FINITE REGULAR COVERS OF SURFACES

LARRY W. CUSICK

ABSTRACT. Let $T^k = T^1 \# \dots \# T^1$, $T^1 = S^1 \times S^1$, $U^k = \mathbb{R}P^2 \# \dots \# \mathbb{R}P^2$, and G is a finite group. We prove (1) Every free action of G on $U^{\ell+2}$ lifts to a free action of G on the orientable two fold cover $T^{\ell+1} \to U^{\ell+2}$ and (2) The minimum k such that Z_m^ℓ can act freely on T^k is $m^\ell((\ell-2)/2) + 1$ if m = 2 or ℓ is even and $m^\ell((\ell-1)/2) + 1$ otherwise.

§0 **Introduction**. In this paper we study finite regular covers of surfaces, i.e. finite free group actions on surfaces. We shall restrict our attention to the closed compact surfaces $T^k \cong T^1 \# \dots \# T^1$ (k times) where $T^1 \cong S^1 \times S^1$ and $U^k \cong \mathbb{R}P^2 \# \dots \# \mathbb{R}P^2$ (k times). The two main results are proposition (2.1) which states that any free action of G on $U^{\ell+2}$ lifts to a free G action on the orientable two-fold cover $T^{\ell+1} \to U^{\ell+2}$ and proposition (2.5) which gives the minimum k such that an elementary abelian group $G \cong Z_{m_1} \times \ldots \times Z_{m_\ell}$ acts freely on T^k . Both results are consequences of proposition (1.7) that gives a sufficient condition for determining when the kernel of an epimorphism $\partial: \pi_1 U^{\ell+2} \to G$ is isomorphic to $\pi_1 T^{|G|\ell+1}$. We conjecture that this condition is also necessary.

§1 Finite Regular Covers. Suppose G is a finite group, of order n, acting freely on T^{m+1} with orbit space B. The natural projection map $p:T^{m+1} \to B$ is a regular covering space with resulting exact sequence

$$1 \to \pi_1 T^{m+1} \xrightarrow{p\#} \pi_1 B \xrightarrow{\partial} G \to 1$$

and G is naturally isomorphic to the group of covering transformations. Furthermore, B is a closed compact surface whose Euler characteristic, $\chi(B)$, satisfies the formula $n\chi(B) = -2m$. Consequently $B \cong T^{m/n+1}$ or $U^{2(m/n)+2}$.

Conversely, suppose we are given an epimorphism ∂ : $\pi_1 B \to G$ where $B \cong T^{\ell+1}$ or $U^{\ell+2}$ and |G| = n, then the inclusion ker $\partial \to \pi_1 B$ is induced by a finite regular cover $p: X \to B$, with G isomorphic to the group of covering transformations and so G acts freely on X. The Euler characteristic of X is given by

$$\chi(X) = \begin{cases} -2\ell n & \text{if } B \cong T^{\ell+1} \\ -\ell n & \text{if } B \cong U^{\ell+2}. \end{cases}$$

Received by the editors August 20, 1984, and, in revised form, March 20, 1985.

AMS Subject Classification (1980): 57S17

[©] Canadian Mathematical Society 1985.

To go any further we must treat the two cases of B separately.

If $B \cong T^{\ell+1}$ then B is orientable. It follows that X is a closed compact orientable surface with Euler characteristic equal to $-2\ell n$, and so $X \cong T^{\ell n+1}$. In this case the action of G on $T^{\ell n+1}$ preserves the orientation.

If $B \cong U^{\ell+2}$, then the situation is a little more interesting. For n odd we have $X \cong U^{\ell n+2}$ since no element of G, of odd order, can reverse the orientation of $T^{\ell n+1}$. In the case that n is even there are two possibilities for X, namely $X \cong U^{\ell n+2}$ or $T^{\ell n/2+1}$. It is this last case that we shall explore in a little more detail. Specifically we will address the following problem: Suppose n is even and $\partial: \pi_1 U^{\ell+2} \to G$ is an epimorphism. How might we determine ∂ ? (It must be $\pi_1 U^{\ell n+2}$ or $\pi_1 T^{\ell n/2+1}$).

We begin by recalling the fundamental groups of T^k and $U^k[1]$:

(1.1)
$$\pi_1 T^k \cong \langle \alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_k \middle| \prod_{j=1}^k [\alpha_j, \beta_j] = 1 \rangle$$

$$\pi_1 U^k \cong \langle \alpha_1, \dots, \alpha_k \middle| \prod_{j=1}^k \alpha_j^2 = 1 \rangle.$$

If $G \cong \mathbb{Z}_2$, the cyclic group of order 2 with non-trivial element τ , and $\partial : \pi_1 U^{\ell+2} \to \mathbb{Z}_2$ is an epimorphism, then we may write $\partial(\alpha_j) = \tau^{a_j}$ where each a_j is 0 or 1 and at least one a_j is 1.

(1.2) PROPOSITION. In the above example ker $\partial \cong \pi_1 T^{\ell+1}$ if, and only if $a_1 = \ldots = a_{\ell+2} = 1$.

PROOF. We suppose $\ker \partial \cong \pi_1 X$ where $X \cong T^{\ell+1}$ or $U^{2\ell+2}$. The two-fold cover $p: X \to U^{\ell+2}$ is classified by an element $\theta \in H^1$ ($U^{\ell+2}$; \mathbb{Z}_2). If we let $\alpha_1^*, \ldots, \alpha_{\ell+2}^*$ represent dual classes to the Hurewicz images of $\alpha_1, \ldots, \alpha_{\ell+2}$, in $H^1(U^{\ell+2}; \mathbb{Z}_2)$ then it is not hard to show that $\theta = \sum_{j=1}^{\ell+2} a_j \alpha_j^*$. There is a long exact sequence associated to this cover ([4] or [3]):

(1.3)
$$H^*(U^{\ell+2}; \mathbb{Z}_2) \xrightarrow{\theta} H^*(U^{\ell+2}; \mathbb{Z}_2)$$

$$H^*(X; \mathbb{Z}_2)$$

where tr denotes the transfer map. Due to the naturality of tr with respect to the Steenrod squaring operations we obtain a commutative diagram:

$$H^{1}(X; \mathbb{Z}_{2}) \xrightarrow{\operatorname{tr}} H^{1}(U^{\ell+2}; \mathbb{Z}_{2})$$

$$\operatorname{Sq}^{1} \downarrow \qquad \qquad \downarrow \operatorname{Sq}^{1}$$

$$H^{2}(X; \mathbb{Z}_{2}) \xrightarrow{\operatorname{tr}} H^{2}(U^{\ell+2}; \mathbb{Z}_{2}).$$

Now, it is easy to show that Sq^1 is zero if $X \cong T^{\ell+1}$, whereas Sq^1 is non-zero if $X \cong U^{2\ell+2}$. In fact the product structure of $H^*(U^k; \mathbb{Z}_2)$ is given by $\alpha_i^*\alpha_j^* = 0$ when $i \neq j$ and $(\alpha_1^*)^2 = \ldots = (\alpha_k^*)^2 \neq 0$.

We proceed to prove the proposition. Suppose some $a_j = 0$. By reindexing we may assume $a_{\ell+2} = 0$. It follows that

$$\theta = \sum_{j=1}^{\ell+1} a_j \alpha_j^* \text{ and } \alpha_{\ell+2}^* \cdot \theta = 0.$$

Consequently, by exactness of (1.3), $\alpha_{\ell+2}^* = \operatorname{tr}(x)$ for some $x \in H^1(X; \mathbb{Z}_2)$. We compute

$$\operatorname{tr} \operatorname{Sq}^{1}(x) = \operatorname{Sq}^{1} \operatorname{tr}(x)$$

$$= \operatorname{Sq}^{1}(\alpha_{\ell+2}^{*})$$

$$\neq 0.$$

So $\operatorname{Sq}^{1}(x) \neq 0$ and $X \cong U^{2\ell+2}$.

On the otherhand every non-orientable surface admits an orientable two-fold cover [1], consequently $X \cong T^{\ell+1}$ exactly when $a_1 = \ldots = a_{\ell+2} = 1$. \square

(1.4) COROLLARY. The two-fold cover $q:T^{\ell+1}\to U^{\ell+1}$ is unique, up to equivalence. \square

Let $\epsilon: \pi_1 U^{\ell+2} \to \mathbb{Z}_2$ be the map $\epsilon(\alpha_j) = \tau$ for $j = 1, \ldots, \ell + 2$. Note that ker ϵ consists of all words in $\pi_1 U^{\ell+2}$ of even length.

(1.5) DEFINITION. Suppose $\partial: \pi_1 U^{\ell+2} \to G$ is a finite quotient, we define $N_{\partial} = \partial \ker \epsilon$, a subgroup of G.

(1.6) LEMMA.
$$[G:N_{\partial}] = 2/[\partial^{-1}(N_{\partial}):\ker \epsilon].$$

PROOF.
$$[G:N_{\partial}] = |G|/|N_{\partial}|$$

 $= [\pi_1 U^{\ell+2} : \ker \partial]/[\partial^{-1}(N_{\partial}) : \ker \partial]$
 $= [\pi_1 U^{\ell+2} : \ker \epsilon]/[\partial^{-1}(N_{\partial}) : \ker \epsilon]$
 $= 2/[\partial^{-1}(N_{\partial}) : \ker \epsilon].$

REMARK. There are only two possible values for $[G:N_{\partial}]$, namely 1 or 2. The next proposition is the main result of this section.

(1.7) PROPOSITION. If $\partial: \pi_1 U^{\ell+2} \to G$ is a finite quotient, |G| = 2n and $[G:N_{\partial}] = 2$ then $\ker \partial \cong \pi_1 T^{n\ell+1}$.

PROOF. Since $[G:N_{\partial}]=2$ we must have $\partial^{-1}(N_{\partial})\cong \ker \epsilon\cong \pi_1 T^{\ell+1}$ by the above lemma. Now, $\partial^{-1}(N_{\partial})$ contains $\ker \partial$ as a normal subgroup of finite index. If $\ker \partial\cong \pi_1 U^{2n\ell+2}$ this would imply that $U^{2n\ell+2}$ covers $T^{\ell+1}$, an impossibility. The only other possibility for $\ker \partial$ is $\pi_1 T^{n\ell+1}$.

(1.8) REMARK. We conjecture that $[G:N_{\partial}]=2$ is necessary and sufficient for ker $\partial = \pi_1 T^{n\ell+1}$. This has been proven for $\ell=0$ [2].

- §2 **Applications**. Our first application is to lifting finite free actions on $U^{\ell+2}$ to the orientable two-fold cover $T^{\ell+1}$
- (2.1) PROPOSITION. If G is finite group acting freely on $U^{\ell+2}$ then there exists a lifting to a free action of G on $T^{\ell+1}$ rendering the natural projection map $q:T^{\ell+1}\to U^{\ell+2}$ G-equivariant.

PROOF. If |G| = n, then n divides ℓ and the orbit space $U^{\ell+2}/G$ is homeomorphic to $U^{\ell/n+2}$. Consider the pull-back diagram

$$\begin{array}{ccc}
X & & \overline{q} & & \\
\overline{p} & & & \downarrow p \\
T^{\ell/n+1} & & q & & U^{\ell/n+2}
\end{array}$$

where the bottom map is the unique two fold cover. Once we show X is connected we will be done. This is because $X = \{(u, t) \in U^{\ell+2} \times T^{\ell/n+1} : p(u) = q(t)\}$ which inherits the free G action from $U^{\ell+2}$ and $\bar{q}(u, t) = u$ is clearly equivariant. If X were connected it must be homeomorphic to $T^{\ell+1}$ since it covers $T^{\ell/n+1}$.

To show X is connected it is sufficient to show that the composition

$$\pi_1 T^{\ell/n+1} \xrightarrow{q\#} \pi_1 U^{\ell/n+2} \xrightarrow{\partial} G$$

is an epimorphism, where ∂ is the epimorphism associated to the free action of G on $U^{\ell+2}$.

We compute

image
$$(\partial \circ q_{\#}) = \partial$$
 image $q_{\#}$
= ∂ ker
= N_{2}

But $[G:N_{\partial}]=1$, else ker $\partial \cong \pi_1 T^{\ell/2+1}$ by proposition (1.7). We may conclude $N_{\partial}=G$ and $\partial \circ q\#$ is an epimorphism. \square

We begin our second application by first recalling a theorem due to R. D. Anderson.

(2.2) Proposition. [5] Every finite group acts freely on some T^k . \square

The above theorem is the inspiration for the following definition.

(2.3) DEFINITION. If G is a finite group then genus (G) is the minimum k such that G acts freely on T^k .

There are a few immediate properties.

- (2.4) Proposition.
- (a) If K is a subgroup of G then genus $(K) \leq \text{genus } (G)$.

(b)
$$genus (G) \equiv \begin{cases} 1 \mod |G| \text{ if } |G| \text{ is odd} \\ 1 \mod |G|/2 \text{ if } |G| \text{ is even} \end{cases}$$

(c) If ℓ is the minimum number of generators for G, $|G|(\ell/2-1)+1 \le genus(G) \le |G|(\ell-1)+1$.

PROOF.

- (a) Obvious.
- (b) If G acts freely on T^k with orbit space B then $2 2k = \chi(B) \cdot |G|$.
- (c) We will first show that G can act freely on $T^{|G|(\ell-1)+1}$, providing the upperbound on genus (G). Pick ℓ generators $\sigma_1,\ldots,\sigma_\ell$ of G. Define $\partial\colon \pi_1T^\ell\to G$ by $\partial(\alpha_j)=\sigma_j$, $\partial(\beta_j)=1$. Obviously $\partial(\Pi[\alpha_j,\,\beta_j])=1$. Thus $\ker\,\partial\cong\pi_1T^{|G|(\ell-1)+1}$ giving our free action. To prove the lower bound assume G acts freely on T^k with orbit space B. There are two possibilities for B, namely $B\cong T^{(k-1)/|G|+1}$ or $U^{2(k-1)/|G|+2}$. In either case π_1B is generated by 2(k-1)/|G|+2 elements. Since $\partial\colon \pi_1B\to G$ is an epimorphism we must have $\ell\leqslant 2(k-1)/|G|+2$. A little bit of algebra then gives our lower bound for genus (G). \square

Let \mathbb{Z}_m denote the cyclic group of order m.

(2.5) PROPOSITION. If $G = \mathbb{Z}_{m_1} \times \ldots \times \mathbb{Z}_{m_\ell}$ where ℓ is minimal and $m = m_1 m_2 \ldots m_\ell$ then

Genus
$$(G) = \begin{cases} m\left(\frac{\ell-2}{2}\right) + 1 & \text{if some } m_i = 2 \text{ or } \ell \text{ is even.} \\ m\left(\frac{\ell-1}{1}\right) + 1 & \text{otherwise.} \end{cases}$$

PROOF. Let g = genus (G) and write the generators of G as $\sigma_1, \ldots, \sigma_\ell$. First assume ℓ is even. Define $\partial: \pi_1 T^{\ell/2} \to G$ by $\partial(\alpha_j)$ and σ_j and $\partial(\beta_j) = \sigma_{j+\ell/2}$ for $j = 1, \ldots, \ell/2$. This is clearly an epimorphism with ker $\partial \cong \pi_1 T^{m((\ell-2)/2)+1}$. This proves $g \leq m((\ell-2)/2)+1$. On the other hand proposition (2.4) (c) implies $m((\ell-2)/2)+1 \leq g$. Thus $g = m((\ell-2)/2)+1$.

Now suppose ℓ is odd. In this case we may construct an epimorphism $\partial: \pi_1 T^{(\ell+1)/2} \to G$ by $\partial(\alpha_j) = \sigma_j$ for $j = 1, \ldots, (\ell+1)/2$, $\partial(\beta_j) = \sigma_{j+(\ell+1)/2}$ for $j = 1, \ldots, (\ell-1)/2$, $\partial(\beta_{(\ell+1)/2}) = 1$. Then ker $\partial \cong T^{m((\ell-1)/2)+1}$ and consequently $g \le m((\ell-1)/2) + 1$. On the other hand we have the usual lower bound $m((\ell-2)/2 + 1 \le g$. Assume m is odd. Then $g \equiv 1 \mod m$. The only integer g satisfying the above congruence and lying in the above range is $g = m((\ell-1)/2) + 1$. Now assume m is even. The congruence becomes $g \equiv 1 \mod m/2$. There are two possibilities for g that lies in the state range, namely

190 L. W. CUSICK

$$g = \begin{cases} m\left(\frac{\ell-2}{2}\right) + 1 \text{ or} \\ m\left(\frac{\ell-1}{2}\right) + 1. \end{cases}$$

If G acted freely on $T^{m((\ell-2)/2)+1}$ then the orbit space B would have Euler characteristic $\chi(B)=2-\ell$. Since we are assuming ℓ is odd, $2-\ell$ is odd, and therefore $B\cong U^\ell$ with an epimorphism $\partial:\pi_1U^\ell\to G$. If all $m_i\neq 2$ then this is not possible (because when we factor this map through the abelianization of π_1U^ℓ we obtain an epimorphism $\mathbb{Z}^{\ell-1}\times\mathbb{Z}_2\to G$ which is a contradiction, no $m_i=2$). We may conclude $g=m((\ell-1)/2)+1$ if no $m_i=2$.

Now, for $m_1 = 2$ we shall produce a free action of G on $T^{m(\ell-2)/2+1}$. Define an epimorphism $\partial: \pi_1 U^\ell \to G$ by $\partial(\alpha_j) = \sigma_j$, $j = 1, \ldots, \ell$. We will show ker $\partial \cong \pi_1 T^{m(\ell-2)/2+1}$ by employing proposition (1.7). $N_{\partial} = \partial$ ker ϵ is the subgroup of G generated by $\{\sigma_i \sigma_j\}_{1 \le i < j \le \ell}$ (recall ker ϵ is the subgroup of $\pi_1 U^\ell$ consisting of words of even length). But for i > 1 we have $\sigma_i \sigma_j = (\sigma_1 \sigma_i)(\sigma_1 \sigma_j)$ and thus N_{∂} is generated by $\{\sigma_1 \sigma_j\}_{2 \le j \le \ell}$. We conclude that $[G:N_{\partial}] = 2$ and consequently ker $\partial = \pi_1 T^{m(\ell-2)/2+1}$. This completes the proof of the proposition. \square

REFERENCES

- 1. W. S. Massey, Algerbraic Topology: An Introduction, (Harcourt, Brace & World, Inc., 1967).
- 2. L. W. Cusick and D. McDoniel, Finite Groups that can Act Freely on the Torus and the Klein Bottle, (manuscript).
 - 3. G. Bredon, Introduction to Compact Transformation Groups, (Academic Press, 1972.)
- 4. L. W. Cusick, A Transfer Spectral Sequence for Fixed point free Involutions with an Application to Stunted Real Projective Spaces, Topology and its Applications, 21 (1985), pp. 9–18.
- 5. R. D. Anderson, Zero-Dimensional Compact Transformation Groups, Pacific J. Math., 7 (1957), pp. 797-810.

DEPARTMENT OF MATHEMATICS
CALIFORNIA STATE UNIVERSITY
FRESNO CA 93710