1 are fixed. (All the other positions which might be present in R
are irrelevant for determining the fibre.)
We distinguish cases, depending on whether B1 ⊆ B �

1 or not.

First case: B1 	⊆ B �
1. In this case, we have A�

1 = B1 ∩B �
1 ⊇ πA1. Thus A1/A

�
1 is a

k -vector space with a ‘Hermitian’ form, and B �
0/A

�
1 ⊂ B �

1/A
�
1 is an isotropic line.

Claim. There are exactly q+1 such lines.

3In [3], pairs M1 ⊂M2 are also considered, where M 0
1 ⊂M 0

2 has odd colength.
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Proof of claim. By assumption, A1/A
�
1 = B1/A

�
1⊕B �

1/A
�
1, and the restriction of the

pairing to B �
1/A

�
1×B �

1/A
�
1 is nondegenerate. The entirety of all nontrivial subspaces of

B �
1/A

�
1 is a projective line. Mapping a line L to L� ⊂B �

1/A
�
1 defines a twisted Frobenius on

this projective line over k , i.e., a k -structure on this projective line (cf. [38, Lem. 2.12]).

The isotropic lines correspond to the rational points with respect to this k -structure.
Over a finite field, every form of P1 is P1, so there are q+1 points.
Second case: B1 ⊆ B �

1. In this case, the only possibilities for B0 are B0 = B �
1 or

B0 = τ−1B �
1 (which can equivalently be expressed as B �

0 = B1). In fact, if B0 	= B �
1, then

B0+B �
1 = A1, and similarly, if B1 	= B �

0, then B1+B �
0 = B0, so from both inequalities

together we obtain B �
1 = B1+B �

0+B �
1 =A1, an obvious contradiction.

Depending on whether B1 = τ(B1) or not, we have one or two points in the fibre.

7.2.8. Description of fibres: General case. If n is odd, then the case considered in
the previous section is the only possible case. If n = 2m is even, the case of forgetting Lm

is completely analogous to the case of forgetting L0.

Finally, if n is even, there is the case of forgetting L0 and Lm . This case corresponds to

the case K ′ \K = {s0,sm}. Since forgetting L0 and forgetting Lm are independent of each
other, the fibres in this case are just products of fibres arising in the case of forgetting

one lattice of the chain. In particular, we see that the possible cardinalities of fibres are

1, 2, 4, q+1, 2(q+1) and (q+1)2.

7.2.9. Connection with group theory. For this subsection, the condition s = 1 plays

no role. Let V be an n-dimensional F̃ -vector space with an alternating bilinear form

〈, 〉 : V ×V → F such that 〈av,w〉 = 〈v,σ (a)w〉 for all a ∈ F̃ , v,w, ∈ V , and let G be
the associated group of similitudes of this pairing (cf. [39, §2.1]). As before, we write

Ğ =G(Q̆p). Setting N =V ⊗F F̆ and extending the pairing, we obtain a 2n-dimensional

F̆ -vector space N with an action of F̃ and a pairing which satisfy properties (1) and (2)
in Section 7.2.1. Conversely, starting with N and a pairing satisfying (1) and (2) and

choosing a F̃ -subvector space V ⊂ N such that V ⊗F F̆ = N and the pairing restricted

to V ×V takes values in F , we obtain data as before.
We assume that V contains a self-dual OF̃ -lattice L0, and we fix a self-dual ‘standard

lattice chain’ of OF̃ -lattices in V containing L0. This gives us a standard Iwahori

subgroup. As in the previous sections, we have the extended affine Weyl group W̃ , the

set S̃ of simple affine reflections, and so on.
By restricting to part of the standard lattice chain, we can identify each F {2r} as a

quotient of Ğ by the standard parahoric subgroup of type K = K {r} = {0, . . . ,n − 1} \
{r,n−r} if r > 0, or K =K {0} = {1, . . . ,n−1} if r = 0. We obtain analogous identifications
for a nonmaximal parahoric level structure.

Now suppose that N =V ⊗F F̆ comes equipped with an operator φ, as in property (3)

of Section 7.2.1. We write F = bσ , where b ∈GL(N ) and σ = id⊗σ . Then equation (7.3)
amounts to saying that b ∈ Ğ with multiplier c(b)= π . The condition that φ be isoclinic

is equivalent to requiring that b is basic. Conversely, starting with a basic element b ∈ Ğ
with multiplier π , we can define φ = bσ .
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According to the choice of the integer s, 1 � s � n − 1, which defines the signature
condition, we define the cocharacter μ+ = ω∨s . We denote by μ its conjugacy class.

Remark 7.6. To explain the connection with the setup discussed before, we mention

the following more specific facts.

(i) Given the vector space V with the pairing 〈, 〉, the existence of a self-dual lattice is

equivalent to the existence of a hyperspecial parahoric subgroup in Ğ defined over
F . This in turn is equivalent to G being quasi-split (over F ).

(ii) We have [b] ∈ B(G,μ) if and only if X (μ,b)K 	= ∅ (for any/every K ; see [40]). Since

there is a unique basic element in B(G,μ), we see that the σ -conjugacy class [b] is
uniquely determined by s under the condition X (μ,b)K 	= ∅.

(iii) The following proposition says that X (μ,b)K 	= ∅ if and only if there exists a self-

dual Dieudonné module satisfying the signature condition corresponding to μ+. The
latter condition is the condition which we imposed in Section 7.2.1.

The map g = (g0,g1) �→ (g0,c(g)) gives an isomorphism GF̆
∼−→ GL(N 0)×Gm,F̆ of

algebraic groups over F̆ . Via this isomorphism, we can also view F {2r} as a partial

affine flag variety for the group GL(N 0)×Gm,F̆ . This corresponds to the identification
F {2r} = F {2r},0.
Consider the space N ⊂ F as defined previously, for a level structure corresponding to

K ⊂ S̃.

Proposition 7.7. In the setting already outlined,

N {2r} =X (μ,b)K {r}

as subsets of the corresponding partial affine flag variety F over F̆ .

Proof. Inside the partial flag variety, for both these sets, their definition can be expressed

by imposing conditions on the relative position between the partial lattice chain and

its image under Frobenius. For N {2r}, the condition is that this relative position be μ-
permissible in the sense of [26]. For X (μ,b)K {r} , the condition is that it must be μ-

admissible. By [26] the two conditions coincide. (Note that because of the identification

GF̆
∼−→GL(N 0)×Gm,F̆ , it is enough to know this for GLn .)

By analogy with the decomposition N {2r} = �cN {2r}
c , the space X (μ,b)K {r} decomposes

as a union of spaces of the form X (μ,b)K {r} for a unitary group, rather than a group of
unitary similitudes.

The group Jb , the σ -centraliser of b, can be identified in this context with the unitary

similitude group of the Hermitian space C .

7.2.10. Description of fibres and the EKOR stratification. Let us discuss the
case of ‘forgetting L0’ with the connection to group theory in mind. As before, we assume

s = 1. (The other cases can be handled similarly.) Again as before, fix a level structure

R ⊆ {1, . . . ,[n/2]} such that 1 ∈ R.
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Recall our terminology of KR and EKOR strata (see Section 2.5). In terms of

lattices, the KR stratification on the Iwahori level space N Iw ∼= X (μ,b) is given by the

relative position of L• and L�•. The EKOR stratification on X (μ,b)K likewise induces
a stratification on the corresponding N space, which we can describe as the coarsest

stratification such that the projection of every KR stratum is a union of EKOR strata

(cf. [22, §6.2]). For w ∈KAdm(μ), the index set for the EKOR stratification, the projection
of the KR stratum for w is equal to the EKOR stratum for w , i.e., the partial lattice

chains in the EKOR stratum for w are precisely those chains which can be extended to

a full lattice chain L• such that the relative position of L• and L�• is equal to w .
As the standard lattice chain we choose

�• = · · · ⊂ diag(p,1, . . . ,1)⊂ diag(1, . . . ,1)⊂ diag(1, . . . ,1,p−1)⊂ ·· · ,
where diag() denotes a diagonal matrix and a matrix is understood as a lattice by taking

the lattice generated by its column vectors.
Let τ be the matrix ⎛⎜⎜⎜⎝

p
1

. . .
1

⎞⎟⎟⎟⎠,

so that τ�i =�i+1. We can also view τ as a length 0 element of the Iwahori–Weyl group

of Ğ .

The simple reflections are given as follows:

s1 =

⎛⎜⎜⎜⎜⎜⎝
1

1
1

. . .
1

⎞⎟⎟⎟⎟⎟⎠,s2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, . . . ,s0 =

⎛⎜⎜⎜⎜⎜⎝
p

1
. . .

1
p−1

⎞⎟⎟⎟⎟⎟⎠ .

Proposition 7.8. With notation as in diagram (7.13), each of the following conditions

describes a union of EKOR strata:

(1) B1 ⊆ B �
1, B1 = τ(B1).

(2) B1 ⊆ B �
1, B1 	= τ(B1).

(3) B1 	⊆ B �
1.

The fibres of the projection πK,K ′ have cardinality 1 in case (1), cardinality 2 in case (2)

and cardinality q+1 in case (3).

As before, q denotes the cardinality of the residue class field of F .
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Proof. Via our choice of standard lattice chain, the alcove expressions for the identity
elements of W̃ and of τ are, respectively,

alc(id)• : . . . , (1(2),0(n−2)), (1,0(n−1)), (0(n)), (0(n−1),−1), . . . ,

alc(τ )• : . . . , (1(3),0(n−3)), (1(2),0(n−2)), (1,0(n−1)), (0(n)), . . . .

Here we use the ‘alcove notation’ of [26]. Similarly, any w ′ ∈KAdm(μ) gives rise to such an

alcove expression (alc(w ′)i) with each alc(w ′)i ∈ Zn , and w ′ is determined by this datum.

The fact that w ′ ∈Adm(μ) translates to the condition alc(id) � alc(w ′) � alc(id)+ (1(n)),
where � means that for each index, the respective entries are �. The condition B1 ⊂ B �

1
translates to (1,0(n−1)) � alc(w ′)−1, which together with the admissibility implies that

alc(w ′)−1 = (0(n)) or alc(w ′)−1 = (1,0(n−2),− 1). The latter case is not possible because
w ′ ∈ KW̃ .

Now assume that B1 	⊂B �
1; then alc(w ′)−1 has the form (0,0(i),1,0(n−i−3),−1) for some

i � 0. Since these conditions are constant on each KR stratum, and are phrased in terms

of the indices 1, −1 of the lattice chain only, they describe unions of EKOR strata.
Now assume that B1 ⊂ B �

1, so alc(w ′)−1 = (0(n)). Then B �
1 = B0, so the condition B1 =

τ(B1) becomes B1 = B �
0, which is equivalent to alc(w ′)0 = (1,0(n−1)). Again, this clearly

describes a union of EKOR strata. (Note that at this point B1 ⊂ B �
1 implies B �

1 = B0,
i.e., we do not see the possibility B0 = τ−1B �

1 in the second case of Section 7.2.7. This is

because we are not considering the full fibre here, only the EKOR strata for w ′, for level
K and K ′.)

We now recover the characterisation of the loci of different fibre cardinalities as unions

of EKOR strata, which we proved group-theoretically as Proposition 6.10. (But note

that in the lattice context we did not re-prove Theorem 6.2, because we did not separate
the unions of EKOR strata where the fibre cardinality is constant into individual EKOR

strata.)

Proposition 7.9. Fix a point in a parahoric RZ-space N0 given by a diagram

· · · ⊂ B1 ⊂ A1 ⊂ ·· ·
∪ ∪

· · · ⊂ A�
1 ⊂ B �

1 ⊂ ·· ·
(7.14)

which lies in the EKOR stratum for w ′ ∈ KAdm(μ). Then

• B1 ⊆ B �
1, B1 = τ(B1) if and only if w ′ ∈W0τ and w ′s0 > w ′, if and only if the fibre

cardinality is 1.

• B1 ⊆ B �
1, B1 	= τ(B1) if and only if w ′s0 < w ′, if and only if the fibre cardinality is 2.

• B1 	⊆ B �
1 if and only if w ′ 	∈W0τ , if and only if the fibre cardinality is q+1.

Proof. First note that by the proof of Proposition 7.8, B1⊆B �
1 is equivalent to alc(w ′)−1=

(0(n)) or, in other words, w ′ ∈ W0τ . This already proves the third statement. Now if

w ′ ∈ W0τ , then 
(w ′) is the number of inversions of the permutation v := w ′τ−1. We

have B1 = τ(B1) if and only if alc(w ′)0 = (1,0(n−1)), if and only if v(1) = 1. In this case,
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w ′s0 = vs1τ has length 
(w ′)+1. On the other hand, if v(1) 	= 1, then by the admissibility
of w ′, v(1)= 2, so w ′s0 = vs1τ has length 
(w ′)−1.
It remains to prove that w ′ 	∈W0τ implies w ′s0 >w ′. As we have already found, w ′ 	∈W0τ

means that alc(w ′)0 = (0, . . . ,0,1,0. . . ,0) with the 1 in position i > 1. We have alc(w ′)i =
alc(w ′s0)i for all i 	= 0, and hence alc(w ′)1 � alc(w ′s0)0 � alc(w ′)−1 and alc(w ′s0)0 	=
alc(w ′)−1. Thus the only possibility for alc(w ′s0)0 is (1,0, . . . ,0,1,0, . . . ,0, − 1), whence

w ′s0 /∈Adm(μ). This is only possible if w ′s0 > w ′.

7.2.11. The EKOR stratification in the case of signature (1,2). In the case

n = 3, we can describe explicitly all the KR and EKOR strata (cf. Example 6.11). As a

preparation, we write down explicitly the KR strata in terms of lattices. In this section,
we consider the full affine flag variety for GL3 over F̆ . The set of k -valued points is the

set of full periodic lattice chains L•. Since all lattice chains are periodic, we usually only

consider degrees 1, 0 and −1.

Lemma 7.10. Let L•, L′• be lattice chains and denote by inv(L•,L′•) ∈ W̃ their relative

position.

(1) inv(L•,L′•)= τ if and only if L′i = Li+1 for i = 1,0,−1 (equivalently: for all i).

(2) inv(L•,L′•) ∈ {s0τ,τ } if and only if L′1 = L2(= πL−1) and L′0 = L1.

(3) inv(L•,L′•) ∈ {s1τ,τ } if and only if L′1 = L2(= πL−1) and L′−1 = L0.

(4) inv(L•,L′•) ∈ {s2τ,τ } if and only if L′−1 = L0 and L′0 = L1.

(5) inv(L•,L′•) ∈ {s1s0τ,s0τ,s1τ,τ } if and only if L′1 = L2(= πL−1).

The lemma describes all KR strata for w ∈ Adm(μ)0. We omit the easy proof. As

a consequence, we obtain the following description of the EKOR strata in N {2}
0 . (It is

possible to characterise the EKOR strata by other conditions, in the style of the original

definition of the EO stratification in the Siegel case – see, for instance, [30]; we have made

a choice which is close to the criteria we found earlier for the cardinality of the fibres of
the projection from the Iwahori space.)

Proposition 7.11. A point in N {2}
0 , given by a diagram

B1 ⊂ A1
∪ ∪
A�

1 ⊂ B �
1,

(7.15)

lies in the EKOR stratum attached to

(1) τ if and only if pA1 =A�
1, B1 ⊆ B �

1, B1 = τ(B1),

(2) s1τ if and only if B1 ⊆ B �
1, B1 = τ(B1) (and on this stratum πA1 =A�

1),

(3) s2τ if and only if πA1 	=A�
1 (and on this stratum B1 ⊆ B �

1, B1 = τ(B1)),

(4) s1s0τ if and only if B1 	⊆ B �
1 (and on this stratum πA1 =A�

1).
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8. Proof of Theorems 1.1 and 1.2

In this section, we deduce Theorems 1.1 and 1.2 from Theorems 4.1 and 4.2, respectively.
Let (G,μ) be such that G is quasi-simple and μ noncentral. Write G = ResF̃/F G̃, for a

finite field extension F̃ and an absolutely quasi-simple group G̃ over F̃ . We also write

μ= (μϕ), where μϕ are cocharacters of G̃. Here ϕ runs over HomF (F̃,F ). Let Fd be the

maximal unramified subextension of F̃ , d = [Fd : F ], and fix an embedding of Fd into F .
Let Gd =ResF̃/Fd

G̃. Then G=ResFd /F (Gd ), and the Tits datum over F of (G,μ) is equal

to (ResFd /F (�̃Gd ,σd ),(μ
d,i

)i), where �̃Gd is the absolute Dynkin diagram of Gd ⊗Fd F̆
with its action σd of the Frobenius over Fd and where, for i = 0, . . . ,d −1, we denote by
μ

d,i
the element in the translation lattice corresponding to μd,i = (μϕ)ϕ . Here ϕ runs

over those elements of HomF (F̃,F ) whose restriction to Fd is equal to σ i . Note that �̃Gd

coincides with the absolute local Dynkin diagram �̃G̃ of G̃⊗F̃
˘̃F , where ˘̃F = F̃ ⊗Fd F̆ is

the completion of the maximal unramified extension of F̃ (cf. [36, §1.13]).
Now let (G,μ) satisfy the conclusions of Theorems 4.1 and 4.2. In the case of

Theorem 4.1, it follows that (�̃Gd ,σd ) = (Ãn−1,id). Furthermore, by changing the
embedding of Fd into F , we deduce from μ

d
= (ω∨1 ,0, . . . ,0) that for i 	= 0, μ

d,i
is central

and then that μd,i is central (cf. Lemma 2.3). From μ
d,0
= ω∨1 , we similarly deduce that

there exists a unique ϕ0 ∈ HomFd (F̃,F ) such that μϕ0 = ω∨1 and μϕ is central for all

ϕ ∈HomFd (F̃,F )\ {ϕ0} (cf. Lemma 2.2 and the table right before [21, Lem. 5.4]). It also

follows that G̃ad = PGLn , and Theorem 1.1 follows.
In the case of Theorem 4.2, and excluding the case treated in Theorem 4.1, it follows

that (�̃Gd ,σd ) = (Ãn−1,ς0). Analogously to the case just treated, we obtain that there

exists a unique ϕ0 ∈ HomF (F̃,F ) such that μϕ0 = ω∨1 and μϕ is central for all ϕ 	= ϕ0
(cf. Lemma 2.2). It follows that G̃ad is an outer twist of PGLn by an unramified quadratic

extension F̃ ′ of F̃ . Hence G̃ad = U(V )ad, for an F̃ ′/F̃ -Hermitian vector space V . The

condition on (K,K ′) in Theorem 1.2 follows directly from Theorem 4.1, and implies that

the Hermitian space V is split (existence of a lattice which is self-dual or self-dual up to
a scalar). Theorem 1.2 is proved.

Part 3. Maximal dimension

In this part, we consider the problem opposite to the one of the previous part: When is

X (μ,b)K of maximal dimension?

9. Dimension of affine Deligne-Lusztig varieties

9.1. Admissible sets

In this subsection, we introduce a dimension notion for certain subsets of Ğ . We follow
[18, §2.5]. We view Ğ as the set of k -valued points of the loop group of G and equip it

with the ind-topology. Then the closure Ĭx Ĭ is equal to the (perfect) scheme
⋃

x ′�x Ĭx ′Ĭ,

https://doi.org/10.1017/S1474748020000730 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000730


Extremal cases of Rapoport–Zink spaces 1765

and a subset V is closed if and only if its intersection with Ĭx Ĭ is closed for the Zariski

topology, for all x ∈ W̃ .
A subset V of Ğ is called admissible4 if for any w ∈ W̃ , the set V ∩ Ĭw Ĭ is stable under

the right action of an open compact subgroup K̆w which contains a congruence subgroup

Ĭn of Ğ . This is equivalent to asking that for any w ∈ W̃ , the set V ∩ Ĭw Ĭ be stable under

the right action of an open compact subgroup K̆w which contains a congruence subgroup

Ĭn of Ğ . We say that V is bounded if V ∩ Ĭw Ĭ = ∅ for all but finitely many w ∈W .
For any compact open subgroup K̆ of Ğ , we define

dimK̆V = supw dim((V ∩ Ĭw Ĭ)/K̆w )−dim(K̆/K̆w ),

where K̆w is chosen as in the foregoing and such that K̆w ⊆ K̆.
This definition is applicable in our case because of the following fact:

Theorem 9.1 ([19, Thm. A.1]). Any σ -conjugacy class in Ğ is an admissible subset.

We also recall the following fact. Note that in [18] the notation XK,w (b) has a different
meaning than here.

Theorem 9.2 ([18, Thm. 2.23]). Let [b] ∈ B(G). Then for every w ∈Adm(μ),

dimĬ(Ĭw Ĭ ∩ [b])= dimXw (b)+〈νb,2ρ〉.
Furthermore, for a σ -stable parahoric subgroup K̆ of Ğ,

dimK̆(K̆Adm(μ)K̆∩ [b])= dimX (μ,b)K +〈νb,2ρ〉.

9.2. Closure relations of fine affine Deligne–Lusztig varieties

We recall from [15, §4] the partial order on KW̃ . Let w,w ′ ∈ KW̃ . Then w ′ �K,σ w if

there exists x ∈WK such that xw ′σ(x )−1 � w . The relation to the closure relation is given

by the following fact:

Theorem 9.3 ([17, Prop. 2.5], [18, Thm. 2.11]). For w ∈ KW̃ , the closure of K̆ ·σ Ĭw Ĭ
is given as follows:

K̆ ·σ Ĭw Ĭ =
⊔

{w ′∈KW̃ |w ′�K,σ w}
K̆ ·σ Ĭw ′Ĭ.

We also need the following fact:

Theorem 9.4 ([18, Thm. 2.5]). There is a disjoint sum decomposition into locally closed

subsets

K̆Adm(μ)K̆ =
⊔

x∈KAdm(μ)

K̆ ·σ Ĭx Ĭ.

Furthermore, dimK̆(K̆ ·σ Ĭx Ĭ)= 
(x ), for any x ∈ KAdm(μ).

4This notion of admissibility is not related to the μ-admissible set.
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From these facts we can now deduce the following statement:

Proposition 9.5. The admissible set K̆Adm(μ)K̆ is equidimensional with

dimK̆(K̆Adm(μ)K̆)= 〈μ,2ρ〉.
The irreducible components of K̆Adm(μ)K̆ are the K̆tλK̆ = K̆ ·σ ĬtλĬ for λ ∈W0(μ) with

tλ ∈ KW̃ .

Proof. If tλ ∈ KW̃ , then the maximal element in WK tλWK is wK tλ, where wK is the

longest element in WK . In this case, K̆tλK̆ = ĬwK tλĬ and 
(wK tλ) = 
(wK )+ 
(tλ) =

(wK )+ 
(tμ). Hence dimK̆(K̆tλK̆) = 
(tμ) = 〈μ,2ρ〉. Moreover, K̆ ·σ ĬtλĬ ⊂ K̆tλK̆ and

dimK̆(K̆ ·σ ĬtλĬ)= 
(tλ)= 
(tμ). Thus K̆tλK̆ = K̆ ·σ ĬtλĬ.
We have K̆Adm(μ)K̆ = ∪λ∈W0(μ)K̆tλK̆, and each K̆tλK̆ is irreducible. If λ′ ∈ WK (λ),

then K̆tλK̆ = K̆tλ′K̆. It remains to show that for any λ, there exists λ′ ∈ WK (λ) with

tλ′ ∈ KW̃ .

Let w ∈WK such that wtλ ∈ KW̃ . Then by definition, for any simple root α in K we

have that (wtλ)−1(α) = (tλ)−1w−1(α) is a positive root in the affine root system. Hence
〈−λ,w−1(α)〉> 0. This is equivalent to saying that 〈w(λ),α〉< 0. Hence (tw(λ))−1(α) is a

negative root. Thus tw(λ) ∈ KW̃ . This finishes the proof.

Corollary 9.6. The dimension of X (μ,b)K is bounded as

dimX (μ,b)K ≤ 〈μ,2ρ〉.
If equality holds, then b is basic.

Proof. By Theorem 9.2, we have

dimX (μ,b)K = dimK̆(K̆Adm(μ)K̆∩ [b])−〈νb,2ρ〉
� dimK̆(K̆Adm(μ)K̆)−〈νb,2ρ〉
= 〈μ,2ρ〉−〈νb,2ρ〉,

where we used Proposition 9.5 in the last line. If dimX (μ,b)K = 〈μ,2ρ〉, we have 〈νb,2ρ〉 =
0 and thus [b] is the unique basic σ -conjugacy class in B(G,μ).

Remark 9.7. Whereas K̆Adm(μ)K̆ is equidimensional, the corresponding statement is

not true for X (μ,b)K .

10. Statement of results

10.1. Criterion for maximal dimension

We introduce

W (μ)K,fin = {λ ∈W0(μ) | tλ ∈ KW̃ ,Wsuppσ (tλ) is finite}
= {λ ∈W0(μ) | tλ ∈ KAdm(μ)0},

(10.1)
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where we use the notation of equation (3.1) in the first line and of equation (3.3) in

the last line. We simply write W (μ)fin for W (μ)∅,fin. Note that since tλ is an element

of Adm(μ) of maximal length, it is a maximal element of KAdm(μ)0 with respect to

the partial order �K,σ . The following theorem gives a classification of those cases when
equality holds in Corollary 9.6.

Theorem 10.1. Let K̆ be a σ -stable parahoric subgroup of Ğ of type K , and [b]∈B(G,μ).

If dimX (μ,b)K = 〈μ,2ρ〉, then [b] = [τ ] is basic, Jτ is quasi-split and μ is minuscule.

When K̆ is an Iwahori subgroup, then the converse holds.
For general K̆, dimX (μ,b)K = 〈μ,2ρ〉 if and only if [b] is basic and W (μ)K,fin 	= ∅. In

this case, the irreducible components of X (μ,b)K of dimension 〈μ,2ρ〉 are the irreducible

components of XK,tλ(b), where λ ∈W (μ)K,fin.

The proof is given in Section 12.

10.2. Classification of maximal equidimensional cases

The following theorem gives a classification of all cases when X (μ,τ)K is equidimensional

of maximal dimension:

Theorem 10.2. Assume that G is quasi-simple over F and that μ is not central. Write
the Tits datum of (G,μ) as (ResFd /F (�̃,σd ),(μ1, . . . ,μd )).

Then X (μ,τ)K is equidimensional of dimension equal to 〈μ,2ρ〉 if and only if we are

in one of the following cases:

(1) The tuple (�̃,σd ) is (Ãn−1,�n−1), where �n−1 denotes rotation by n−1 steps, precisely

one μi is noncentral (say μ1) and μ1 = ω∨1 . Furthermore, K = ∅.
(2) The tuple (�̃,σd ) is (Ã3,�2,∅), where �2 denotes rotation by two steps, precisely one

μi is noncentral (say μ1) and μ1 = ω∨2 . Furthermore, K = ∅.
(3) The tuple (�̃,σd ) is (Ãn−1,id), there exist i 	= i ′ such that μj is central for all j 	= i,i ′

and (μi,μi ′)= (ω∨1 ,ω∨n−1). Furthermore, K = ∅.
The proof is given in Section 13.

Example 10.3. Here we consider the example of Stamm from [35, Thm. 3]. The

corresponding Tits datum is (�̃,{λ}), where �̃ is of type Ã1 × Ã1, S̃ = {s0,s1,s0′,s1′ },
λ = ((1,0),(1,0)) and we consider the Iwahori level structure K = ∅. The Frobenius

morphism σ induces a bijective map on S̃, which permutes s0 with s0′ and s1 with s1′ .
Let τ be the length 0 element in W̃ with κ(τ) = κ(λ). Then the action of Ad(τ ) on S̃
permutes s0 with s1 and s0′ with s1′ . Therefore the action of Ad(τ )◦σ permutes s0 with
s1′ and s1 with s0′ . We have

Adm(μ)= {τ,s0τ,s1τ,s0′τ,s1′τ,s0s0′τ,s0s1′τ,s1s0′τ,s1s1′τ }.
In this case, ĬAdm(μ)Ĭ∩ [τ ]= Ĭs0s1′τ Ĭ∪ Ĭs1s0′τ Ĭ and Ĭs0s1′τ Ĭ∩ Ĭs1s0′τ Ĭ = Ĭτ Ĭ. Hence
X (μ,τ) has two irreducible components, both of dimension 2, and their intersection is of

dimension 0.
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On the other hand, if K = {s0,s0′ }, then
KAdm(μ)= {τ,s1τ,s1′τ,s1s1′τ }.

In this case, K̆Adm(μ)K̆∩ [τ ] = K̆ ·σ Ĭs1τ Ĭ ∪ K̆ ·σ Ĭs1′τ Ĭ and K̆ ·σ Ĭs1τ Ĭ ∩ K̆ ·σ Ĭs1′τ Ĭ =
K̆ ·σ Ĭτ Ĭ. Hence X (μ,τ)K has two irreducible components, both of dimension 1, and their
intersection is of dimension 0.

Example 10.4. Here we consider the case (Ãn−1× Ãn−1
1ς0,,(ω

∨
1 ,ω∨n−1),∅) for n � 3,

where 1ς0 is the automorphism of Ãn−1× Ãn−1 which exchanges the two factors. By

Theorem 10.1, if S̃\K contains {si,si+1,si ′,s(i+1)′ } for some i , then X (μ,τ)K has dimension

〈μ,2ρ〉. But only when K = ∅ is X (μ,τ)K equidimensional of dimension 〈μ,2ρ〉.

11. Critical index set

11.1. Critical index set

Recall that a denotes the base alcove. For any x ∈ W̃ , we define the critical index set for
x by

Crit(x )= {v | v is a common vertex of a and x (a)}. (11.1)

Note that if x = wτ for w ∈Wa and τ ∈
, Crit(x )= Crit(w), and this is a nonempty
set if and only if Wsupp(w) is finite.

11.2. Quasi-rigid set

Let τ ∈
, i.e., a length 0 element in W̃ . We introduce the quasi-rigid set for τ as follows:

Q-Rig(τ )= {wτ with w ∈Wa |Wsupp(w) is finite}. (11.2)

In other words, Q-Rig(τ )=Q-Rig(1)τ consists of all elements x in Waτ such that the

critical index set for x is nonempty.

For any length-preserving automorphism θ of W̃ , we introduce the θ -rigid set for τ :

Rig(τ,θ)= {x ∈Waτ |Wsuppθ (x ) is finite} (11.3)

(cf. [4]). Note that

supp(w)⊂ suppθ (wτ)= ∪i∈Z(Ad(τ )◦ θ)i supp(w),

supp(w)= suppAd(τ )−1(wτ).

Hence

(1) for any length-preserving automorphism θ of W̃ , Q-Rig(τ )⊃ Rig(τ,θ); and

(2) Q-Rig(τ )= Rig(τ,Ad(τ )−1).

The following theorem compares KAdm(μ) and Q-Rig(τ ):

Theorem 11.1. Assume that W̃ is irreducible. Let K ⊂ S̃ with WK finite, i.e., K 	= S̃.
Then KAdm(μ)⊂Q-Rig(τ ) if and only if (�̃,σ,μ)= (Ãn−1,ς1,ω

∨
1 ) (up to isomorphism),

in which case KAdm(μ)=Q-Rig(τ )∩KW̃ .
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a

Figure 1. Admissible set (shaded grey) for B̃2, μ= ω∨1 , and quasi-rigid set for τ = τ(tμ
) (inside the thick

lines).

Remark 11.2. The case where K = ∅ is Proposition 5.3. The proof of that proposition
does not show the general case, since there are fewer elements in KAdm(μ) as K becomes

larger. Therefore we have to use more advanced techniques here.

Proof of Theorem 11.1. Let H be a connected reductive group over F with Iwahori–

Weyl group over F̆ isomorphic to W̃ and where the induced action of the Frobenius on

W̃ equals Ad(τ )−1. By item (2) we have Q-Rig(τ ) = Rig(τ,σ ). Hence, by assumption,
for any x ∈ KAdm(μ), Wsuppσ (x ) is finite. Hence, by Proposition 3.2, K̆ ·σ Ĭx Ĭ ⊂ [τ ]. By
equation (2.12), we see that X (μ,b)K =∅ if b is not basic. By Theorem 2.4, B(G,μ)= {[τ ]}
is then a singleton. Then by [25, §6], (�̃,μ)= (Ãn−1,ς1,ω

∨
1 ) (up to isomorphism).

Remark 11.3. The concept of a critical index is due to Drinfeld [6]. The fact that in

the Drinfeld case (Ãn−1,ς1,ω
∨
1 ) any element of KAdm(μ) has a critical index is crucial in

his proof of p-adic uniformisation of the Drinfeld RZ-space. The proof in [6] is by linear

algebra. Note that Theorem 11.1 answers the question raised in [34, §3].

Note that the study of Q-Rig(τ ) can be reduced to the case where G is adjoint and W̃
is irreducible. The following result describes the translation elements in Q-Rig(τ ) in the

case where W̃ is irreducible:

Proposition 11.4. Suppose that W̃ is irreducible. Let tλ be a translation element in

W̃ , and let τ ∈
 with tλ ∈Waτ . Then tλ ∈Q-Rig(τ ) if and only if there exists a length-
preserving automorphism θ of W̃ such that θ(λ) is a dominant minuscule coweight.

Furthermore, if tλ is noncentral, then tλ has exactly one critical index, and the critical

index corresponds to a special vertex.
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As the proof will show, if G is adjoint and θ exists, then θ can be chosen as conjugation
by a length 0 element of W̃ .

Proof. If θ(λ) is dominant minuscule, then we have t θ(λ) = τ ′wKw0 for some τ ′ ∈
 and

K �S. Thus tλ = θ−1(τ ′wKw0)= θ−1(τ ′)θ−1(wKw0). Since tλ ∈Waτ , we have θ−1(τ ′)= τ .
In this case, tλ = τθ−1(wKw0)= (τθ−1(wKw0)τ

−1)τ . Moreover, supp(τθ−1(wKw0)τ
−1)=

Ad(τ )◦ θ−1(S). Therefore tλ ∈Q-Rig(τ ).

Now we prove the other direction. Suppose that tλ ∈ Q-Rig(τ ). Let a′ = tλ(a) be the
alcove obtained from the base alcove a by translation. Then a and a′ have a common

vertex, say v .
Note that the vertices of a are

ω∨i
〈ω∨i ,β〉 for i ∈ S and 0. Here β is the highest root and ω∨i

is the fundamental coweight associated to i . Thus the vertices of a′ are
ω∨j

〈ω∨j ,β〉 +λ for j ∈ S

and λ. Then we have one of the following:

(1) v = ω∨i
〈ω∨i ,β〉 and λ= ω∨i

〈ω∨i ,β〉 −
ω∨j

〈ω∨j ,β〉 for some i 	= j ∈ S,

(2) v = λ= ω∨i
〈ω∨i ,β〉 ,

(3) v = 0 and λ=− ω∨j
〈ω∨j ,β〉 or

(4) v = λ= 0.

In case (1), we have 1
〈ω∨i ,β〉 = 〈λ,αi 〉 ∈ Z and 1

〈ω∨j ,β〉 = −〈λ,αj 〉 ∈ Z, where αi is the simple

root associated to the simple reflection si . Thus both ω∨i and ω∨j are minuscule coweights.

Hence both v and v −λ are special vertices in the base alcove. In cases (2)–(4), we can

show by a similar (but easier) argument that v and v −λ are still special vertices in the

base alcove.
The group of length 0 elements acts transitively on the set of special vertices of a, so

after applying the length-preserving automorphism of W̃ induced by such an element, we

may assume that v −λ is the origin in the base alcove. In other words, v = λ is a special
vertex in the base alcove, and hence λ is a minuscule coweight (recall that we excluded

the possibility that λ is central in our assumptions).

Corollary 11.5. Assume that W̃ is irreducible and tλ is non-central. If K ⊂ S̃ with
K � supp(tλτ−1), then K = S̃.

Proof. By Proposition 11.4, supp(tλτ−1) = S̃ or S̃ \ {s} for some simple reflection s,
corresponding to a special vertex. Thus if K � supp(tλτ−1), then supp(tλτ−1) = S̃ \ {s}
and K = S̃.

12. Maximal dimension

In this section, we prove Theorem 10.1.
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12.1. Preparations

The following result gives an explicit description of the set W (μ)fin introduced in

Section 10.1:

Proposition 12.1. Suppose that G is quasi-simple over F , i.e., σ acts transitively on the

set of irreducible components of W̃ . Suppose that μ is noncentral in G, i.e., the restriction

of μ to some irreducible component of W̃ is noncentral. Then

W (μ)fin = {λ ∈W0(μ) | tλ has an Ad(τ )◦σ -stable critical index}.
In particular, for any λ∈W (μ)fin, λ is minuscule, tλ has a unique Ad(τ )◦σ -stable critical

index and the corresponding vertex is special.

Proof. Without loss of generality, we may assume that G is adjoint. In this case, W̃ =
W̃1×W̃2×·· ·×W̃d and S̃= S̃1× S̃2×·· · S̃d , where W̃1 ∼= W̃2 ∼= . . . ∼= W̃d are irreducible.
We have μ = (μ1,μ2, . . . ,μd ). We may assume that μ1 is noncentral in W̃1. Let τ =
(τ1,τ2, . . . ,τd ).

For any subset K ⊆ S̃, WK is finite if and only if in each component of the Dynkin
diagram there is at least one vertex not contained in K . Hence, as we have remarked

before, λ has a critical index if and only if Wsupp(tλτ−1) is finite. In the case where case

the critical index is unique, we have that supp(tλ)= suppσ (tλ) if and only if the critical
index is Ad(τ )◦σ -stable.

Since μ is noncentral, elements of W0(μ) have at most one critical index, and we obtain

that the right-hand side is a subset of W (μ)fin.

Conversely, let λ = (λ1,λ2, . . . ,λd ) ∈ W0(μ) be an element in W (μ)fin. By Proposi-
tion 11.4, μ1 is minuscule, λ1 is of the form θ1(μ1) and tλ1 has a unique critical

index. Note that supp(tλ1τ−1
1 ) = S̃1 \ {s1} for some simple reflection s1 that corresponds

to the critical index of tλ1 . For 1 � i � d , let si = (Ad(τ ) ◦ σ)i−1(s1) ∈ W̃i . Then
S̃ \ {s1,s2, . . . ,sd } ⊂ suppσ (tλ). Note that for any K � S̃ \ {s1,s2, . . . ,sd }, WK is an infinite

group. Thus we have S̃ \ {s1,s2, . . . ,sd } = suppσ (tλ). In particular, (Ad(τ ) ◦ σ)d (s1) = s1.
And for each 1 � i � d , either λi is central or λi is minuscule noncentral and si is the
simple reflection corresponding to the critical index of tλi . Hence tλ has a critical index

which corresponds to s1s2 · · ·sd . Moreover, by construction, this is the unique Ad(τ )◦σ -

stable critical index.

The final part follows from Proposition 11.4, or from the equality of the two sets, since
all elements of the right-hand side have these properties.

Proposition 12.2. The set W (μ)fin is nonempty if and only if Jτ is quasi-split and μ

minuscule.

Proof. Since [τ ] is basic, Jτ is an inner form of G. It is quasi-split if and only if there

exists a collection � ⊂ S̃ of special vertices, one in each connected component of the
affine Dynkin diagram, such that Ad(τ ) ◦ σ(�) = �, i.e., the subset is fixed by the

twisted Frobenius corresponding to Jτ . If W (μ)fin is nonempty, then μ is minuscule

and Proposition 12.1 implies that Jτ is quasi-split.
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Conversely, suppose that Jτ is quasi-split and that μ is minuscule, so that tμ has a

critical index. Applying Proposition 12.1, it is enough to show that with �⊂ S̃ as before,

there exists a length-preserving automorphism θ of W̃ and λ ∈W0(μ) such that θ(λ)=μ

and �= S̃ \ supp(tλ). We may assume that G is adjoint. Then the subgroup of length 0
elements of W̃ acts transitively on the set of special vertices of the base alcove. Let θ be
induced by a length 0 element and such that λ := θ−1(μ) satisfies �= S̃\ supp(tλ). Then

λ ∈W0(μ) and hence λ ∈W (μ)fin.

12.2. Proof of Theorem 10.1

First assume that b is basic and W (μ)K,fin 	= ∅. By Proposition 3.2, K̆ ·σ ĬtλĬ ⊂ [τ ] for
λ ∈W (μ)K,fin. By Theorems 9.2 and 9.4, we see that dimX (μ,b)K = 〈μ,2ρ〉. For K = ∅,
if Jτ is quasi-split and μ is minuscule, then Proposition 12.2 shows W (μ)fin 	= ∅ and

hence dimX (μ,b)K = 〈μ,2ρ〉.
Now suppose that dimX (μ,b)K = 〈μ,2ρ〉. By Corollary 9.6, [b] = [τ ] is basic. We

next claim that the irreducible components of X (μ,τ)K of dimension 〈μ,2ρ〉 are the

irreducible components of the XK,tλ(τ ) of dimension 〈μ,2ρ〉, where λ∈W (μ)K,fin. Indeed,
by equation (2.12),

X (μ,τ)K =
⊔

x∈KAdm(μ)

XK,x (τ ).

Now for x ∈ KAdm(μ), dimXK,x (τ ) � dimXx (τ )= dimĬ(Ĭx Ĭ ∩ [τ ]) � dimĬ(Ĭx Ĭ)= 
(x ),

using Theorem 9.2 for the first and Theorem 9.4 for the final equality, which proves the
claim. In particular, W (μ)K,fin 	= ∅. On the other hand, XK,tλ(τ ) is equidimensional. In

fact, XK,tλ(τ ) is a disjoint union of copies of a classical Deligne–Lusztig variety by [10,

Prop. 5.7] and [9, Thm. 4.1.1, Thm. 4.1.2].

Finally, the map X (μ,b)→X (μ,b)K is surjective (cf. [19, Thm. 1.1]). Hence we deduce
from dimX (μ,b)K = 〈μ,2ρ〉 that dimX (μ,b) = 〈μ,2ρ〉. The previous reasoning applied

to K = ∅ implies W (μ)fin 	= ∅, and hence we deduce from Proposition 12.2 that Jτ is

quasi-split and μ minuscule. Theorem 10.1 is proved.

Remark 12.3. For any (G,μ) such that μ is minuscule, there exists an inner form H of G

such that dimXH(μ,τ)= 〈μ,2ρ〉, namely the one with Frobenius Ad(τ )◦σ . In particular,

this applies when G splits over F̆ , because then μ= μ.

13. Maximal equidimension

In this section, we prove Theorem 10.2.

13.1. Reduction to the fully Hodge–Newton decomposable case

Suppose that X (μ,b)K is equidimensional of dimension equal to 〈μ,2ρ〉. By Theorem 10.1,

[b]= [τ ] is basic and

X (μ,τ)K =
⋃

λ∈W (μ)K,fin

XK,tλ(τ ).
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We claim that (G,μ) is of fully Hodge–Newton decomposable type. In fact, by Theorem 3.1
it is enough to show that whenever w ∈ KAdm(μ) satisfies XK,w (τ ) 	= ∅, then Wsuppσ (w)

is finite. But then XK,w (τ ) ⊆ X (μ,τ)K and the equation gives XK,w (τ ) ⊆ XK,tλ(τ ) for

some λ ∈W (μ)K,fin. Now Theorem 9.3 shows that

K̆ ·σ ĬtλĬ =
⊔

{x∈KW̃ |x�K,σ tλ}
K̆ ·σ Ĭx Ĭ,

and this implies that

XK,tλ(τ )⊆
⊔

{x∈KW̃ |x�K,σ tλ}
XK,x (b).

We obtain that w �K,σ tλ for some λ ∈W (μ)K,fin. This implies suppσ (w) ⊆ suppσ (tλ),
so Wsuppσ (w) is finite.

Hence, by Theorem 3.5,

X (μ,τ)K =
⊔

x∈KAdm(μ)0

XK,x (b).

In particular, we have that X (μ,b)K is equidimensional of dimension equal to 〈μ,2ρ〉 if
and only if the following condition is satisfied:

(�) The set of maximal elements of KAdm(μ)0 with respect to the partial order �K,σ is

equal to {tλ | λ ∈W (μ)K,fin}.
We first check which cases satisfy (�) under the additional assumption that μ is

noncentral in every irreducible component: in Sections 13.2 and 13.3 we go through the

irreducible cases, and in Section 13.4 we check the remaining case, the Hilbert–Blumenthal
case. Finally, in Section 13.5 we explain how to deduce the general case where μ is allowed

to have central components.

13.2. Candidates for the irreducible cases

We first consider the case where W̃ is irreducible. Since X (μ,τ)K has dimension 〈μ,2ρ〉,
we have W (μ)K,fin 	= ∅. By Proposition 12.1, Ad(τ )◦σ fixes a special vertex in the affine

Dynkin diagram of W̃ . The fully Hodge–Newton decomposable cases with W̃ irreducible

and where Ad(τ )◦σ fixes a special vertex can be extracted from the table in Theorem 3.3

and are as follows (see the explanation after Theorem 3.4 for the notation):

(i) (Ãn−1,�n−1,ω
∨
1 ) for n � 2,

(ii) (Ã2m,ς0,ω
∨
1 ) for m � 1,

(iii) (Ã3,ς0,ω
∨
2 ),

(iv) (Ã3,�2,ω
∨
2 ),

(v) (B̃n,Ad(τ1),ω
∨
1 ) for n � 3,
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1774 U. Görtz et al.

(vi) (C̃2,Ad(τ2),ω
∨
2 ),

(vii) (D̃n,ς0,ω
∨
1 ) for n � 4.

Next we check when (�) is satisfied.

13.3. Case-by-case analysis

13.3.1. (Ãn−1,Ad(τn−1),ω
∨
1 ) for n � 2. Here the only possible K is ∅ and K̆= Ĭ. This

is the Drinfeld case, and B(G,μ) consists of a single element, namely [τ ]. In this case,
ĬAdm(μ)Ĭ ⊂ [τ ] and X (μ,τ) is equidimensional of dimension equal to 〈μ,2ρ〉.
13.3.2. (Ã2m,ς0,ω

∨
1 ) for m � 1. In this case, S̃Ad(τ )◦σ = {sm+1}. Thus the only

translation element in Adm(μ)0 is tλ, where λ=Ad(τn)(ω∨1 )∈ S̃\{sm }W̃ and supp(tλτ−1)=
S̃ \ {sm+1}. Therefore if λ ∈ W (μ)K,fin, then K ⊂ S̃ \ {sm}. Since K = σ(K ), we have

K ⊂ S̃\ {sm,sm+1}. In this case, sm+1τ ∈ KAdm(μ)0 and sm+1τ �K,σ tλ. This contradicts

(�).

13.3.3. (Ã3,ς0,ω
∨
2 ). In this case, S̃Ad(τ )◦σ = {s1,s3}. Thus the only translation elements

in Adm(μ)0 are s1s2s0s1τ and s3s2s0s3τ . Therefore if W (μ)K,fin 	= ∅, then s1 /∈ K or

s3 /∈ K . Since K = σ(K ), both s1 and s3 are not in K . In this case, s1s3τ ∈ KAdm(μ)0,

s1s3τ �K,σ s1s2s0s1τ and s1s3τ �K,σ s3s2s0s3τ . This contradicts (�).

13.3.4. (Ã3,Ad(τ2),ω
∨
2 ). We first consider the case where K = ∅. In this case, the

maximal elements in KAdm(μ)0 are s2s1s3s2τ , s3s2s0s3τ , s0s1s3s0τ and s1s2s0s1τ , and
(�) is satisfied.

If K = {s0,s2}, then the maximal elements in KAdm(μ)0 are s3s2s0s3τ , s1s2s0s1τ , s1s3s0τ
and s1s3s2τ . This contradicts (�).

13.3.5. (B̃n,Ad(τ1),ω
∨
1 ) for n � 3. By Proposition 12.1, W (μ)fin = {ω∨1 ,Ad(τ1)(ω

∨
1 )}.

Note that

tω∨1 ∈ SW̃ and supp(tω∨1 τ−1)= S̃\ {s1};
tAd(τ1)(ω∨1 ) ∈ S̃\{s1}W̃ and supp(tAd(τ1)(ω∨1 )τ−1)= S.

Thus if KAdm(μ)0 contains some of these translation elements and K = σ(K ), then

K ⊂ S̃\{s0,s1}. In this case, s0s1τ ∈ KAdm(μ)0, s0s1τ �K,σ tω∨1 and s0s1τ �K,σ tAd(τ1)(ω∨1 ).
This contradicts (�).

13.3.6. (C̃2,Ad(τ2),ω
∨
2 ). In this case, S̃Ad(τ )◦σ = {s0,s1,s2}. The only translation ele-

ments in Adm(μ)0 are s0s1s0τ and s2s1s2τ . Therefore if W (μ)K,fin 	= ∅, then s0 /∈ K or

s2 /∈ K . Since K = σ(K ), both s0 and s2 are not in K . In this case, s0s2τ ∈ KAdm(μ)0,

s0s2τ �K,σ s0s1s0τ and s0s2τ �K,σ s2s1s2τ . This contradicts (�).

13.3.7. (D̃n,ς0,ω
∨
1 ) for n � 4. In this case, the special vertices that are fixed by Ad(τ )◦

σ are n − 1 and n. By Propositions 11.4 and 12.1, the elements of W (μ)fin are of the

https://doi.org/10.1017/S1474748020000730 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000730


Extremal cases of Rapoport–Zink spaces 1775

form θ(μ), where θ runs over a length-preserving automorphism such that θ ◦Ad(τ )(S) is
Ad(τ )◦σ -stable. In this case, θ sends the vertices {0,1} to the vertices {n−1,n}. We have

that K ⊂ S̃ \ {sn−1} or K ⊂ S̃ \ {sn}. Since K = σ(K ), we have K ⊂ S̃ \ {sn−1,sn}. Then
we have sn−1snτ ∈ KAdm(μ)0. On the other hand, we have supp(t θ(μ)τ−1)⊂ S̃\ {sn−1} or
supp(t θ(μ)τ−1)⊂ S̃\ {sn}. Thus sn−1snτ �K,σ t θ(μ). This contradicts (�).

13.4. The reducible case

We consider the case where W̃ is reducible (cf. Theorem 3.4). Let us first assume that

μ is noncentral in each factor, so it is of type (Ãn−1× Ãn−1,
1ς0,(ω

∨
1 ,ω∨n−1)). There are

two copies of the affine Dynkin diagram of type Ãn−1, and we label the vertices by i and

i ′, respectively, where i,i ′ ∈ Z/nZ. The Frobenius σ acts by 1ς0, which exchanges the

vertex i with i ′ for any i . The Ad(τ )◦σ -orbits on S̃ are {si,s(i−1)′ } for i ∈ Z/nZ. If K = ∅,
then the maximal elements in KAdm(μ)0 are (sisi−1 · · ·si−n+2)(s(i−n+1)′ · · ·s(i−2)′s(i−1)′)τ
for i ∈ Z/nZ. They are all translation elements. Hence (�) is satisfied.

Now suppose that K 	= ∅. Without loss of generality, we may assume that {s0,s0′ } ⊂
K . Then (sn−1sn−2 · · ·s2)(s1′s2′ · · ·s(n−1)′)τ is a maximal element in KAdm(μ)0. This

contradicts (�).

13.5. The general case

Finally, let us reduce the general case to the case where μ is noncentral in each component.
Given (G,μ), we may assume that G is adjoint, and we construct (G′,μ′) as in Section 2.7.

Since we have already shown that (G,μ) is fully Hodge–Newton decomposable, μ is

minute. This implies that μ′ is minute, and hence we see that the Dynkin type of (G′,μ′)
is one of the types in Theorem 3.3. The only possibilities for (G,μ) then are the following:

• All μϕ , except for one, are central, and the component where μ is noncentral is as in

Theorem 3.3.

• All μϕ , except for two, are central, and the two components where μ is noncentral give

rise to the Hilbert–Blumenthal case (Ãn−1× Ãn−1,(ω
∨
1 ,ω∨n−1)).

The components where μ is central do not contribute to the set KAdm(μ)0, so the

analysis of whether (�) is satisfied is exactly the same as in the previous sections.

14. Lattice interpretation of the maximal equidimensional cases

In this section, we go through the list in Theorem 10.2 under the assumption that μ is

noncentral in each factor of W̃ and give lattice interpretations of X (μ,τ)K in each case.

14.1. The Drinfeld case

Let (N ,φ) be an F̆ -vector space of dimension n, equipped with a σ -linear automorphism

isoclinic of slope 0. Then we have

X (μ,τ)K =
⊔
v∈Z
{M• |Mi+1 ⊃ φ(Mi),∀i, vol(M0)= v}. (14.1)
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Here M• is a periodic OF̆ -lattice chain with period n. The decomposition indexed by v
corresponds to the decomposition of the affine flag variety into connected components.

In this case, we can identify the set in equation (14.1) as the set of points of a π -adic

formal scheme, as follows. We fix an embedding of F into an algebraic closure Q̄p of
Qp . Let B be a central division algebra over F with invariant 1/n. Up to isomorphism,

there is a unique special formal OB -module of F -height n2 over F̄p (cf. [33, Lem. 3.60]).

Taking this as a framing object over F̄p , we obtain a formal scheme N over Spf OF̆ which

represents the functor of special formal OB -modules together with a quasi-isogeny framing
(cf. [33, § 3.59]). It is a π -adic formal scheme [33, Prop. 3.62] which is flat over OF̆ [33,

§ 3.69, Thm. 3.72]. Then the set in equation (14.1) can be identified with N(F̄p), and the

elements of the set in equation (14.1) for v = 0 with the connected component N o(F̄p) of
height zero elements. Indeed, let F̃/F be an unramified subfield of B of degree n, with a

fixed embedding F̃ ↪→ F̆ , and let � denote a uniformiser in OB which satisfies �n = π

such that � normalises F̃ and induces on F̃ the Frobenius generator of the Galois group
Gal(F̃/F ). Let (V̆ ,�) be the F -isocrystal of the framing object. Let

V̆ =
⊕

k∈Z/n

V̆k

be the eigenspace decomposition under F̃ . Then � is an endomorphism of degree 1,
and so is �. Then set N = V̆0, φ =�−1�. The decomposition OF̃ ⊗OF OF̆ =⊕k∈Z/nOF̆
induces for the OF -Dieudonné module M̃ of a special formal OB -module in N (F̄p) a

decomposition

M̃ =
⊕

k∈Z/n

M̃k .

Then �(M̃k ) ⊂ M̃k+1 and �(M̃k ) ⊂ M̃k+1, with both inclusions of colength 1. Then the
lattice chain M• in the set in equation (14.1) is given as Mi =�−iM̃[i], where [i ] ∈ Z/n
denotes the residue class of i .
The formal scheme N is an RZ-space NDZp

, corresponding to the following RZ-data D
(cf. [33, Def. 3.18]). Let V be a free B -module of rank 1. Let V̆ =V ⊗F F̆ . Let b ∈GLB (V̆ )

such that the relative isocrystal (V̆ ,b(id⊗ σ)) is isoclinic of slope 1/n. The conjugacy

class μ is given by (1,0, . . . ,0) for the fixed embedding of F into Q̄p in an identification of
GLB (V ) with GLn after extension of scalars to F , and trivial for all other embeddings

of F into Q̄p . The integral RZ-data DZp are given by the unique maximal order OB of B
and the periodic lattice chain L= {�iOB | i ∈ Z}.

14.2. The case D2/4

Let (N ,φ) be an isocrystal of dimension 4, where φ is a σ -linear automorphism isoclinic
of slope 0. Then we have

X (μ,τ)K =
⊔
v∈Z
{M• |Mi+2 ⊃ φ(Mi),∀i, vol(M0)= v}. (14.2)

Here M• is a periodic lattice chain with period 4. The decomposition indexed by v
corresponds to the decomposition of the affine flag variety into connected components.
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14.3. The Hilbert–Blumenthal case

Let (N ,φ) be a σ 2-isocrystal of dimension n, where φ is a σ 2-linear automorphism isoclinic

of slope 0. Then we have

X (μ,τ)K =
⊔
v∈Z
{(M• M ′

•) | πφ(Mi)⊂M ′
i ⊂1 Mi,∀i, vol(M0)= v}. (14.3)

Here M• and M ′• are maximal periodic lattice chains in N . The decomposition indexed by
v corresponds to the decomposition of the affine flag variety into connected components.

15. Application to p-adic uniformisation

In this section we assume F = Qp . As explained in Section 14.1, the RZ-space
corresponding to case (1) of Theorem 10.2 is π -adic. In this section we explain various

criteria which show that the corresponding sets in cases (2) and (3) of Theorem 10.2 do not

come from RZ-spaces which are π -adic formal schemes. Here we implicitly appeal to the
uniqueness result [21, Prop. 4.4] that the RZ-space (which a priori depends on integral

RZ-data DZp ; cf. [21]) depends only on the tuple (G,μ,b,K ). To apply this result, we

assume that G splits over a tamely ramified extension of F .

15.1. Via change of parahoric

We note the following consequence of Theorem 10.2:

Corollary 15.1. Assume that G is quasi-simple over F and that μ is noncentral. Then

X (μ,τ)K is equidimensional of dimension equal to 〈μ,2ρ〉 for every parahoric subgroup

K if and only if the pair (�̃,σ ) is isomorphic to ResFd /F (Ãn−1,�n−1), where as before
�n−1 denotes rotation by n − 1 steps and Fd/F is unramified of degree d . Writing μ =
(μ1, . . . ,μd ), there is a unique i such that μi is noncentral and μi = ω∨1 . In this case,

K = ∅ corresponds to the unique parahoric subgroup.

The significance of this corollary is given by the following fact. Let E be the reflex field
of (G,μ), i.e., the field of definition of μ. Let X be a formal scheme over Spf OĔ with

underlying reduced scheme X (μ,τ)K . We assume that X is flat over Spf OĔ and that its

generic fibre, i.e., the associated rigid space Xrig, is smooth of dimension 〈μ,2ρ〉. Let π be

a uniformiser of OĔ . Assume that the formal scheme X is π -adic, i.e., π generates an ideal
of definition of X. Equivalently, the ideal J of X (μ,τ)K satisfies J = rad(πOX) (radical

ideal). Then X (μ,τ)K is equidimensional of dimension 〈μ,2ρ〉. Indeed, then X (μ,τ)K
coincides with the special fibre of X, which is equidimensional of the same dimension as
its generic fibre.

Let K ⊂ K ′. Let X (resp., X′) be a normal flat formal scheme over Spf OĔ with

underlying reduced scheme X (μ,τ)K (resp., X (μ,τ)K ′), and let f : X→ X′ be a proper
morphism inducing the natural map X (μ,τ)K → X (μ,τ)K ′ and such that f is a finite

morphism in the generic fibres. Let J (resp., J ′) be the ideal of definition of X (resp.,

X′).
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Lemma 15.2. The equality J = rad(πOX) holds if and only if J ′ = rad(πOX′).

In other words, X is a π -adic formal scheme if and only if X′ is.

Proof. Assume J ′ = rad(πOX′). The morphism f is adic, hence f ∗(J ′) is an ideal of

definition of X which is contained in J , as the latter is a maximal ideal of definition.
Hence J = rad(πOX) is clear. For the other direction, let f̃ : X → X̃′ be the Stein

factorisation of f . Then the normality of X̃′ implies f̃∗(OX) = O
X̃′ . On the other hand,

for the maximal ideal of definition J̃ ′ of X̃′, we have J̃ ′ ⊂ f̃∗(f̃ ∗(J̃ ′)) ⊂ f̃∗(J ). Hence

J̃ ′ ⊂ f̃∗(J ) = f̃∗(rad(πOX)) = rad(π f̃∗(OX)) = rad(πO
X̃′), and hence X̃′ is π -adic. But

the normality of X′ implies that OX′ ∩πO
X̃′ = πO

X̃′ . Hence, since X̃′ is a π -adic formal

scheme, so is X′.

15.2. Via formal branches

In this subsection, we argue via the local structure of RZ-spaces. Let (G,μ,K ) be the

corresponding local model triple over F , and Mloc(G,μ)K be the local model over OE , in

the sense of [21]. Then the special fibre M
loc

(G,μ)K is a closed subset of the loop group

partial affine flag variety LG′/L+K̆′,

A(μ,τ)K = {gK̆ ∈ Ğ ′/K̆′ | g ∈ K̆′Adm(μ)K̆′}. (15.1)

By the local model diagram, the singularities of the RZ-space M(G,μ,b)K corresponding

to (G,μ,b,K ) are modeled by Mloc(G,μ)K . More precisely, for any x ∈M(G,μ,b)K (k),

there exists y ∈ Mloc(G,μ)K (k) such that the strict Henselisations at x and at y are
isomorphic. Furthermore, for b = τ , under the identification M(G,μ,τ)K (k)= X (μ,τ)K
the point x0 = eK̆ is realised by the point y0 = τ ∈ A(μ,τ)K . Hence we have an

identification

{formal branches of the special fibre of M(G,μ,τ)K through x0} =
{extreme elements of KAdm(μ)}. (15.2)

On the other hand, the extreme elements of KAdm(μ) can be identified with

KAdm(μ)o := {λ ∈W0(μ) | tλ ∈ KW̃ }. (15.3)

Therefore, we deduce from Theorem 10.1 the following criterion:

Theorem 15.3. The RZ-space M(G,μ,τ)K is π-adic if and only if the inclusion

W (μ)K,fin ⊂ KAdm(μ)o is an equality.

This theorem again excludes cases (2) and (3) of Theorem 10.2. Indeed, in these cases

K = ∅ and the following elements are in Adm(μ)o \W (μ)fin:
Case (2): s1s3s2s0τ .
Case (3): s0sn−1 · · ·s2s0′s(n−1)′ · s2′τ .
Here, in the last line, we use the notation from Section 13.4.
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15.3. Via non-Archimedean uniformisation

To put the foregoing results into context, let us explain how to view Theorem 10.2 using

global methods, i.e., the theory of Shimura varieties. This allows us to ‘see’ all Newton

strata at once, which is not possible within one fixed RZ-space.

In each case of Theorem 10.2, we can construct a Shimura pair (G,{hG}) of PEL-type
which yields after localisation at p the pair (G,μ). Let K = KpKp ⊂ G(Af ) = G(Ap

f )×
G(Qp), with Kp =K . Let E=E(G,{hG}) be the global Shimura field and fix an embedding

Q⊂Qp which determines a p-adic place ν of E with E = Eν .
Let SK = S(G,{hG})K be the Pappas–Zhu model of the Shimura variety S (G,{hG})K over

OE . Then the Newton map

δK : SK(Fp)→ B(G,μ) (15.4)

is surjective (cf. [23, §9]). In case (1) of Theorem 10.2, the set B(G,μ) consists only

of the unique basic element [τ ] of B(G,μ) (cf. [25]); in cases (2) and (3) there are

additional elements besides [τ ] (in case (2), one additional element). It follows that
in cases (2) and (3), the closed subset SK,basic with SK,basic(Fp) = δ−1

K ([τ ]) is a proper

closed subset of the special fibre SK of SK. Hence, in cases (2) and (3), the formal

completion S∧K/SK,basic
is a formal scheme over Spf OE that is not π -adic. However, by

non-Archimedean uniformisation [33, Ch. 6], there is an isomorphism of formal schemes

over Spf OĔ ,

S∧K/SK,basic
×SpfOE Spf OĔ !G(Q)\[M(G,μ,τ)K ×G(Ap

f )/Kp ].

It follows in cases (2) and (3) that the formal scheme M(G,μ,τ)K is not π -adic.

16. Proof of Theorems 1.4 and 1.5

For Theorem 1.4, all that remains to be shown after Theorem 10.1 is the assertion
that W (μ)K,fin parametrises the orbits of Jb(F ) on the set of irreducible components

of dimension 〈μ,2ρ〉 of X (μ,b)K .

By Theorem 10.1, the union of the irreducible components of maximal dimension is
equal to ∪λ∈W (μ)K,fin

XK,tλ(b). Note that each XK,tλ(b) is stable under the action of Jb(F ).

Moreover, the natural map from the set of irreducible components of XK,tλ(b) to the set of

irreducible components of XK,tλ(b) is bijective and Jb(F )-equivariant. It remains to show
that for any λ ∈W (μ)K,fin, Jb(F ) acts transitively on the set of irreducible components

of XK,tλ(b).

The natural projection map Ğ/Ĭ→ Ğ/K̆ induces the surjection Xtλ(b)→XK,tλ(b), and

this map is Jb(F )-equivariant. Moreover, since λ ∈W (μ)K,fin, Wsuppσ (tλ) is finite. By [9,

Prop. 2.2.1], we have Xtλ(b)∼= Jb(F )×Jb (F )∩K̆ Y (w), where K̆ is the parahoric subgroup
associated to suppσ (tλ) and Y (w) is the classical Deligne–Lusztig variety associated to

w in the finite dimensional flag variety K̆/Ĭ. By [29, Ex. 3.10 d)] (cf. also [7, Cor. 1.2]),

Y (w) is irreducible. Hence Jb(F ) acts transitively on the set of irreducible components
of Xtλ(b), and hence transitively on the set of irreducible components of XK,tλ(b).

Theorem 1.5 is deduced from Theorem 10.2 just as Theorems 1.1 and 1.2 are deduced

from Theorems 4.1 and 4.2. Corollary 1.6 follows from Theorem 1.5 by the observation
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that in cases (2) and (3) there are F -rational parahoric level structures other than the

Iwahori level (cf. Corollary 15.1).

Theorem 1.7 follows from the fact that the integral RZ-data DZp are of extended
Drinfeld type if (G,μ,K ) is of type (1) in Theorem 1.4 (here the key is the fact that

we assume that the first entry of a rational RZ-datum is a field extension of Qp , so that

the case of a fake unitary group is excluded).
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1782 U. Görtz et al.

[36] J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations, and
L-Functions, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc., no. 33,
vol. 1, pp. 29–69 (Providence, R.I., 1979).

[37] E. Viehmann, Moduli spaces of local G-shtukas, in Proceedings of the International
Congress of Mathematicians 2018, Vol. 2, pp. 1443–1464 (World Sci. Publ., Hackensack,
NJ, 2018).

[38] I. Vollaard, The supersingular locus of the Shimura variety for GU (1,s), Canad. J.
Math. 62 (2010), 668–720.

[39] I. Vollaard and T. Wedhorn, The supersingular locus of the Shimura variety of
GU(1,n-1) II, Invent. Math. 184 (2011), 591–627.

[40] J.-F. Wintenberger, Existence de F -cristaux avec structures supplémentaires, Adv.
Math. 190 (2005), 196–224.

[41] X. Zhu, Affine Grassmannians and the geometric Satake in mixed characteristic, Ann. of
Math. (2) 185 (2017), 403–492.

https://doi.org/10.1017/S1474748020000730 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000730

	1 Introduction
	2 Preliminaries
	2.1 The Iwahori–Weyl group
	2.2 Admissible sets and acceptable sets
	2.3 Affine Deligne–Lusztig varieties
	2.4 Fine affine Deligne–Lusztig varieties
	2.5 The decomposition of X(μ, b)K
	2.6 Tits data
	2.7 Reduction to -simple groups

	3 Fully Hodge–Newton decomposable case
	3.1 The σ-support
	3.2 Classification of fully Hodge–Newton decomposable pairs (G, μ)
	3.3 Basic case

	4 Statement of results
	4.1 Change of parahoric
	4.2 The Lubin–Tate case
	4.3 The exotic case

	5 Proof of (1) (2) in Theorems 4.1 and 4.2
	5.1 Preparations
	5.2 Reduction to the case where G is quasi-simple over 
	5.3 Reduction to the case (˜An-1, ω1)
	5.4 The case (˜An-1, ω1)

	6 Proof of (2) (1) in Theorem 4.2
	6.1 Compatibility of the map pK, τ
	6.2 Partial conjugation
	6.3 The fibres of the map π'K, K'
	6.4 The fibres of the map πK, K'
	6.5 Proof of Theorem 6.4
	6.6 The case (˜An-1, id, ω1)
	6.7 The case (˜An-1, ς0, ω1)

	7 Lattice interpretation of the minimal cases
	7.1 The Lubin–Tate case
	7.2 The exotic case
	7.2.1 The isocrystal
	7.2.2 The space of lattices
	7.2.3 The action of Frobenius
	7.2.4 The parahoric RZ-space
	7.2.5 Reduction to the case c=0
	7.2.6 Nonmaximal level structure
	7.2.7 Description of fibres
	7.2.8 Description of fibres: General case
	7.2.9 Connection with group theory
	7.2.10 Description of fibres and the EKOR stratification
	7.2.11 The EKOR stratification in the case of signature (1, 2)


	8 Proof of Theorems 1.1 and 1.2
	9 Dimension of affine Deligne-Lusztig varieties
	9.1 Admissible sets
	9.2 Closure relations of fine affine Deligne–Lusztig varieties

	10 Statement of results
	10.1 Criterion for maximal dimension
	10.2 Classification of maximal equidimensional cases

	11 Critical index set
	11.1 Critical index set
	11.2 Quasi-rigid set

	12 Maximal dimension
	12.1 Preparations
	12.2 Proof of Theorem 10.1

	13 Maximal equidimension
	13.1 Reduction to the fully Hodge–Newton decomposable case
	13.2 Candidates for the irreducible cases
	13.3 Case-by-case analysis
	13.3.1 (˜An-1, Ad(τn-1), ω1) for n ≥2
	13.3.2 (˜A2m, ς0, ω1) for m ≥1
	13.3.3 (˜A3, ς0, ω2)
	13.3.4 (˜A3, Ad(τ2), ω2)
	13.3.5 (˜Bn, Ad(τ1), ω1) for n ≥3
	13.3.6 (˜C2, Ad(τ2), ω2)
	13.3.7 (˜Dn, ς0, ω1) for n ≥4

	13.4 The reducible case
	13.5 The general case

	14 Lattice interpretation of the maximal equidimensional cases
	14.1 The Drinfeld case
	14.2 The case D2/4
	14.3 The Hilbert–Blumenthal case

	15 Application to p-adic uniformisation
	15.1 Via change of parahoric
	15.2 Via formal branches
	15.3 Via non-Archimedean uniformisation

	16 Proof of Theorems 1.4 and 1.5

