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Abstract

As a Bayesian approach to fitting motorway traffic flow models remains rare in the literature, we empirically explore
the sampling challenges this approach offers which have to do with the strong correlations and multimodality of the
posterior distribution. In particular, we provide a unified statistical model to estimate using motorway data both
boundary conditions and fundamental diagram parameters in a motorway traffic flow model due to Lighthill,
Whitham, and Richards known as LWR. This allows us to provide a traffic flow density estimation method that is
shown to be superior to two methods found in the traffic flow literature. To sample from this challenging posterior
distribution, we use a state-of-the-art gradient-free function space sampler augmented with parallel tempering.

Impact Statement

Accuratelymodellingmotorway traffic is essential in understanding and predicting such features as traffic jams and
travel time. Consequently, models have been developed which use conservation of mass expressed through partial
differential equations. These are difficult to fit to traffic flow data making it hard to assess their accuracy and to
compare them. One difficulty is in estimating traffic densitywhich is a variable in the models but cannot be directly
measured. Here, we provide a statistical method to estimate the parameters jointly with traffic density in the
Lighthill–Whitham–Richards model. Our Bayesian methodology allows us to quantify the inferences’ uncertain-
ties and results in a density estimation method that is superior to two methods from the traffic flow literature.

1. Introduction Cl

Fitting differential equations to data—a type of inverse problem—is an essential part of modelling in the
sciences and engineering. It allows researchers to model complex systems to be able to understand and
predict their behavior. We can find applications in such varied fields as Geophysics (Sambridge, 2014),
Hydrogeology (Iglesia et al., 2014), and fluid mechanics (Cotter et al., 2009).
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In this article, we consider the Bayesian framework as outlined in Stuart (2010) for partial differential
equations (PDEs). We consider observations y generated by an observation operator G polluted with
noise η:

y=G ψð Þþη: (1)

Starting from a prior belief on the parameter ψ, the objective is to update this distribution based on
observations represented by the likelihood.

For nonlinear PDEs such as the one studied in this article, the posterior is unavailable analytically,
and so one must resort to numerical methods such as sampling methods (Markov chain Monte Carlo
[MCMC] and Sequential Monte Carlo [SMC]) (see Liu, 2001 or Brooks et al., 2011). In this article, we
use MCMC.

We consider as application vehicular traffic flow onmotorways.Many approaches have been considered
in the traffic flow literature to model such a system: systems of ordinary differential equations (Bando et al.,
1995; Gasser et al., 2004), stochastic differential equations (Mahnke et al., 2005), or PDEs (Lighthill and
Whitham, 1955; Aw and Rascle, 2000; Zhang, 2000). We focus on the most well-known model, the
Lighthill–Whitham–Richards (LWR) model, which is a conservation law with a nonlinear flux function:

ρtþ ρVe ρð Þð Þx=0: (2)

With density ρ and Ve ρð Þ the equilibrium velocity. We use subscripts to denote partial derivatives.
Using the fundamental relationship relating flow q to density ρ and speed v: q= ρv, we can define the
fundamental diagram (FD) Qe ρð Þ= ρVe ρð Þ.

The main contributions of the article are as follows: as a rigorous Bayesian treatment of
motorway traffic flow models is rare in the literature, we empirically explore the sampling
challenges this offers. In particular, we provide a unified statistical model to estimate both boundary
conditions (BCs) and FD parameters in LWR. This allows us to provide a traffic flow density
estimation method that is shown to be superior to two methods found in the traffic flow literature.
Finally, we highlight how fitting these models is now tractable due to recent advances in gradient-
free function space MCMC samplers.

The structure of the article is as follows. In Section 2, we give an overview of traffic flow theory, the
LWRmodel, the traffic data, and previous work in this area. In Section 3, we fit the FD parameters directly
to data using MCMC without considering the PDE model which is the usual approach in the traffic flow
literature. In Section 4, we sample from the FD parameters and the BCs within LWR. To overcome the
sampling difficulties of this inverse problemwe use a state-of-the-art gradient-free function spaceMCMC
sampler and parallel tempering (PT). We also compare this methodology to other methods both in the
traffic engineering and statistical literature.

2. Motorway Traffic Flow and the LWR Model

2.1. Traffic flow on the motorway

Westart by showing in Figure 1 traffic density (the number of vehicles per km) in space and time for a 5 km
stretch of M25 motorway in the UK for 49 min. In this plot, time is denoted on the horizontal axis and
space (distance on the road) on the vertical axis. Vehiclesmove from distance 0 to 5 km (namely upward in
the plot) and forward in time (namely to the right in the plot) so therefore move diagonally (upward and to
the right). We can see the vehicles’ movement in the first few minutes (approximately between minutes
381 and 405) where they take a few minutes to cover the 5 km section of road. This is consistent with a
vehicle speed of approximately 120 km/hr (i.e., 2 km/min). This vehiclemovement corresponds to the free
flow waves. We also observe backward moving waves in the second half of the x� t plot (from around
minute 405 until the end) which are high-density waves. These backwardmovingwaves correspond to the
experience of needing to brake sharply when driving on motorways to avoid crashing into a traffic jam:
congested flow waves move upstream in traffic.
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2.2. The fundamental diagram

We now observe flow and density traffic data without the time component (flow being the number of
vehicles per minute) as can be seen in Figure 2, and noting that for the flow-density plot (the right-most
plot) the measurements on the left of the plot can be well described by a curve with positive slope. We
define traffic following this curve to be in the state of free flow. The rest of the points are scattered to the
right of this curve which we call congested flow.Amain difference is that vehicles do not interact much in
free flow; adding a vehicle does not decrease the speed of the others. In contrast, adding a vehicle to
congested flow will decrease the speed of the other vehicles as they are forced to slow down to avoid
collisions. We can see the effect of increasing density on average vehicle speed in the left-most plot of
Figure 2.

Figure 1.Density estimated from occupancy for the section of M25 on January 8, 2007 between 6:21 am
and 7:09 am. We observe forward moving free flow waves between minutes 381 and 405, which

correspond to the movement of vehicles. We also observe backward moving high-density waves in the
second half of the x� t plane.

Figure 2.Figures showing the empirical relationship between vehicle flow q, density ρ, and velocity v. The
data is taken from detectors on the M25 measuring various quantities averaged every minute.
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The FD, first studied in Greenshields (1934) is the function used to describe the relationship between
density and flow as seen in Figure 2. It is used to close the conservation ofmass equation in PDEmodels of
traffic, as will be described later.

Three variables are usually considered in the PDE approach of modeling traffic flow: density ρ which
describes the number of vehicles per unit length, speed vwhich describes the average speed of vehicles at a
point, and flow q which is the number of vehicles that pass a point in space during a unit of time. These
three variables are linked through the following relationship:

q= ρv: (3)

A popular example is Daganzo’s Triangular FD (also called the bilinear FD) from Daganzo (1994)
given in Equation (4) and plotted in Figure 3a. This FD has important traffic flow quantities as parameters:
the capacity qc (maximum possible value of flow), the critical density ρc which separates free flow from
congested flow, and the jam density ρj (maximum possible value of density). This FD is popular for its
simplicity as well as for its computational efficiency when used in PDEmodels such as LWR (introduced
in Section 2.2.1). We will see later how the wave speed propagation of traffic flowmodels depends on the
shape of the FD.

q ρð Þ=

qc
ρc
ρ ρ< ρc

qc
ρj�ρ

ρj�ρc
ρ≥ ρc

8>><>>: (4)

We will focus in this article on the FD introduced by del Castillo (2012) called the negative power
model (which we will simply call del Castillo’s FD). This FD has four parameters (all in 0,∞ð Þ): flow
scaling term Z, jam density ρj, shape parameter γ, and parameter u relating to the critical density. The shape
parameter γ determines the tightness of the peak and in the limit of γ!∞ we obtain the Triangular FD
defined above. The parameter Z determines the vertical scaling of the FD, and u is related to the critical
density via the following relation:

ρc=
1

1þuγ= γþ1ð Þ : (5)

(a) The Triangular FD (b) Del Castillo’s FD

Figure 3. (a) Daganzo’s triangular fundamental diagram (FD) plotted for dimensionless flow and density
with qc,ρc,ρj

� �¼ 1,0:15,1ð Þ. (b) Del Castillo’s FD plotted for dimensionless flow and density with
Z,ρj,u
� �¼ 1,1,3:1ð Þ and for γ∈ 0:5,1,5,20,100½ �.
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We give the FD in Equation (6) below and plot the FD for several values of γ in Figure 3b to illustrate
how del Castillo’s FD includes the Triangular FD as a limiting case.

q ρð Þ=Z u
ρ

ρj

 !�γ

þ 1� ρ

ρj

 !�w" #�1
γ

(6)

2.2.1. Lighthill–Whitham–Richards
As mentioned in Section 1, one of the ways to model traffic flow is to use PDEs. This approach describes
the macroscopic behavior of traffic flow emerging from the individual interactions between vehicles, so
we consider traffic flow as a continuum without representing the individual behavior of vehicles. The
differences between these models will therefore be in the assumptions made in how the system acts. We
point to Hoogendoorn and Bovy (2001) and Bonzani and Gramani (2009) for a critical review on the
topic.

An important class of these PDEmodels is those that consist of a single equation, which corresponds to
a conservation law of the form:

ρtþ ρvð Þx=0: (7)

As mentioned earlier, we use the subscripts ρt to denote ∂ρ
∂t and ρx to denote ∂ρ

∂x. This conservation
equation is derived from the obvious fact that vehicles are conserved on a length of road (assuming there
are no on or off-ramps) (see Leveque, 2004 for a derivation). Different assumptions in how the system acts
will lead to different ways of closing this conservation equation.

A standard way of doing this is to use the following form for the velocity: v=Ve ρð Þ (see Coullon, 2019
for an overview of PDE models in traffic flow). This assumes that vehicles adapt their speed instantan-
eously to a change in local density; that is, traffic flow is always in equilibrium described by the function
Ve ρð Þ. Multiplying this function by the density gives the FD q= ρVe ρð Þ. This model is named the LWR
model after Lighthill andWhitham (1955) andRichards (1956)who developed it independently. Note that
although these authors used a particular parametric form for the FD, the traffic flow literature considers the
name LWR to denote the conservation law while being agnostic of the FD used, see Hoogendoorn and
Bovy (2001).

A property of the LWR model is that it allows the formation of shock waves (discontinuities in the
solution); more generally, nonlinear hyperbolic PDEs are prone to forming shocks. As a result, LWRwith
this choice of FD can model the propagation of upstream and downstream shock fronts on the highway.
We can see these shock fronts in Figure 1: the forward moving waves occur for free-flow traffic (namely
for low density) and the backward moving waves occur for congested flow traffic (namely for high
density).

In hyperbolic PDEs, these shock fronts will move at speeds depending on the density and this is given
by the gradient of the FD at that value of density. More generally, a disturbance in the initial condition of
the PDE moves along characteristics: curves in the x� t plane where the solution is constant (with speed
also given by the gradient of the FD). So using the FDs in Figure 5, we can see that in free flow we have
q0 ρð Þ> 0 so characteristics have positive speed, while in the congested regime they have negative speed.

To solve LWRwe need to choose the FD along with its parameters, and choose some initial conditions
(density along the road at time 0) and BCs (density at the inlet and outlet of the road for the entire time
period of the simulation).

2.3. Numerical method

Wewould like to solve LWR for arbitrary FDparameters, initial conditions, andBCs. However, we cannot
solve it analytically in the general case. We will use the open-source software Clawpack (Clawpack
Development Team, 2018) which is a package for solving conservation laws using finite volumemethods
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(seeMandli et al., 2016 for information about the 5.0 release). Furthermore, an introduction to these finite
volume methods along with an overview of the software can be found in Leveque (2004).

We give here an overview of the Godunov method (a first-order finite volume method) and point out a
limitation. The idea of this method is to solve the PDE in conservation form (as in Equation (8)), which
ensures that the method behaves correctly in the presence of shock waves:

ρtþ f ρð Þx=0: (8)

We discretize space and time into cells, and consider methods of the form:

ρnþ1
i = ρni �

Δt
Δx

Fn
iþ1=2�Fn

i�1=2

� �
: (9)

with

• ρni density at cell i, time n,
• Fn

i�1=2 flux (flow) at the left boundary of cell i at time n (computed according to equation (12.4) in
Leveque, 2004),

• Fn
iþ1=2 flux (flow) at the right boundary of cell i at time n,

• Δt and Δx the time and space discretization.

If we consider the density to be constant in each cell, we obtain a Riemann Problem at each boundary:
an initial value problem with piecewise constant data and a single discontinuity. We then solve this
Riemann Problem—which can be done analytically—at each boundary to find Fn

iþ1=2 and Fn
i�1=2.

In the special case of f 00 qð Þ not changing sign, there are two main cases in the Riemann Problem (see
Leveque, 2004 for dealing with the more general case):

Case 1: ρni�1 < ρni
In this case, we will have a shock wave as seen in Figure 5: the discontinuity will simply be advected

with speed: vshock=
f ρið Þ�f ρi�1ð Þ
ρi�ρi�1

.

Case 2: ρni�1 > ρni
Here, we will have a rarefaction wave as seen in Figure 4.
The case of linear PDEs is straightforward: methods can be developed that update each cell by looking

in which direction information is coming from (by using the characteristic speed) and updating the flux of
the cell accordingly. However for nonlinear models such as LWR, information can come from both sides
(i.e., characteristics can cross), so this approach needs to be extended. In this case, Godunov’s method can
deal with characteristics crossing to resolve this issue (see Leveque, 2004 for details).

To deal with the BCs we simply extend the domain with an extra cell (called a “ghost cell”) and set a
chosen value of density on this ghost cell. The benefit of this approach is that no special method is needed
to deal with the BCs; the ghost cells are used to update the cells at the edge of the domain.

Creating methods that operate on the PDE in conservation form ensures that we can accurately model
the position of the shock wave at any point in time and space. However, they introduce a great deal of
numerical viscosity that smooths out the solution. One can then extend Godunov’s method to create
second-order numerical methods such as the Lax–Wendroff method (see Leveque, 2004 for a detailed
account) that models smooth solutions more accurately than the first-order Godunov scheme but fails at
discontinuities. To correct this, one needs to add so-called flux limiters.Using the Clawpack software, one
only needs to solve theRiemann problem at each cell and the software automatically uses a Lax–Wendroff
method with a flux limiter (the default one used is called the minmod limiter).

However, these methods still do exhibit some numerical viscosity. To illustrate this effect, we consider
a Riemann problem (case 1 above) and compare the true solution of LWR with del Castillo’s FD for two
different times to the output of Clawpack in Figure 5. This numerical viscosity is therefore expected to
cause the posterior to be slightly different than if LWRwas solved exactly. On the other hand, even though
we observe jumps in density in motorway traffic, we do not expect them to be truly discontinuous: we
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Figure 5.We plot the analytic solution to the Riemann Problem along with its numerical solution using
Clawpack. As time progresses we observe that the discontinuity is smoothed slightly. However, we notice

that the position of the shock wave remains accurate.

Figure 4.The RiemannProblemwith ρi�1 > ρi causes a rarefactionwave. The initial condition (namely at
t¼ 0) consists of a constant value of high density for x∈ 0,2:5½ � and a constant value of low density for
x∈ 2:5,5½ �. As the simulation moves forward in time we observe a rarefaction wave, or a fanning out of

density values between the low and high values of the initial condition.
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rather expect them to be rapid but smooth transitions of density. Formally investigating the effect of this
error would be an interesting area of research.

When defining the solver we must also choose the resolution Δx and Δt such that the CFL condition
(Courant–Friedrichs–Lewy)—a necessary condition for convergence—is satisfied (see Leveque, 2004).
To understand this condition, first, we recall that as information in hyperbolic PDEs propagates with finite
speed (along its characteristics) the solution ρ x, tð Þ is only affected by an interval of the initial condition.
Points outside this interval do not affect the solution ρ x, tð Þ. We define this interval to be the domain of
dependence of the solution ρ x, tð Þ. The CFL condition then states that the numerical domain of
dependence must contain the true domain of dependence (the numerical domain of dependence is
similarly defined). For methods that only use adjacent cells to compute the solution at the next time step
(e.g., Equation (9)), this means that informationmust only come from the adjacent cells and not from cells
further away.We then define λmax to be the fastest wave speed of the PDE and we require Δt≤ Δx

∣λmax∣, that is:

Δtλmax

Δx

���� ����≤1: (10)

This condition means we require the time resolution Δt to be smaller than the time it takes for the fastest
wave speed to cross a cell of size Δx. Thus information cannot propagate from nonadjacent cells to the
current cell when calculating the density at the next time step.

The Clawpack software automatically chooses the time resolution for the solver based on the
chosen spatial resolution and the CFL condition. We choose a spatial resolution of 19m (as we have
259 cells for a 5km length of road), and pass in a new BC density value every 1:5s (which corresponds
to the time resolution required by CFL for typical FD parameter values found in data). Clawpack
therefore chooses Δt≤1:5s depending on the FD parameter values. We used this resolution for the so-
called square wave test in Figure 5. This test corresponds to using the solver to in a simple case for
which the true solution is known analytically: a Riemann Problem with a shock wave moving toward
the left (case 1 as defined above). The initial condition is ρ0i�1=150 and ρ0i =200. This test was
performed using del Castillo’s FD with parameter values Z,ρj,u,γ

� �
= 15,300,4,100ð Þ. The wave

speed is given by vshock=
f ρið Þ�f ρi�1ð Þ
ρi�ρi�1

= �0:05km=min.

2.4. Data

We use MIDAS data from the Highways Agency on the M25 in 2007. The data is measured on loop
detectors spaced every 500 m on the road which take measurements averaged every minute. These loops
measure count, occupancy, headway, and average speed. Count is the number of vehicles that have passed
the detector in a minute and therefore corresponds to flow (number of vehicles per unit time). Occupancy
(ωocc) is the percentage of time in a minute that the detector was recording the passing of a vehicle
(so 100% is gridlock, and 0% means that no vehicles passed over the detector), and headway is the time
difference between a vehicle leaving the detector and another one arriving.

As density is a variable thatmust be included inmodels but is not directlymeasured byMIDASdetectors,
we must estimate its value. One way to do this is to estimate it from speed data: for each lane, multiply the
count by 60 and divide it by average speed (which is in km/hr). We obtain the following estimate:

ρspeed≔
q
v
: (11)

The limitation of this approach is that it does not consider the size of vehicles (which can vary greatly;
from small cars to lorries for example).

Another approach is to estimate density from occupancy. To do this we use the relationship between
occupancy and density (Heydecker andAddison, 2011) ρ= ωocc

L , with L the average vehicle length.We use
this to obtain density estimated from occupancy:

ρocc≔
ωocc

L
: (12)
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There are several ways to estimate the average vehicle length L (or its reciprocal L�1): in Heydecker
and Addison (2011) the authors outline several methods to estimate L or L�1 and find that these have
different trade-offs.

However, as we have the count data by vehicle type in the MIDAS data, we will use it to estimate the
vehicle length at every minute. The flow by type is the overall count (for all lanes) of the number of
vehicles that have passed the detector in the minute classified by type (type 1: 4 m vehicles, type 2: 6 m,
type 3: 9 m, and type 4: 16 m). As this count data is given over all lanes (rather than for each lane), we will
have to assume that vehicles types are evenly distributed across lanes. Although this assumption allows us
to estimate the average vehicle length in a practical way, it is unrealistic as motorways have lanes
designated for slower vehicles (which include longer vehicles). Using qi to denote the count data for
vehicles of type i and q the total count data we have: L= 4q1þ6q2þ9q3þ16q4ð Þ=q. We then use this
value (calculated at every minute) to estimate density from occupancy for each lane: ρocc =

ωocc
L .

We plot flow versus density using these two methods in Figure 6 to show that they give very different
results. In particular the congested flowwave speeds vary greatly between the twomethods, while the free
flowwave speeds are approximately the same. In Section 5, wewill estimate density in the BCs (as well as
estimate the FD parameters) and compare the resulting wave speeds to those arising from density from
speed and occupancy.

Wewill need to choose an appropriate section of road for analysis. As we are dealing with a single-lane
model, we need to choose a section of road with no in/out flows (junctions), the same number of lanes
(which we will aggregate variables over), few detector faults, and a consistent flow-density relationship.
The chosen road is a 5 km section of the M25, and as the detectors are spaced every 500 m there are
11 detectors (the endpoints of the section are included). However some of the detectors have faults, so we
use eight detectors in our inference at the following locations (in km): 0,1,2,2:5,3,4,4:5,5½ �. We use the
detector measurements between 6:21 am and 7:09 am (including both endpoints) on January 8, 2007; we
therefore use 48 min of data which corresponds to 49 time points.

Figure 6. Section ofM25 on January 8, 2007 between 6 am and 10 am.We plot flow versus density for two
estimation methods: density from occupancy (Equation (12)) and density from speed (Equation (11))
summed over all lanes. These methods give very different estimates. In particular, we note that the

congested flow wave speeds vary greatly between methods, while the free flow wave speed is
approximately the same.
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2.5. Previous related work

A study close to the topic of this article is a Bayesian analysis of traffic flow tested on motorway data by
Polson and Sokolov (2015). The objective of the article is to develop a methodology (using particle
filtering) to estimate traffic density and parameters in the LWR model in real-time. This allows real-time
estimation of road capacity (maximum possible flow on the road) and critical density (density at which
flow is maximized) that can adapt to the drop in capacity due to an accident on the road. We go over key
points in their methodology and provide a critical review.

The motorway data they use includes occupancy ωocc which they use to estimate density (see formula
(12)). As explained in Section 2.4, they use this quantity to estimate density with the formula ρ= ωocc

L (see
Heydecker andAddison, 2011) with ρ traffic density and L the average vehicle length. They use a constant
average vehicle length, but it is unclear from the paper how it has been obtained.

They discretize the road into M cells and assume that the BCs and initial conditions are known (they
use density data from occupancy to construct these). Defining ψt = ρ1t,…,ρMtð Þ to be the hidden state
vector of traffic densities for each cell, the model they use in the particle filter is:

ytþ1=Htþ1ψtþ1þ εVtþ1 with εVtþ1 �N 0,Vtþ1ð Þ
ψtþ1= f θ ψtð Þþ εWtþ1 with εWtþ1 �N 0,Wtþ1ð Þ

(
: (13)

where Vt and Wt are evolution and equation error respectively, ytþ1 is the vector of measured traffic
density, f θ is the LWR evolution equation with FD parameters θ calculated using a Godunov scheme (see
Leveque, 2004 for a comprehensive account of these numerical methods or recall Section 2.3). The
observationmatrixHtþ1 picks out the cells with themeasurements. The objective of themethodology is to
sample from the posteriors p ψtjytð Þ and p θjytð Þ with yt = y1,…,ytð Þ the current history of data.

They consider a length of road on an interstate outside Chicago which seems to have two detectors
separated by 845 m. They discretize this distance into four cells (so each cell corresponds to a distance of
211m) and use a time discretization of 5min (which seems to be the resolution of data available). They run
the analysis for 24 hr worth of data and estimate the drop in capacity due to a traffic accident. They also test
their methodology on simulated data assuming known initial and BCs. For this simulated data, they use a
spatial resolution of 300m and a time resolution of 5 s over a total road length of 1.5 km and a time horizon
of 1600 s.

As their objective is real-time estimation of certain traffic flow quantities (such as traffic state and
capacity) they use a particle filter rather than MCMC as it is more appropriate for real-time analysis. In
contrast, we develop in this article a more general methodology for estimating parameters in hyperbolic
PDEs with a more rigorous treatment of the boundary and initial conditions. Indeed, they assume that the
boundary and initial conditions are known using density estimated from occupancy. However, estimating
density from occupancy has problems (like all methods) which we summarize in Section 2.4; we will
therefore impute the BCs rather than estimate them directly from data.

Another issue with the methodology is the coarse discretization of the LWR model (211 m and 5 min
for space and time respectively for the analysis of real motorway data); at this resolution, the numerical
solver will rather coarsely approximate the underlying PDE. Moreover, the shock waves which are
important features of these nonlinear PDEs will be slightly smoothed out, as we point out in Section 2.3.
Furthermore, each time step in the PDE solver includes aGaussian error term as seen in Equation (13); this
could smooth out shock waves which could help the sampling methodology. However, we point out that
the numerical method which converges to the PDE (described in Leveque, 2004) does not include a
random term. Adding a Gaussian error at each time step seems more like the discretization of a stochastic
PDE (SPDE) - the LWR model has no stochastic component - although it is unclear whether this
discretization would indeed converge to a specific SPDE under refinement of the grid. This may depend
on the scaling of the variance in the Gaussian error with discretization step. Moreover, adding a Gaussian
error at each time step amounts to adding or removing a random fraction of a vehicle thus violating the
conservation of the total number of vehicles (i.e., conservation of mass). The model used in the article
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should therefore be considered as an ad hoc discrete model inspired by the Godunov method for LWR
rather than a discretization of the PDE.

The methodology developed in this article attempts to remedy these issues and be a more rigorous
treatment of the Bayesian inverse problem. However, we reiterate that the objective of the article
described above is to develop a methodology for practical real-time estimation of certain traffic
quantities. Given this objective, these simplifications and assumptions may be justified.

Another relevant paper is byWürth et al. (2021) where the authors consider a general 2 equationmodel
of traffic flow alongwith LWRand fit the scalar parameters tomotorway data usingMCMC. Furthermore,
they consider a bias term that accounts for the model misfit; this bias is modeled as a Gaussian Process
whose hyperparameters are optimized at each iteration. They find that using a two equation model results
in a better fit of the PDE to observations, which is consistent with traffic flow theory. However, they use
fixed density estimates which are known to have problems as discussed in previous sections. In contrast,
we estimate density in the BCs nonparametrically which allows us to bypass this problem.

The use of individual observed trajectories to fit a flow model, that is, the transition from microscopic
data to macroscopic models is the main focus of Gomes et al. (2019), in which a large number of
individual pedestrian trajectories are used and the flow is modeled with a McKean–Vlasov PDE. The
transition is achieved by employing a stochastic differential equation to describe individual pedestrian
trajectories. The evolution of the associated transition probability densities is given by a Fokker–Planck-
like PDE with BCs allowing inflow and outflow thus generalizing beyond the usual Fokker–Planck case.
These inlet and outlet BCs aremodeled as constant over time and a generalization tomodeling these—like
many other—parameters as functions rather than constants is mentioned as an abstract possibility.

3. Parameter Estimation in the FD: Direct Fit

In this section, we consider fitting the FD directly to motorway data, namely without the PDEmodel. This
corresponds to the usual approach in the engineering literature (see, e.g., del Castillo, 2012).

3.1. Statistical model

As the two methods to estimate density discussed in Section 2.4 give very different results, we would like
to build our likelihood based on a quantity that has fewer assumptions built in, namely flow (which is
simply vehicle counts per minute). We use a Poisson model for the statistical error, which is a standard
model for count data.We choose this model because it has the correct domain, is unimodal, and because of
its simplicity. A drawback of this model is that interarrival times in a Poisson process are exponentially
distributed, whereas we expect to not have a vehicle immediately following another one (especially for
high speeds). However as the detectors count vehicles over a minute, many vehicles will have passed
before the next count and the model misfit for small time resolutions should not be apparent. Finally, the
chosen section of road has four lanes, but our model is only for single-lane roads. We therefore sum flow
values over all lanes to obtain the total number of vehicles, and if the individual flows are independent
Poisson random variables, then the sum of flows also follows a Poisson distribution.

Letting θ be the vector of FD parameters in LWR, and let ρi,qið Þ (with i∈ 1,2,…,Nf g) be observed
density and flow. We assume that data is iid with a Poisson error model which leads to the log-likelihood:

l θð Þ∝
XN
i = 1

�bqi θð Þþqi log bqi θð Þð Þð Þ: (14)

Withbqi θð Þ the predicted flow for the ith observation resulting from the observation operator G θð Þ from
Equation (1). In this section, we sample from the parameters in del Castillo’s (Equation (6)), namely
z,ρj,u,γ
� �

. High values of γ corresp in the limit to the triangular FD (Equation (4)) which we would like to
include in our model. We, therefore, switch to the more convenient parameterization ω≔1

γ.
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Based on domain knowledge of the realistic shape the FD can take, we set uniform priors for the FD
parameters shown in Equation (15) below:

z� U 100,400ð Þ
ρj � U 300,800ð Þ
u� U 1,10ð Þ
w� U 0:004,10ð Þ

8>>><>>>: : (15)

Code for reproducing the sampling results in this article can be found at https://github.com/jeremie
coullon/BIP_LWR-paper.

3.2. Direct fit

Here we fit del Castillo’s FD directly to flow-density data. So the predicted flow bqi θð Þ in Equation (14) is
simply flow predicted from observed density ρi using del Castilo’s FD with parameters θ= z,ρj,u,ω

� �
(so without using the LWR model). This is a usual approach in the traffic flow literature (see, e.g., del
Castillo, 2012).

We sample from the posterior using a random walk Metropolis-Hastings algorithm. We run three
chains for 5 K iterations with covariance matrix given in the Appendix. We obtain acceptance rates of
24:4, 23:1, and 23:8%, and show the trace plots for the parameters in Figure 7which suggest goodmixing,
as expected in such a low-dimensional model.

Figure 7. Posterior samples from a direct fit of del Castillo’s fundamental diagram to M25 data. Trace
plots of sampled parameters against flow-density data. The three colors correspond to the three Markov

chain Monte Carlo chains.
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We show FD plots with sampled parameters against flow-density data (using density from occupancy)
in Figure 8a. We then show the output from LWR in the x� t plane using the posterior mean samples in
Figure 8b. Comparing this plot to the real data in Figure 1 we can clearly see that the congested flowwave
speed is incorrect (namely, the congested flowwaves in the case of the direct fit do not cross the domain at
all). This suggests a misfit of the model. Further experiments with other FDs and more detailed
investigations of mixing are available in Coullon (2019).

4. Inverse Problem Methodology

In this section, we infer the parameters in the LWR model to predict flow values qi in Equation (14). The
observation operator G solves the LWRmodel given some BCs, initial conditions, and the FD parameters
θ, maps the density output to flow using the FD with parameters θ, and picks out the flow at the x, tð Þ
values corresponding to observations.

Estimating the parameters in this way captures the dynamic behavior of the PDE compared to the
direct fit. Furthermore, estimating the BCs accounts for the uncertainties in the density estimates which
were discussed in Section 2.4. We therefore aim to estimate the four FD parameters along with the
two BCs.

The BCs are functional parameters so function space samplers are required for this. This is an active area
of research that has yielded many samplers and methods such as random walk (Cotter et al., 2013) ∞-
Metropolis-Adjusted Langevin Algorithm, and∞-HamiltonianMonte Carlo (Beskos et al., 2017). There is
also a relevant class of samplers and methods, which involve splitting the space into a low-dimensional part
informed by the likelihood and an infinite-dimensional complementary subspace (Cui et al., 2014, 2016;
Law, 2014). However, most efficient samplers require gradients, which are not available in our application;
we must therefore restrict ourselves to gradient-free samplers. The first gradient-free sampler to try is
preconditioned Crank-Nicholson (pCN) (Cotter et al., 2013), which is the function space extension of
randomwalk. This algorithm is simple to implement butwill mix slowly if the parameters are correlated or if
the posterior is multimodal. This is the case in our application (see Section 5.2 for a discussion): the FD and
BC parameters are highly correlated and the BCs exhibit multimodality. We, therefore, use the functional

Figure 8. Posterior samples from a direct fit of del Castillo’s fundamental diagram (FD) to M25 data.
(a) Plotted FDs using the samples. (b) Density in the x� t plane from Lighthill–Whitham–Richards.

Parameters used are the posterior mean from samples. We notice that the congested flow waves do not
cross the domain as they do in the data.
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ensemble sampler (FES) (Coullon and Webber, 2021), which is a gradient-free sampler that can handle
correlations in the parameters. We extend it with a PT scheme to mix efficiently within the modes.

In the following sections, we describe the sampler along with the BC prior and the treatment of the
initial conditions in LWR.

4.1. Functional ensemble sampler

The FES (Coullon and Webber, 2021) combines pCN and the affine invariant ensemble sampler (AIES)
(Goodman and Weare, 2010). For exposition purposes, we describe the sampler for a posterior distribu-
tion that only includes a single functional parameter. The extension to our application (two functional
parameters and a finite dimensional parameter) is straightforward.

To apply this sampler, we first calculate the Karhunen–Loève (KL) expansion for the Bayesian prior
distribution, assumed to be aGaussian process prior.We then use aMetropolis-within-Gibbs sampler that uses
AIES to sample the posterior distributionon the low-wavenumberKLcomponents anduses pCN to sample the
posterior distribution of the high-wavenumber KL components. Alternating between AIES and pCN updates,
we obtain an efficient functional sampler without requiring detailed knowledge of the target distribution.

We give the pseudocode for the algorithm below:

Algorithm 1 (FES)
To sample a distribution π dψð Þ∝exp φ ψð Þð Þπ0 dψð Þ where π0=N 0,Cð Þ, perform the following steps:

1. Identify a matrix J whose columns are the firstM eigenvectors of C. Set P= JJ T and Q= I� JJ T .
2. Initialize an ensemble of walkers X0

1,…X0
L

� �
.

3. For τ=0,1,…:
(a) For i= 1,…,L:

(i) Randomly choose a walker X2τ
j 6¼X2τ

i .
(ii) Propose the updateeX2τ

i =X2τ
i þ 1�Zð ÞP X2τ

j �X2τ
i

� �
, (16)

where Z∈ ½1a ,a� has density gðzÞ∝ 1ffiffi
z

p .

(iii) Set X2τ
i = eX2τ

i with probability

min 1,ZM�1
π eX2τ

i

� �
π X2τ

ið Þ

8<:
9=;: (17)

(b) Set X2τþ1
0 ,…,X2τþ1

L

� �
= X2τ

0 ,…,X2τ
L

� �
.

(c) For i= 1,…,L:
(i) Propose the updateeX2τþ1

i =PX 2τþ1
i þQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ω2

p
X2τþ1
i þωξ

� �
, (18)

where ξ �N 0,Cð Þ.
(ii) Set X2τþ1

i = eX2τþ1
i with probability

min 1, exp φ eXi
� ��φ Xið Þ� �� 	

: (19)

(d) Set X2τþ2
0 ,…,X2τþ2

L

� �
= X2τþ1

0 ,…,X2τþ1
L

� �
.

The main tuning parameter in FES isM, which controls how many KL coordinates are included in the
AIES sampling. Coullon and Webber (2021) recommend keeping this parameter less than 20 as the
performance of AIES tends to deteriorate for high dimensional distributions. The authors of Coullon
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and Webber (2021) also explore how sensitive the algorithm is to different values of M and find that
values below 20 tend to work well. The other parameter to tune is the pCN step sizeωwhich should be
tuned to obtain a reasonable acceptance rate (aiming for 20�50% works well in our experience).
Finally a is also a tunable parameter but as recommended in Coullon and Webber (2021) we fix it to
a= 2.

4.2. Parallel tempering

PT, alsoknown asReplica ExchangeMCMC(Liu, 2001;Brooks et al., 2011), is an algorithmused to sample
frommultimodal distributions. We augment the state space by introducing an additional discrete parameter
βtemp∈ I temp= β1=1< β2 <…< βLf g with βi∈ 0,1½ �. Defining the unnormalized target posterior as
π ψð Þ∝exp �k ψð Þf g we can augment the state space by tempering the likelihood (with �φ ψð Þ the log-

likelihood, �φ0 ψð Þ the log-prior, and c βtemp

� �
the pseudo-prior (as defined in Brooks et al., 2011)):

π ψ,βtemp

� �
∝exp �βtempφ ψð Þ�φ0 ψð Þ

n o
c βtemp

� �
: (20)

We therefore run L chains in parallel to target the joint distribution Π ψ1,…,ψLð Þ=π1 ψ1ð Þ,…,πL ψLð Þ
where πi ψð Þ is the posterior tempered using the inverse temperature βi.

We define α0 to be the probability of making a within-temperature move, sampleU�U 0,1ð Þ, and run
the algorithm:

• if α0 >U, perform a within-temperature move; this can be done using anyMCMC sampling scheme
and

• if α0≤U, choose uniformly a pair of posteriors πi ψið Þ and π j ψ j

� �
(usually chosen so that the inverse

temperatures are adjacent) and swap the states ψi and ψ j with probability α= min 1,
πi ψ jð Þπ j ψið Þ
πi ψið Þπ j ψ jð Þ


 �
.

Many extensions of these tempering algorithms have been proposed in the literature, such as ones
generalizing the between-temperature moves in Tawn and Roberts (2018) or ones defining a continuous
temperature schedule in Graham and Storkey (2017).

A benefit of this algorithm is that the chains can be run on parallel cores rather than sequentially.
However, one needs to choose a temperature schedule I temp. To tune this schedule we use the following
iterative tuning procedure (based on the one outlined inAtchade et al., 2011): we raise the likelihood to the
power βtemp with βtemp∈ 0,1½ �, and find a value of βtemp that allows the chain to mix well. We then find a
colder temperature such that the swap acceptance rate is approximately 23%. We then fit a geometric
schedule between these two values and extrapolate to find the other temperatures. We then check that the
acceptance rate for temperature swaps is around 23% for these spacings.

4.3. FES with PT

The sampler used in our application merges FES and PT and includes some modifications on FES as
shown in algorithm 1. The details of our implementation are as follows:

• We setM= 4 and so the low dimensional space is 12 dimensional: 4 for each BC and 4 for the FD.
• TheMetropolis-within-Gibbs sampler alternates four steps rather than two: theAIESupdate for theBCs
and FD, the pCN update for the inlet BC, the pCN update for the outlet BC, and the temperature swaps.

• We use a random scanMetropolis-within-Gibbs sampler rather than deterministic scan, and we tune
the move probabilities to obtain good mixing. The tuned parameters can be found in the Appendix.

• We use 13 walkers and use the parallelized version of FES (see Coullon and Webber, 2021).
• We use a uniform prior for the FD parameters and a “log-OU” prior for the BCs as described in
Section 4.4.
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4.4. BC prior elicitation

In this section, we describe how we chose a prior for the two BCs. As density from occupancy (see
Section 2.4) is considered an appropriate method for estimating density, wewill use it to elicit the prior. As
discussed previously, it is estimated using the average vehicle length (unlike density estimated from
speed). Eliciting the prior in this waywill encode our prior belief that the estimatedBCs should not deviate
too far from density estimated from occupancy.

We will use time series of density from our section of road to fit a Gaussian process prior for the BCs
(of course discarding the day that we use in inference).

We choose as prior a “log-OU” process. By that, wemean that the logarithm of the centered BCs follow
an Ornstein Uhlenbeck (OU) process. We choose this prior for three reasons:

• We would like density to always be positive.
• Wewould like the prior to allow sudden excursions in density corresponding to high-density waves.
Indeed, with a log-OU prior we model the logarithm of the centered BCs with an OU process. As a
result, a high value of density will a priori have a higher variance which enables high-density waves,
and a low value of density will a priori have a low variance.

• We would like to be able to sample easily from the prior as well as evaluate the probability of a
sample under the prior. This is computationally inexpensive to do with a log-OU prior.

We first give a succinct overview of the OU process and then estimate the parameters of this process from
traffic flow data.

For a given BC (i.e., inlet or outlet), let Yt be the logarithm of the BC at time t and letXt≔Yt�μ tð Þwith
μ tð Þ be the time-dependentmean. Thenwe chooseXt to be the unique solution of the stochastic differential
equation dX t = �βXtdtþσdW t (with Wt a Wiener process), with β> 0 and σ> 0 the mean-reversion
parameter and diffusivity parameter respectively (see Iacus, 2008).

We fit anOU process to centered log-BCs for the inlet and outlet BC together, as fitting them separately
yielded similar OU parameters. The inlet BC is a function of time that returns density, and corresponds to
the inlet of the studied stretch of road (i.e., x=0). Similarly, the outlet BC corresponds to the outlet of the
road (i.e., x=5km).

For the inlet and outlet detector data we keep only weekdays, discard January 1, and keep only the
75 and 65 first days for the inlet and outlet detectors respectively.We removed these last days as they have
unusual density curves. We also removed January 8, as this is the dataset used in the inference. We fit the
mean μ tð Þ to the logarithm of traffic curves Yt, and then fit the OU parameters β and σ to Xt (we fix Δt=1
to define a unit of time to be 1min). We apply a very slight smoothing to the log-BC means to ensure that
they are smooth.

We estimate the parameters for the inlet and outlet together using MCMC. Defining Xi to be the ith
measured density curve and Λ the precision matrix for the OU process, we write the likelihood as:

l Λð Þ∝�N
2
log ∣Λ∣�1

2

X
XiΛXi: (21)

We use a flat prior for the parameters and use a random walk Metropolis sampler to sample from the
posterior. The posterior mean is β= 0:22 and σ=0:256.

We plot in Figure 9a inlet BCs from data (data used to fit the OU process) along with prior samples. To
allow comparison to the BCs from data, the prior samples here have the same resolution: one point per
minute. We can visually check that the log-OU prior fits fairly well the inlet BCs from data (prior samples
for the outlet BCs are also similar to BCs from data).

We also plot in Figure 9b samples from the inlet BCs at full resolution: one point every 1.5 s, which is
the resolution that we use in the inference. We use this resolution as it allows for a detailed description of
the density waves that will get propagated by LWR. Indeed comparing the two figures, we can see that a
resolution of 1 min does not capture the details of the high-density waves.
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4.5. Treatment of the initial conditions

LWR requires the initial condition as well as the BCs. The density will be propagated with either free flow
or congested flow wave speed and so only the density measured for the first few minutes will be
influenced by the initial condition. To avoid having to infer this initial condition, we simply do not use
these first few detector times to build the likelihood; as a result, the likelihood is unaffected by the initial
condition and is only affected by the choice of BCs and FD parameters. To be able to only remove a small
number of points in the x� t plane (i.e., just the first few minutes) we assume that the FD parameters are
such that density for these initial times corresponds to free flow (which is a reasonable assumption as can
be seen in Figure 1). We further assume that the free flow wave speed lies within a reasonable range of
speeds. We remove the influence of the initial condition on the likelihood in this way for all further
inferences in the paper.

5. Results and Discussion

5.1. Sampling results

We run the sampler for 102,000 iterations and thin the samples by 100.
We show in Figure 10 the trace plots for the FD parameters and for a few of the walkers which show

good mixing. We show in Figure 11 the FD samples plotted with M25 flow data against three density
estimates: density from speed, from occupancy, and estimated in the BCs. To obtain the latter we used the
meanBCs (both inlet and outlet) and picked out the time points that correspond tomeasurements.We then
plotted the M25 flow data at those time points against the density in the BC means. We first observe that
for a given value of flow, the densities estimated in the BCs do not agree with densities estimated from
occupancy but somewhat agree with the densities estimated from speed. In terms of the wave speeds, the
free flowwave speeds implied by all three density estimates seem to agree, but the congested wave speeds
do not. The congested flowwave speed in the fitted model seems to be in between the wave speed implied
by the two other density estimates.

As the congested flow waves in the fitted model (in Figure 12a) seem to agree with the waves in M25
data (in Figure 1), this suggests that estimating the density in LWR rather than estimating it in a
preprocessing step yields a better fit of the wave speeds. Finally, we show the residuals in Figure 12b
which suggests a good model fit.

Figure 9. (a) Inlet boundary conditions from data (using density from occupancy) along with
prior samples at 1 min resolution. (b) Samples from the prior for the inlet at full resolution: one point

every 1.5 s.
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5.2. Discussion on the correlations and multimodality

The slowmixing speed can in part be explained by the strong correlations between the outlet and inlet BC
parameters: we can see in Figure 1 that a forward moving free flow wave leaving the inlet BC (with wave
speed given by the slope of the FD) will hit the outlet BC (and vice versa for congested flow waves).
Changing one of the BCs, therefore, requires changing the other one in a way that is compatible with the
first. Furthermore, as hyperbolic PDEs are prone to shock formation, the BCs will have sharp changes in
density: a small translation of the BC to the left or right (say)will therefore cause a large drop in likelihood.
In contrast, PDEs that exhibit diffusion will smooth out such discontinuities quickly, so such a misfit will
be penalized much less by the likelihood. An algorithm such as pCN—which is simply a random walk
proposal—will therefore mix slowly.

To explain the multimodality visible in Figures 13a and 14, we recall that the likelihood is built from
flow. This means that different values of density that map to the same value of flow will be equally likely.

Figure 10. Trace plots for the fundamental diagram parameters for a parallel tempering functional
ensemble sampler sampler, which show good mixing.
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To illustrate this, we plot in Figure 15 del Castillo’s FD with the same parameters values used in the
sampler, and we plot two vertical lines for two values of density (ρ1= 90 and ρ2=195) that map to the
same value of flow (the horizontal line). If we then inspect the sections of the outlet and inlet BCs that
exhibit multimodality, we observe that some of the pairs of density branches approximately correspond to
these two values. Of course, there is dynamic behaviour in the x� tð Þ plane so this explanation is an
approximation.

6. Conclusion

After having given a brief review of motorway traffic flow modelling, we fit the FD directly to flow-
density data, but found that estimating the FD and BCs with LWR as the forward model resulted in a
superior fit in terms of wave speed. The fitting procedure required a state-of-the-art gradient-free sampler
augmented with PT to sample from the highly correlated and multimodal posterior.

We have provided a unified statistical model to estimate both BCs and FD parameters while respecting
the character of LWR as a conservation law. Furthermore, we compared the density estimated in the BCs
to two density estimates in the engineering literature (density from occupancy and speed) and find that
although the free flow wave speeds implied by the three methods agree, only the congested flow wave
speeds in the density from BCs (namely, in the fitted model) agree with the congested flow waves in M25
data. When inserted into LWR, the BCs estimated using our method provide a fit superior to that obtained
from BCs using engineering methods.

Furthermore, the sampling methodology developed in this article could be used to fit more sophis-
ticated traffic flow models to data. Examples of these are systems of PDEs that include conservation of

Figure 11. Fundamental diagram (FD) samples plotted with M25 flow data and three density estimation
methods: from occupancy, from speed, and from boundary conditions (BCs). The samples are from FD
and BC sampling for del Castillo’s FD forM25 data. The density estimated in the BCs seems to agree with
density from speed, but the congested flow wave speed in the fitted model seems to be different from the

wave speeds implied by the other two density estimation methods.
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Figure 12. Using the posterior mean parameters from fundamental diagram and boundary condition
sampling with a parallel tempering functional ensemble sampler sampler, we plot the output of Lighthill–

Whitham–Richards in the x� t plan (a) and the residuals (b).

Figure 13. Outlet and inlet boundary condition samples.
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Figure 14. Trace plots for three time points in the outlet boundary condition which show some of the
multimodality.

Figure 15.Del Castillo fundamental diagram. The two vertical lines correspond to two values of density
(ρ1 ¼ 90 and ρ2 ¼ 195) that map to the same value of flow. As the likelihood is built from flow, these two

values of density are equally likely and therefore the posterior exhibits multimodality.
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momentum as well as mass (namely, two equationmodels), which are discussed in Coullon (2019). These
classes of models could be quantitatively compared after fitting the parameters and BCs for each of them.
This would allow for a rigorous assessment of the strengths and weaknesses of these models.
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A. Appendix

A.1. Direct fit: FD sampling
Covariance matrix for the direct fit to data for z ρj u w

� �T
:

182:292318 �288:07905 �2:34389543 1:21897887

�288:07905 561:808314 5:26749447 �1:7470824

�2:34389543 5:26749447 0:08204741 �0:00839764

1:21897887 �1:7470824 �0:00839764 0:00931977

0BBB@
1CCCA:

A.2. FES with PT

• Metropolis-within-Gibbs move probabilities for AIES, pCN outlet, and pCN inlet swap:
0:25,0:125,0:125,0:5½ �:
• Inverse-temperatures: 1,0:76,0:58,0:44½ �:
• pCN step sizes for outlet (for each inverse-temperature): 0:078,0:09,0:11,0:15½ �:
• pCN step sizes for inlet (for each inverse-temperature): 0:155,0:17,0:2,0:25½ �:
• FES truncation: Mtrunc =4:
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