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1. Introduction. For X a complex Banach space and U an open subset of the complex
plane C, let O{U, X) denote the space of analytic X-valued functions defined on U. This is a
Frechet space when endowed with the topology of uniform convergence on compact subsets,
and the space X may be viewed as simply the constants in O(U, X). Every bounded operator
T on X induces a continuous mapping Tv on O(U, X) given by (Tuf)(X) = (X - T)f(X) for
every / e O(U, X) and X e U. Corresponding to each closed F c C there is also an associated
analytic subspace XT(F) = XD ran(7c//r). For an arbitrary Te C(X), the spaces XT(F) are
T-invariant, generally non-closed linear manifolds in X.

An operator T e C(X) has the decomposition property (8) provided that the space X
decomposes as X = XT(U\) + XT(Ui) whenever [U\, U2] is an open cover of the complex plane.
T e C(X) is decomposable in the sense of Foias provided that T has property (<5) and that the
analytic subspaces XT(F) are closed whenever F is a closed subset of the plane; see [1], [3].

The local resolvent of Tata vector x e X is the set PT(X) consisting of all X e C for which
there is a open neighborhood U such that x e TyO{U, X). The local spectrum of T at x is
a-rix) = C\PT(X). If T is such that for every closed F c C the linear manifold
[x € X: a-iix) C F\ is closed in X, then Tsatisfies Dunford's condition (Q; see [4, XVI. 1]. We
say that T has the single-valued extension property provided that Tv is injective for every
open f / c C ; equivalently, if XT(F) = {x e X: aT{x) C F] for every closed F c C ; see
[6, Proposition 1.1].

An operator T has Bishop's property (ft) provided that for every open U C C the map-
ping Tu is injective and has closed range. Albrecht and Eschmeier [2] showed that property
(fi) completely characterizes the restrictions of decomposable operators to invariant sub-
spaces and their analytic functional model shows that every Banach space operator is similar
to the quotient of an operator with property (/3); see [5]. Moreover, Albrecht and Eschmeier
prove properties (P) and (S) to be completely dual; an operator T has one of these precisely
when T* has the other.

Property {p) implies (Q , and ( Q in turn implies the single-valued extension property, [6,
Proposition 1.2]. Therefore T e C(X) has property (C) if and only if the analytic subspaces
XT(F) are closed whenever F is a closed subset of the plane, and T is decomposable if and
only if T has both properties (C) and (8); equivalently, if and only if T has both properties (0)
and (8). Thus it is a natural question whether property ( Q is strictly weaker than property
(()). Laursen and Neumann mention it explicitly in [6], but this question has circulated
informally for some time.

EXAMPLE. Weighted shifts have proven to be a rich source of examples and are a
favorite testing ground for operator theorists. The basic facts regarding weighted shifts are
collected in Allen Shields' excellent survey [11].
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Let a = (a,,),,>o be a sequence of strictly positive real numbers with supn<oan+i/ a,, < oo,

and consider the Hilbert space H2(a), consisting of formal power series j{z) =
satisfying "=0

\\f\\2
a-=f^\An)\2al<oo.

n=0

An injective unilateral weighted shift can be realized as multiplication by the independent
variable on a space H2(a) for some a: let T: H2(a) -» H2(a) be given by (7/)(z) =
00 „

J2An)z"+ • Shields describes the spectrum of Tin terms of quantities r, r\ and r2, where

sup ̂  I , ri (a) = lim (inf ^ ) and r2(a) = lim inf a''".

k>0 ak I n-*oo\k>0 Otk J n-*oo

Clearly for any a we have r\ < r2 < r. By [11, Theorems 4 and 6], the shift T has norm
supn>oan+i/art, spectrum a{T) = {z : \z\ < r] and approximate point spectrum given by
aap{f) — {z : r\ < \z\ < r}. The point spectrum, ap{T), is empty, and by [11, Theorem 8]

{0} U {z : \z\ < r2] C ap{T) C {z : \z\ < r2}.
oo _

Moreover by [11, Theorem 10], if \X\ < r2, then the vector ^ (z ) = ^ A"a~2zn

ker(A — T)* and is the reproducing kernel for evaluation at k "=0

n=0

In particular, if r2 > 0 then e a c h / e H2{a) is analytic on the disk {z : |z| < r2).

PROPOSITION. With the notation above, we have the following results. (1) Ifr2 — r, then T
satisfies Dunford's condition (C); in fact, oj{f) = a{T) for every nonzero f in H2(a). (2) If
r\ < r2, then T does not have Bishop's property (/6).

Proof. If r — 0, then T is quasiinilpotent and therefore decomposable. Thus we may
assume that r > 0. In this case, the first statement follows from [8, Proposition 1], but this is
not hard to show directly. Indeed, i f / 6 H2(a) is such that aT(f) ^ <J(T) then there is an open
subset U of {z : |z| < r2) and a function cp e O(U, H2{a)) such that / = Tu<p. For every
X,w € U we have that

= a -
In par t icu lar^) = 0, for every X e U, and since/is analytic it follows t h a t / = 0.

To show the second assertion, suppose that r\ < r2 and let D be the disk D — [z : \z\ < r2).
00

If (p € 0{D, H2(a)) and X e D let us write the power series for <p{X) as cp(X, z) =
n=0
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For every A e D, let Hx = kj; — {/e H2(a) :f{X) = 0}. Notice that the polynomials in Hi
are dense in Hy, in fact,

\p : p a polynomial,/>(A) = 0} c (1 - T)H2{a) c //A

and ran (A - T) = Hx only if |A| < n . Choose Ao in £» with |A0| > ri a n d / e //^,\ran(Ao - 7).
Let (pn)n>\ be a sequence of polynomials in H^ converging to / i n H2(a), and define <p and
(<?„)„>, in O(D, / / » ) by <p(k) = If, kx)l -f and for each n, <pn(A) = {pn, kk)\ -pn; that is,
<p(A, 2) =/(A) —J[z), and <p,,(A, z) = p,,(X) — p,,(z) for every X,zeD. Notice that <p g ran(rD)
s ince /= — (p{k$) is not in ran(Ao — T). Also, for every k e D and for each n, there is a func-
tion qn such that qn(X, z) is a polynomial in z, analytic in A and <pn(A, z) = (A — z)q,,(X, z). In
particular, each ^,, € ran(7o).

If A" is a compact subset of D, there is a positive constant M such that ||/c;.||ff < M, for
each A e #, and therefore

n - / , kk)\ + \\pn - / I D <(M+ \)\\Pn -J\\a.

It follows that <pn -*• cp in O(D, H2(a)), and thus 7"D fails to have closed range.
To obtain the desired example, it remains only to construct an appropriate sequence a.

Let (v/)°^0 be a sequence of nonnegative integers with i>o = 0, satisfying Vj > y,_i +j — 1 and

T

f] )~t
for each j > 1. Define the sequence a by a,, — 1, for 0 < n < vi, and a,, = FJ(1 +£) if

COROLLARY. Let a be the sequence defined above and let T be the injective unilateral
weighted shift Tj{z) = zfiz), for fe H2(a). Then rx{a) = 0 and 1 = r2(a) = r(a) = \\T\\. In
particular, T has Dunford's property (C) but not Bishop's property (/3).

Proof. C l e a r l y \\T\\ = s u p , , a , , + i / a n = 1; in fac t , f o r e a c h n > \ , if I > n , t h e n
att+Vt/aVt = 1. Thus 1 > ||T"|| = supk>oan+k/ak > 1, and r(a) = \\T\\ = 1.

For every j > 1,

(aJ+Vj/aVjy
/j =

n 7+1'
V=i

it follows that n(a) = 0.
Finally, if n > 1 and if u7 +j <n < vj+\ +j+ 1, then

» > ^ -

and therefore lim inf,, a,1/" > 1.

REMARKS. It follows, for example, from [7, Theorem 2] that an injective unilateral
weighted shift T has the decomposition property (5) if and only if o(T) = {0}, and in this case
Tis decomposable. If the sequence (a,,+i/a,,)n>o is increasing [11, Section 7], then the corre-
sponding shift T is hyponormal, and therefore has property (ft) by [9]. By [10, Corollary 2], if
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the sequence (an+\/an)n>0 is convergent with limit r, then the corresponding shift has prop-
erty (/}) if (r — an + i /an)n > 0 e lp for some p, with 1 < p < oo. Other than these cases, we do
not know which shifts have Bishop's property Q3).
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