ON NON-ANTICIPATIVE LINEAR TRANSFORMATIONS
OF GAUSSIAN PROCESSES WITH
EQUIVALENT DISTRIBUTIONS

YU. A. ROZANOV

Let $\xi(t)$, $t \in T$, be a Gaussian process on a set T, and $H = H(\xi)$ be
the closed linear manifold generated by all values $\xi(t)$, $t \in T$, with the
inner product
$$\langle \eta_1, \eta_2 \rangle = E\eta_1\eta_2; \quad \eta_1, \eta_2 \in H.$$ We suppose that the Hilbert space H is separable.

Let \mathcal{A} be a linear operator on H; we call a random process of the
form
$$\eta(t) = \mathcal{A}\xi(t), \quad t \in T,$$
a linear transformation of the process $\xi(t)$, $t \in T$. One says that a linear
transformation \mathcal{A} is non-anticipative, if
$$\mathcal{A}H_s(\xi) \subseteq H_s(\xi), \quad t \in T,$$
where $H_s(\xi)$ denotes the subspace in H, which is generated by all values
$\xi(s)$, $s \leq t$.

Let P be a probability distribution of the Gaussian process $\xi = \xi(t)$,
$\xi \in T$, in some measurable space (X, \mathcal{B}, P) of (trajectories) $x = x(t)$, $t \in T$,
where σ-algebra \mathcal{B} is generated by all sets $\{x(t) \in B\}$ ($t \in T$), B are Borel
sets on the real line, so P is determined by finite-dimensional distributions of the random process $\xi = \xi(t)$, $t \in T$. Let Q be a probability distributions of the Gaussian process $\eta = \eta(t)$, $t \in T$, represented by the
formula (1). According to well known Feldman's theorem (see, for example, [1]), Q is equivalent to P ($Q \sim P$) if and only if the operator
$$B = \mathcal{A}^* \mathcal{A}$$
is invertible and $I - B \in S_2$, where S_2 denotes the class of all Hilbert-
Schmidt operators in H.

Received January 18, 1972.
The operator B connects with the correlation function $B(s, t)$ of the Gaussian distribution Q as

$$B(s, t) = \langle B\xi(s), \xi(t) \rangle, \quad s, t \in T;$$

let us call B the correlation operator of Q. Obviously, for any equivalent distribution Q (i.e. Q has strictly positive correlation operator B, such that $I - B \in S_2$), there is a linear transformation (1), which gives us a Gaussian process $\gamma(t), t \in T$, with the distribution Q: the general operator \mathcal{A}, which satisfies the condition (3), has the form

$$\mathcal{A} = V B^{1/2}$$

where V is an arbitrary unitary operator in H. Let us consider a linear transformation (1) with $\mathcal{A} = I - \Delta$:

$$\gamma(t) = \xi(t) - \Delta \xi(t), \quad t \in T.$$

It is more convenient to reformulate Feldman's theorem in the following way: $Q \sim P$ if and only if $I - B^{1/2} \in S_2$ and 1 does not belong to the spectrum of $I - B^{1/2}$. Indeed, $I - B \in S_2$ if and only if

$$(I - B^{1/2}) = (I - B)(I + B^{1/2})^{-1} \in S_2.$$

It is easy to see that for any operator $\Delta \in S_2$, which has no eigenvalue equal to 1, the random process $\gamma(t), t \in T$, of the form (6) has the equivalent distribution Q with the correlation operator, because

$$I - B = \Delta + \Delta^*(I - \Delta) \in S_2.$$

But the condition $\Delta \in S_2$ is not necessary for the equivalence $Q \sim P$. Namely, by the formula (5) we have

$$\Delta = I - V B^{1/2},$$

where V is some unitary operator and (for the equivalent distribution Q) $I - B^{1/2} \in S_2$; obviously $\Delta \in S_2$ if and only if $[\Delta - (I - B^{1/2})]B^{-1/2} = I - V \in S_2$.

Then we shall be interested in the linear transformation (6) with operators $\Delta \in S_2$. As we have obtained, it holds true if and only if

$$I - V \in S_2$$

where V is an unitary operator connected with the operator Δ by the formula (7): $\Delta = I - V B^{1/2}$. According to Feldman's theorem any trans-
formation (6) such that $\Delta \in S$ and 1 does not belong to the spectrum Δ

We shall be interested also in a such property of the linear transformation (6) as to be non-anticipative that means

$$\Delta H_t(\xi) \subseteq H_t(\xi), \quad t \in T. \tag{9}$$

In the resent time it was paid attention for non-anticipative transformations in connection with Hitsuda's result [2] for the Wiener process $\xi(t), 0 \leq t \leq 1$: any Gaussian process $\eta(t), 0 \leq t \leq 1$, with an equivalent probability distribution can be represent in the form

$$\eta(t) = \xi(t) - \int_0^t \left[\int_u^t \Delta(u, s)d\xi(u) \right] ds \tag{10}$$

where $\Delta(t, s); 0 \leq t, s \leq 1$,

$$\Delta(t, s) = 0, \quad s < t, \tag{11}$$

$$\int_0^t \Delta(t, s)^2 dtds < \infty. \tag{12}$$

Though in the paper [2] it was used some theorems on the martingales, it was clear that the representation (10) can be obtained as a result of the theory of operators in a Hilbert space: the formula (10) is given by a non-anticipative transformation (6) with $\Delta \in S$ in the case of Wiener process $\xi(t), 0 \leq t \leq 1$. The existense of such transformation in the general case follows from non-trivial Gohberg-Krein's theorems on so-called special factorization; namely, any positive operator B of the type

$$B = (I - F) = (I - G)^{-1} \tag{13}$$

(F and $G = -FB^{-1}$ belong S)

can be represented in the form

$$B = (I + X)\mathcal{D}(I + X^*)$$

where $(I + X)$ is invertible, $X \in S$ and $\mathcal{D} \geq 0$; besides the operators X and \mathcal{D} satisfy the condition

$$XH_t \subseteq H_t, \quad \mathcal{D}H_t \subseteq H_t \quad (t \in T)$$

for a given monotone family of subspaces $H_t, t \in T$ ($H_s \subseteq H_t$ if $s \leq t$) (see the theorems 6.2 Ch. IV and 10.1 Ch. I in the book [3]). It is clear that for $H_t = H_t(\xi), t \in T$, the operator
satisfies the conditions (2) and (3), so the corresponding linear transformation (6) with $\mathcal{A} = I - \mathcal{A}$ will be non-anticipative. This proof of the existence of non-anticipative representations (6) for Gaussian processes $\gamma(t)$, $t \in T$, with equivalent distributions was suggested recently by Kallianpur and Oodaira [4] (in the case of Wiener process $\xi(t)$, $0 \leq t \leq 1$, it was done earlier by Kailath [5]). We should like to do the following essential note: for the operator \mathcal{A}, which was mentioned above (see (14)) it holds true that

$$\Delta = I - \mathcal{A} \in S_1,$$

so for any Gaussian process $\xi(t)$, $t \in T$, there is a non-anticipative Gaussian process $\eta(t) = \xi(t) - \Delta \xi(t)$, $t \in T$ (where $\Delta \in S_1$ satisfies the condition (9)) with a given equivalent probability distribution.

Indeed, in the representation (13) we have $(I + X)^{-1} = I + \mathcal{I}$, $\mathcal{I} = -X(I + X)^{-1} \in S$, and the operator \mathcal{D} has a form

$$\mathcal{D} = (I + \mathcal{I})(I - F)(I + \mathcal{I}^*) = I + V$$

where

$$V = \mathcal{I}(I - F)(I + \mathcal{I}^*) - F(I + \mathcal{I}^*) + \mathcal{I}^* \in S_1.$$

From relations

$$\mathcal{D}^{1/2} = (I + V)^{1/2} = I + W,$$

$$I + V = (I + W)^2 = I + W(2I + W) = I + W(I + \mathcal{D}^{1/2}),$$

we obtain that

$$W = V(I + \mathcal{D}^{1/2})^{-1} \in S_2,$$

so

$$\Delta = I - \mathcal{A} = I - (I + X)\mathcal{D}^{1/2}$$

$$= I - (I + X)(I + W) = -X(I + W) - W \in S_1.$$

It is worth to pay attention for the following fact: the linear transformation (6) with the operator $\mathcal{A} = I - \Delta$ of the form (14) is such that

$$H_t(\xi) = H_t(\eta), \quad t \in T.$$
Indeed, for the invertible positive operator $\mathcal{D}^{1/2} : \mathcal{D}^{1/2} H_t(\xi) \subseteq H_t(\xi)$, we have

$$\mathcal{D}^{1/2} H_t(\xi) = H_t(\xi)$$

because in a contrary case there is an element $h \in H_t(\xi)$, such that $h \perp \mathcal{D}^{1/2} H_t(\xi)$ and $\mathcal{D}^{1/2} h = 0$. Remind that a Volterra operator X has only one point of a spectra equal to 0, so for the operator $(I + X)$ in the formula (14), $(I + X) H_t(\xi) \subseteq H_t(\xi)$, we have

$$(I + X) H_t(\xi) = H_t(\xi) .$$

Now it is obvious that the operator $\mathcal{A} = (I + X) \mathcal{D}^{1/2}$ satisfies the condition (16).

Let us consider a few examples of non-anticipative representations (6) with $\mathcal{A} \in S_x$.

EXAMPLE 1. Let $\xi(t)$, $0 \leq t \leq 1$, be a Gaussian process with stationary increments:

$$\xi(t) = \int_{-\infty}^{\infty} e^{i\lambda t} - \frac{1}{i\lambda} \Phi(d\lambda) ,$$

which has a spectral density $f(\lambda)$ of the type:

$$0 < \lim_{\lambda \to -\infty} f(\lambda) \leq \lim_{\lambda \to +\infty} f(\lambda) < \infty$$

(if $f(\lambda) = 1/2\pi$, we deal with Wiener process $\xi(t)$, $0 \leq t \leq 1$).

The corresponding space H consists of all random variables

$$\gamma = \int_{-\infty}^{\infty} \varphi(\lambda) \Phi(d\lambda) = \int_{0}^{1} \epsilon(t) \hat{\xi}(t) dt$$

where functions $\epsilon(t)$, $0 \leq t \leq 1$, belonging to $L^2[0,1]$, and $\hat{\xi}(t)$ is the generalized derivative of process $\xi(t)$; besides\(^1\)

$$\|\gamma\|^2 = \int_{-\infty}^{\infty} |\varphi(\lambda)|^2 d\lambda \bigcup_{0}^{1} \epsilon(t)^2 dt$$

\(^1\) The relation $\alpha \succ \beta$ between variables α, β means that

$$0 < c_1 \leq \frac{\alpha}{\beta} \leq c_2 < \infty .$$
YU. A. ROZANOV

(see, for example, [1] or [6]), and the formula (18) gives us the isomorphism between H and $L^2[0,1]$ such that

$$H_i(\xi) \leftrightarrow L^2[0,1], \quad 0 \leq t \leq 1,$$

(20)

where $L^2[0,1]$ denotes the subspace of all functions $c(s), \ 0 \leq s \leq 1; c(s) = 0$ for $s > t$. As it follows from the conditions (19) and (20), the formula

$$\Delta \eta = \int_0^t [\hat{A} c(t)] \hat{\xi}(t) dt$$

gives us the isomorphism $\Delta \leftrightarrow \hat{\Delta}$ between Hilbert-Schmidt operators in H and $L^2[0,1]$, and an operator Δ satisfies the condition (9) if and only if

$$\hat{\Delta} L^2[0,1] \subseteq L^2[0,1], \quad 0 \leq t \leq 1,$$

that is equivalent to the condition (11) for a corresponding kernel $\Delta(t,s)$:

$$\hat{\Delta}c(t) = \int_0^t \Delta(t,s)c(s)ds, \quad 0 \leq t \leq 1,$$

(remind $\hat{\Delta} \in S$ if and only if $\Delta(t,s); 0 \leq t, s \leq 1,$ satisfies the condition (12)). Thus any non-anticipative operator $\Delta \in S$ can be described by the formula

$$\Delta \eta = \int_0^t [\int_0^t \Delta(t,s)c(s)ds] \hat{\xi}(t) dt$$

(21)

with a Volterra, Hilbert-Schmidt kernel $\Delta(t,s); 0 \leq t \leq 1$. For variables $\xi(t), 0 \leq t \leq 1$, which correspond to the functions

$$c(s) = \begin{cases} 1, & 0 \leq s \leq t, \\ 0, & s > t, \end{cases}$$

we obtained from the formula (21) a general non-anticipative transformation (6) with $\Delta \in S$ as

$$\eta(t) = \xi(t) + \int_0^t \int_0^s \Delta(u,s)\dot{\xi}(u)du ds, \quad 0 \leq t \leq 1,$$

(22)

that gives us Hitsuda's representation (10) in the case of Wiener process $\xi(t), 0 \leq t \leq 1$.

Example 2. Let $\xi(t), 0 \leq t \leq 1$, be a Gaussian stationary process:
\[\xi(t) = \int_{-\infty}^{\infty} e^{it\lambda} \phi(d\lambda) \]

with a spectral density \(f(\lambda) \) of the type

\[0 < \lim_{\lambda \to \pm\infty} \lambda^{2n} f(\lambda) \leq \lim_{\lambda \to \pm\infty} \lambda^{2n} f(\lambda) < \infty. \] (23)

It will be convenient to introduce the process

\[\zeta(t) = \sum_{k=0}^{n-1} c_k \xi^{(k)}(t) + \int_0^{t} \xi(s) ds \]

\[= \int_{-\infty}^{\infty} \frac{e^{it\lambda} - 1}{i\lambda} (1 + i\lambda)^n \phi(d\lambda), \quad 0 \leq t \leq 1. \] (24)

Obviously, the spectral density of this process \(\zeta(t) \) with stationary increments satisfies the condition (17) and we can use results of our example 1 for the process \(\zeta(t), 0 \leq t \leq 1. \)

As is known (see, for example, [1] or [6]) the Hilbert space \(H = H(\xi) \) consists of all variables

\[\eta = \int_{-\infty}^{\infty} \varphi(\lambda) \phi(d\lambda) \]

\[\left(\varphi(\lambda) = \sum_{k=0}^{n-1} c_k (i\lambda)^k + (1 + i\lambda)^n \int_0^{t} e^{it\lambda} c(t) dt \right) \]

where \(c_1, \ldots, c_{n-1} \) are arbitrary constants and \(c(t), \in L^1[0,1] \) or

\[\eta = \sum_{k=0}^{n-1} c_k \xi^{(k)}(0) + \int_0^{t} c(t) \xi(t) dt \] (25)

where \(\xi(t) \) denotes the generalized derivative of the process \(\zeta(t) \) determined by the transformation (24).

If we consider in the general formula (25) only functions \(c(s), \in L^1[0,t] \), we obtain the corresponding subspace \(H_t(\xi), 0 \leq t \leq 1, \) and it shows that \(H_t(\xi) \) is a \textit{direct sum} of the subspace

\[H_0(\xi) = \bigcap_{t>0} H_t(\xi), \]

which consists of all variables \(\eta = \sum_{k=0}^{n-1} c_k \xi^{(1)}(0), \) and the subspace \(H_t(\xi) \) of all variables \(\eta = \int_0^{t} c(s) \xi(s) ds \):

\[H_t(\xi) = H_0(\xi) + H_t(\xi), \quad 0 \leq t \leq 1; \]
in particular

\[H(\xi) = H_{0+}(\xi) + H(\zeta). \]

Let \(P \) be a projector on the subspace \(H(\zeta) \) parallel to the subspace \(H_{0+}(\xi) \). If \(\Delta \in S_2 \) then \(P\Delta P \in S_2 \); obviously, if \(\Delta \) satisfies the condition (9) then \(P\Delta P \) satisfies to the similar condition with respect to \(H_t(\zeta) \), \(0 \leq t \leq 1 \). As it has been shown (see (21)), the non-anticipative operator \(P\Delta P \) in \(H(\zeta) \) can be described by a Volterra, Hilbert-Schmidt kernel \(\Delta(t,s); 0 \leq t, s \leq 1 \):

\[P\Delta P \eta = \int_0^i \int_t^1 \Delta(t,s)e(s)ds \zeta(t)dt \]
(26)

where \(\eta \in H \) is given by the formula (25) and

\[P\eta = \int_0^i e(t)\zeta(t)dt. \]

For any non-anticipative operator \(\Delta \) in \(H(\xi) \) we have

\[\Delta H_{0+} = \Delta(\bigcap_{t=0} H_t) \subseteq \bigcap_{t=0} \Delta H_t \subseteq H_t = H_{0+} \]

that is equivalent to the condition

\[(I - P)\Delta(I - P) = \Delta(I - P). \]

Then

\[\Delta = (I - P)\Delta P + \Delta(I - P) + P\Delta P = (I - P)\Delta + P\Delta P \]

where the finite-dimensional operator \((I - P)\Delta\), mapping \(H(\xi) \) on the subspace \(H_{0+}(\xi) \), has the form

\[(I - P)\Delta \eta = \sum_{k=0}^{n-1} \langle \eta, \eta_k \rangle \xi^{(k)}(0) \]
(27)

\((\eta_0, \eta_1, \cdots, \eta_{n-1} \) are some fixed elements in \(H_{0+} \)). Combining formulas (26) and (27), we obtain a general non-anticipative operator \(\Delta \in S \) as

\[\Delta \eta = \sum_{k=0}^{n-1} \langle \eta, \eta_k \rangle \xi^{(k)}(0) + \int_0^i \int_t^1 \Delta(t,s)e(s)ds \zeta(t)dt; \]
(28)

in particular, for \(\eta \in H_t(\xi) \)

\[\Delta \eta = \sum_{k=0}^{n-1} \langle \eta, \eta_k \rangle \xi^{(k)}(0) + \int_0^i \int_u^1 \Delta(u,s)e(s)du \zeta(u)ds \]
(29)
References

Steklov Mathematical Institute, Moscow