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Abstract

Let f be an integrable function on an infinite measure space (S, ~,rr). We show that
if a regenerative sequence {X n }n~O with canonical measure n could be generated then
a consistent estimator of A =: Is f dzr can be produced. We further show that under
appropriate second moment conditions, a confidence interval for A can also be derived.
This is illustrated with estimating countable sums and integrals with respect to absolutely
continuous measures on lRd using a simple symmetric random walk on Z.

Keywords: Markov chain; Monte Carlo; improper target; random walk; regenerative
sequence

2010 Mathematics Subject Classification: Primary 65C05
Secondary 60F05

1. Introduction

Let (S, -8, Jr) be a measure space. Let I: S ~ lR be -8 measurable, and Is III dzr < 00.

The goal is to estimate A = Is I dzr. If n is a probability measure, that is, n (S) = 1, a
well-known statistical tool is to estimate A by sample averages In = EJ=1I (~j ) / n based
on independent and identically distributed (i.i.d.) observations, {~j lJ=l' from Jr. This i.i.d.
Monte Carlo (i.i.d. MC) method is a fundamental notion in statistics and has made the subject
very useful in many areas of science. A refinement of this result is via the central limit
theorem (CLT) from which it follows that, if Is 12 d':. < 00, then an_asymptotic (1 - ex)­
level confidence interval for Acan be obtained as In = (in - Zaan/,J'n, in +Zaan/ ,J'n), where
a; = E'J=lI2(~j)/n - Ii and Za is such that lP(IZI > Za) = ex, where Z is an N(O, 1)
random variable. Here, lP(A E In) ~ 1 - a as n ~ 00.

On the other hand, if it is difficult to sample directly from n then the above classical
i.i.d.l Me method cannot be used to estimate A. In the pioneering work of [13], the target
distribution n was the so-called Gibbs measure on the configuration space (a finite but large
set) in statistical mechanics, but it was difficult to generate an i.i.d. sample from this. In [13]
a Markov chain {Xn}n~O was constructed that was appropriately irreducible and had n as its
stationary distribution. The authors used a law of large numbers for such chains, that asserts that
if {X n ln~o is a suitably irreducible Markov chain and has a probability measure n as its invariant
distribution, then for any initial distribution of X0, the 'time average' EJ=1I (X j ) / n converges
almost surely (a.s.) to the 'space average' A = Is I dzr as n ~ 00; see [14, Theorem 17.0.1].
So EJ=lI(Xj)/n provides a consistent estimator of A. In the late 1980s and early 1990s a
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1134 K. B. ATHREYA AND V. ROY

number of statisticians became aware of the work of [13] and adapted it to solve some statistical
problems. Thus, a new statistical method (for estimating integrals with respect to probability
distributions) known as the Markov chain Monte Carlo (MCMC) method was born. Since
then the subject has exploded in both theory and applications; see, e.g. [16]. Here also, if
Is /2 dzr < 00 then under certain conditions on mixing rates of the chain {Xn}n~O, a CLT
is available for the time average estimator LJ=l!(Xj)/n, from which a confidence interval
estimate for Acan be produced.

Recently, [2] have shown that the standard Monte Carlo (both i.i.d. MC and MCMC) methods
are not applicable for estimating A in the case of improper targets, that is, when rr(S) = 00. In
particular, the authors showed that the usual time average estimator, L7=1/ (Xi) / n, based on
a recurrent Markov chain {Xn}n~O with invariant measure n (with Jr(S) = 00) converges to 0
with probability 1 and, hence, is inappropriate. The authors provided consistent estimators of
Abased on regenerative sequences of random variables whose canonical measure is n .

A sequence of random variables is regenerative if it probabilistically restarts itself at random
times and can thus be broken up into i.i.d. pieces. Below is the formal definition of regenerative
sequences.

Definition 1. Let (Q, J:', JP» be a probability space and (S, -8) be a measurable space. A
sequence of random variables {Xn}n~O defined on (Q, 3=', JP» with values in (S, -8) is called
regenerative if there exists a sequence of (random) times 0 < Ti < T2 < ... such that the
excursions {Xn : Tj ~ n < Tj+l, Tj }j~l are i.i.d., where Tj = Tj+l - Tj for j = 1,2, ... ,
that is,

r

=nJP>(TI = k], XTt+q E Aq,j, 0 ~ q < kj )
j=l

for all kl, ... , k; E N', the set of positive integers, Aq,j E -8, 0 ~ q < k], j = 1, ... , r, and
r 2: 1 and these are independent of the initial excursion {Xj : 0 ~ j < Tl}. The random times
{Tn}n~ 1 are called regeneration times.

The standard example ofa regenerative sequence is a Markov chain that is suitably irreducible
and recurrent. A regenerative sequence need not have the Markov property. In particular, it
need not be a Markov chain (see [2] for examples). Let

T2- 1

rr(A) == IE(~ lA(Xj)) for A E-8,
J=Tl

(1)

where 1A is the indicator function for some set A. The measure rr is called the canonical (or,
occupation) measure for regenerative sequence {X n}n~O with regeneration times {Tn}n~O. Let
Nn = k if Tk ::s n < Tk+l, k, n = 1,2, .... That is, Nn denotes the number of regenerations
by time n. Athreya and Roy [2] showed that the following estimator Xn , called the regeneration
estimator for estimating A == Is ! dzr (assuming Is I!Idzr < 00) is indeed consistent. That is,

~ LJ=o !(Xj)
An == ~ A a.s. (2)

Nn

Thus, given a (proper or improper) measure n , if we can find a regenerative sequence with tt

as its canonical measure, then A == Is! drr can be estimated by (2). It may be noted that
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this regenerative sequence Monte Carlo (RSMC) works whether n(S) is infinite or finite.
If n (S) < 00 then the strong law of large numbers implies that N n» the number of regenerations
by time n, grows at the rate nln(S) (since lE(T2 - TI) = rr:(S» as n ~ 00. Thus, when
n (S) is finite we have at least three choices of Monte Carlo methods of estimation, namely
the i.i.d. MC, MCMC, and RSMC. This last Monte Carlo method, that is, RSMC has a natural
universality property, namely, it works whether one knows the target it is a finite or infinite
measure.

The regenerative property of positive recurrent Markov chains has been used in the MCMC
literature for calculating standard errors of MCMC-based estimates for integrals with respect to
a probability distribution; see, for example, [1, Section IV.4], [10], [15], and [16, Chapter 12].
Regenerative methods for analyzing simulation-based output also have a long history in the
operations research literature; see, for example, [6] and [9]. But in these methods, the
excursion time TI is assumed to have finite second moment, which does not hold when the
target distribution is improper. In fact, lE(rl) = lE(T2 - TI) = Jr(S) = 00 when n is improper.
On the other hand, the RSMC method does not require the existence of even the first moment
OfTI.

Athreya and Roy [2] developed algorithms based mainly on random walks for estimating A
when S is countable as well as S = R d for any d ~ 1. This leads to the very important question
of how to construct a confidence interval for A based on ~n. An approximate distribution of
(~n - A) can be used for estimating the Monte Carlo error of the regeneration estimator ~n.

In this paper we obtain an asymptotic confidence interval for A under the assumption of finite
second moments of Li~Tll f(X;) (this is not the same as requiring lE(T2 - TI)2 < (0) and a
regularly varying tail of the distribution of the regeneration time 'fl. We make use of a deep
result due to [12] in order to obtain the limiting distribution of (suitably normalized) (~n - A).
We then apply our general results to the algorithms based on the simple symmetric random walk
(SSRW) on Z presented in [2] for the case when S is countable as well as S = lRd for some
d ~ 1. We provide simple conditions on f under which a confidence interval based on ~n is
available in both cases, that is, when S is countable or S = }Rd and n is absolutely continuous.
The algorithms based on the SSRW [2] are used for estimating A.

2. Main results

Theorem 1. Let {Xn }n~O be a regenerative sequence as in Definition 1. Let n be its canonical
measure as defined in (1). Let f: S ~ R be -8 measurable.

(i) Assume that

,",Ti+)-l. 2 _ 2 2Let Vi = Lj=T; !(Xj), 1= 1,2,3, ... , and 0 < a = lEVI - A < 00. Let

L~=l iu, - A)
Yk = for k = 1, 2, ....

a-/k
Then

(a) as k ~ 00,
D

Yk ~ NCO, 1).
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(b) Let Yk(t), t ~ 0 be the linear interpolation of Yk on [0, (0), that is,

(U[kt]+1 - A)
Yk(t) == Y[kt] + (kt - [ktJ) .Jk .

ka

Then as k ~ 00, {Yk(t): t :::: O} ~ {B(t): t :::: OJ, in C[O, 00), where {B(t): t ::::
O} is the standard Brownian motion.

(ii) Assume that
JP>(rl > x) ~ x-a L(x) as x ~ 00, (3)

where 0 < ex < 1 and L(·) is slowly varying, i.e. for all 0 < c < 00, L(cx)/L(x) ~ 1
as x ~ 00. Then

(a) 1i(S) = IE(T2 - Tl) = 00.

(b) Let n, = k ut; :s n < Tk+l, k ~ 1, n :::: 1. Then

Nn D
--- ~ Va asn ~ 00,
n" / L(n)

(4)

where JP>(Va > 0) = 1, and for 0 < x < 00, JP>(Va :s x) = JP>(Va ~ x- l / a )

with Va being a positive random variable with a stable distribution with index ex
such that

IE(exp(-sVa)) = exp(-sa r (1 - ex)), 0 :s s < 00

where I'(p) = JoOOx p - 1 exp(-x) dx, 0 < p < 00 is the gammafunction.

(iii) Assume that

and (3) holds. Then

(5)

(Xn - A)~ ~ N(O, 1)
a

asn ~ 00, (6)

(~n - A)Jna / L(n) D
------- ~ Q as n ~ 00, (7)

a
where Q == B(Va)/ Va, {B(t): t ~ O} is the standard Brownian motion and Va is as in
(4) and independent of {B(t): t :::: OJ.

(a) Let
Nn U 2

2 L; "'2a = --An N n
;=1 n

(8)

Then

(Xn - A)~ ~ N(O, 1)
an

(~n - A)Jna / L(n) D
-------~Q

an

asn ~ 00,

asn ~ 00,

(9)

(10)

where Q is as in (7).
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Using the results in Theorem 1 we can construct asymptotic confidence intervals for A based
on the regenerative sequence {Xi 17=0 as discussed below in Corollary 1.

Corollary 1. Fix 0 < p < 1, and let zp, qp be such that JP>(IZI > zp) = p and JP>(Q > qp) =
p, where Z rv N(O, 1) and Q is as in (7). Let Inl == (j,n - Zpan/~, j,n+Zpan/~), and
In2 == (}:,n - qp/2an/ ,Jna / L(n), }:,n - Ql-p/2an/.Jna/ L(n)). Let l(lnl) = 2Zpan/~, and
I(In2) = (qp/2 - Ql-p/2)an/Jna/ L(n) be the lengths ofthe intervals Inl and In2, respectively.
Then we have the following:

(i) !P(A E I ni) --+ 1 - p as n --+ 00 for i = 1, 2;

(ii) Jna/L(n)I(Inl) ~ 2z pa/ -JV;, where Va is as in (7);

(iii) ,Jn a/ L(n)l(ln2) --+ (Qp/2 - Ql-p/2)a a.s.

Below we consider a special case of Theorem 1 in the case when S is countable. We use
an algorithm [2, Algorithm I] based on the SSRW on Z for consistently estimating countable
sums. We provide a simple sufficient condition for the second moment hypothesis (5) in this
case so that we can obtain confidence interval as well. Since S is countable, without loss of
generality, we can take S = Z in this case.

Theorem 2. Let {Xn}n~O be an SSRWon Z starting at Xo = O. That is,

n ~ 0,

(11)

where {8nln:::: l are i.i.d. with distribution JP>(81 = +1) = 1= P(81 = -1) and independent
ofXo. Let N; = LJ=ol{Xj=o} be the number of visits toOby {Xj}J=o' Assume that it; ==
rr(i) ~ 0 for all i. Let f: Z ~ JR be such that LjEZ If(j)lrr(j) < 00. Then

~ _ L}=o f(Xj)Jr(Xj) _".
An = ~ A = L...J f(l)rr; as n ~ 00 a.s.

Nn . '7J
lEIU

Assume that, in addition, LjEZ If(j)IJr(j).v1JT < 00. Then

(i) lE(Lr~ollf(Xj)lrr(Xj))2 < 00, where TI =min In: n ~ 1, Xn = OJ,

(ii) and

~(5..n - ).) ~ N(O, 1)
a

where a 2 == lE(Lr~l f(Xj)Jr(Xj))2 - A2,

(iii) then

asn ~ 00, (12)

(13)
(j,n - A)n1/4 D B(VI/2)
---- --+ as n --+ 00,

a Vl/2

where {B(t): t ~ O} is the standard Brownian motion, VI/2 is a random variable
independent of {B(t): t ~ OJ, and Vl/2 has the same distribution as Jrr/2IZI, Z rv

N(O, 1).

(iv) Also the analogues of(9), (10), and Corollary 1 hold.
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Lastly, we consider the algorithm presented in [2, Algorithm III] that is based on the SSRW
on Z and a randomization tool to estimate integrals with respect to an absolutely continuous
measure 1T on any ]Rd, d < 00. Let j": ]Rd -+ ]R and 1T be an absolutely continuous measure
on ]Rd with Radon-Nikodym derivative pt-). Assume that flRd I!(x)\p(x) dx < 00. The
following theorem provides a consistent estimator as well as an interval estimator of A ­
fIRd !(x)p(x) dx.

Theorem 3. Let {Xn}n:::O be a SSRWon Z with Xo = O. Let {Vu: i = 0,1, ... ; j =
1, 2, ... ,d} be a sequence of i.i.d. uniform (-!' !)random variables and independent of
{Xn}n:::O. Assume that K: Z ~ Zd be 1 - 1, onto. Define Wn := K(Xn) + U", n = 0,1, ... ,
where U" = (Vnl, Un2, ... , Und). Note that the sequence {Wnln:::o is regenerative with
regeneration times {Tn}n:::o being the returns ofSSRW {Xn}n:::O to O. Then

a.s.,
~ LJ-O !(Wj)p(Wj) ~
An == - -+ A == f(x)p(x) dx

Nn lRd

where Nn = LJ=O l{xj=O} is the number ofvisits to 0 by {Xj IJ=o.
Let g: Z ~ IR+ be defined as

g(r) == /E(lf(K(r) + U)/p(K(r) + U))2

= ( ( (If(K(r) + U)lp(K(r) + u))2 dU) 1/2,
J[-1/2,1/2]d

(14)

(15)

where V = (VI, U2, ... , Ud) with the UiS, i = 1,2, ... ,d, are i.i.d. uniform (-~, ~) random
variables, and [-!, !]d is the d -dimensional rectangle with each side being [-!' ~]. Assume
that LrEZ g(r)v'fi1 < 00. Then

(i) E(L~~(/I!(Wj)\n(Wj»2 < 00, where TI =min In: n ~ 1, X; = OJ,

(ii) and
~(~ -A)

n n -+ N(O, 1) asn ~ 00,
a

where a 2 == 1E(L~~1 f(Wj)n(Wj»2 - A2,

(iii) then
(~n - A)nl/4 B(VI/2)
---- ~ asn ~ 00,

a VI/2

where {B(t): t ~ OJ, and VI/2 are as in (13).

(iv) Also the analogues of(9), (10), and Corollary 1 hold.

Remark 1. A sufficient condition for LrEZ g(r)v'fi1 < 00 in Theorem 3 is as follows. Let

her) = sup If(K(r) + U)lp(K(r) + u).
UE[-1/2, 1/2]d

From (15), it follows that g(r) ::s h(r) for all r E Z and so a sufficient condition for
JE(L~~(/ If(Wj)\1T(Wj»2 < 00 is LrEZ h(r)v'fi1 < 00.

The proofs of Theorems 1-3 are given in Section 4. The proof of Corollary 1 follows from
the proof of Theorem 1 and Slutsky's theorem and, hence, is omitted.
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In this section we demonstrate the use of the results in Section 2 with some examples. We
first consider estimating A = L~=I 11m2. The SSRW chain mentioned in Theorem 2 was
used in [2] to estimate A, that is, the authors used ~n defined in (11) to consistently estimate A.
Note that, in this case f(j) = l/j2 if j ~ 1, f(j) = 0 otherwise, and 1f(j) = 1 for all
j E Z. Since LjEZ.f(j)j{(j),JfJf =ALj~l j-(l+I/2) < 00, we can use Theorem 2 to provide
a confidence interval for A based on An. In particular, an asymptotic 95% confidence interval
for A is given by (~n ± 1.96un/~), where u; is defined in (8). In Figure la we show the
point as well as the 95% interval estimates for six values (logiO n = 3,4, ... ,8, where 10giO
denotes logarithm base 10). The point and 95% interval estimates for n = 108 are 1.636 and
(1.580, 1.693), respectively. Note that, the true value Ais 1f2/6 = 1.645. The time taken to run
the SSRW chain for 108 steps using R ([17]) on an Intel® CoreTM 2 Q9550 2.83GHz machine
running Windows'" 7 is about three seconds.

The next example was originally considered in [5]. Let

Let

f(x, y) = exp(-xy), O<x,y<oo. (16)

o < x, Y < 00.
f(x, y)

fXly(xIY):= r =yexp(-xy),
JIR+ f(x', y) dx'

Thus, for each y, the conditional density of X given Y = y is an exponential density.
Consider the Gibbs sampler {(X n, Yn)}n~O that uses the two conditional densities fx I y(. I y)
and [r IxC· I x), alternately. Casella and George [5] found that the usual estimator

i: !XIY(X I Yj)

j=O n

for the marginal density !x(x) = fIR f(x, y) dy = fIR fx I y(x I y)fy(y) dy = l/x breaks
down. It was shown in [2] that the +Gibbs sampler {(Xn, Yn)}n>O is regenerative with im­
proper invariant measure whose density with respect to the Lebesgue measure is f (x, y) as
defined in (16). Thus, [2, Theorem 3] impli~s that LJ=o fx I y(x I Yj)/n converges to 0
with probability 1. In [2], the authors used An defined in (14) for consistently estimating

2.5
0.75

~ 1.5

.:

0.5

3 4 5 678
Number of iterations (loglO scale)

(a)

0.25 +------.-----r------,...---,--,...-

34567 8
Number of iterations (loglO scale)

(b)

FIGURE 1: Point and 95% interval estimates of (a) L~=I 11m2 and (b) fx(0.5).
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(17)

!x(x). In this example, using Remark 1, we have h(r) = 0 for all r ::s -1, h(O) = 1, and
h(r) = exp(-x(r - ~» for all r ~ 1. Since

Lg(r)M::s Lexp(-x(r - !))~ < 00,

rEZ r::::l

from Theorem 3, we obtain a confidence interval for fx(x) based on ~n. In Figure l(b) we
show the (point and 95% interval) estimates of fx (2) = ! for the same six n values mentioned

in the previous example. The estimates for n = 108 are 0.497 and (0.490, 0.505), respectively.

4. Proofs of results

We begin with a short lemma that is used in the proof of Theorem 1.

Lemma 1. Let {~i }i::::l be i.i.d. random variables with lEl~t1 < 00. Then ~nln -+ 0 a.s.

Proof. Since lEl~11 < 00, for all e > 0, E~l ]P>(I~11 > en) < 00. By the Borel-Cantelli
lemma, E~l ]P>(I~nl > en) < 00 implies that ]P>(I~nlln > e i.o.) = 0, where i.o. stands for
infinitely often. This implies that lim sup I~n IIn ::s e with probability 1 for all e > O. This in
tum implies that ~n In -+ 0 a.s.

ProofofTheorem 1. From (1) it follows that 'A = lE(UI). Since the UiS are i.i.d. random
variables with var(Ul) = a 2, Theorem l(i)(a) and Theorem l(i)(b) follow from the classical
CLT and the functional CLT for i.i.d. random variables; see [4].

From (1), we have Jr(S) = IE(T2 - T}). Since (3) holds and 0 < ex < 1, IE(T2 - T}) =
IE(ri) = 00 implying Theorem 1(ii)(a).

The proof of (4) is given in [8] (see also [2] and [12]).
Now we establish (6). Note that

(~n ->..).;N;, = Ej~(/ f(Xj) + E;',;I(U; ->..) + Ej=TNn f(Xj).

a .;N;,a .;N;,a .;N;,a

Now since r(Tl < 00) = 1, r(IEj~(/ f(Xj)1 < 00) = 1. Also, N« -+ 00 with probability 1
as n -+ 00 and 0 < a < 00. This implies that Ej~(/ !(Xj)/.;N;,O' -+ 0 a.s. Next,

"n "TNn+l-1ILJj=TNn !(Xj)1 < LJj=TNn 1!(Xj)1 =~

.;N;,a - .;N;,a - .;N;,a '

where 1/; == EJ::-r 11f (X1)!, i = 1,2, .... Since the condition (5) is in force, we have
lE17T < 00. By Lemma 1, 17nln ~ 0 a.s. This implies that 17n/,Jn~ 0 a.s. Since N; -+ 00

a.s., as n -+ 00, we have 17Nn I.;N;, -+ 0 a.s.
So to establish (6), it suffices to show that

"Nn (u· - 'A)
L...;=~ ~ N(O, 1).

NnO'

Let, for 0 ~ t < 00,

,,[nt] (u· - 'A) (U 'A)
Bn{t) == L...;=~' + (nt - [ntl) [n~-

nO' na
(18)
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where {an} is such that na;cx L(an) ~ 1. Then, it is known (see [4]) by Donsker's invariance
principle that {B n (.): 0 :::: 1 < oo] converges weakly in e[O, (0) as n ~ 00 to a standard
Brownian motion B(·). Also, it is known ( see [8, p. 448]) that for any 0 < 11 < tz <
. .. < tk < 00, (An (tl), An (t2), ... , An (tk» convergence in distribution as n ~ 00 to
(A(tI), A(t2), ... , A(tk», where {A(t): t :::: O} is a nonnegative stable process of order ex
with A(O) = 0, a.s. and lE(exp(-sA(I») = exp(-sCX r (1 - ex», 0 ~ s < 00. It has
been pointed out in [12, p. 525] that [18] has shown that this finite-dimensional convergence
of An ( ·) to A(·) implies the convergence in law in the Skorokhod space D[O, 00). Next, it
can be shown that (An (.), B; (.» converges in the sense of finite-dimensional distributions as
n ~ 00. Since both {An(·)}n~1 and {Bn(' ) }n2:: 1 converge weakly in D[O, (0) (as pointed out
above) both are tight. This implies that the bivariate sequence {A n(·) , Bn(')}n~1 is also tight
as processes in D 2[0, 00) == D[O, 00) x D[O, (0). Since the finite-dimensional distributions
of (A n(·), Bn(·» converge as n ~ 00, this yields the weak convergence of {A n(·), Bn(')}n~1
as n ~ 00 in D 2[0, (0). For the limit process (A(·), B(·»), we conclude that the process
C(·) = A(·) + B(·) is a Levy process on [0, (0). Now, since B(·) has continuous trajectory
and A (.) has strictly increasing nonnegative sample paths, it follows by the uniqueness of the
Levy-Ito decomposition of C(·) that the processes A(·) and B(·) have to be independent. This
argument is due to [12].

As noted by [18] (see also [4]) it is possible to produce a sequence of processes (An ('), En (.»
and a process (A (.),8(.» all defined in the same probability space such that for each n,
(A n(·) , Bn(·» has the same distribution as (A n(·), Bn(·» on D2[0, 00), and (A(·), B(·» has the
same distribution as (A(·), B(·», and (An ('), Bn(.» converges to (A(.), 8(.» with probability 1
in D 2[0, 00). More specifically, we can generate on the same probability space sequences
{Un,;};~l,n~l and {Tn,;};~I,n~1 such that for each n, the sequence {Un,;, Tn,;};~I has the same
distribution as {U;, T,}i>1 and for each n, the processes An(·) and En(·) are defined in terms of
the sequence {{;n, i- Tn,;};~ 1 and another sequence {Vi, Ti };~ 1 also having the same distribution
as {V;, t; }i> 1 such that (A ('), iJ (.» is defined using {Vi, it }i>I·

Next, let A;;-l (.) and A -I (.) be the inverses of the nondecreasing nonnegative functions
An ( ·) , A(·) from [0, (0) to [0, (0). (For a nondecreasing nonnegative function H on [0,00),
we define the inverse n:' (.) by n :' (y) == inf {x: H(x) :::: y}, °~ y < 00.) It can
be shown (see also [11, Theorem A.I]) that (An, A;;-I, Bn) converges to (A, A-I, E) with
probability 1 in D 3[0, (0). This, in tum, yields by the continuous mapping theorem and the
fact that P(A -I (1) > 0) = 1, as n ~ 00,

(19)

Now by the independence of iJ and A and the fact that P(A -1 (1) > 0) = 1, the limiting random
variable on the right-hand side of (19) is distributed as N(O, 1).

Let bn t 00 be a sequence such that abn / n ~ 1 as n ~ 00, where {an} is as defined earlier,
satisfies na;a L(an) ~ 1. Such a sequence Ibn} exists as an t 00 as n ~ 00. By definition
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(20)

- 1 - - -Let y < A; (1), then An(y) < 1. This implies that Tn,[ny]/an < 1. Let {Nn,m}m::: l be the

sequence of regeneration times associated with {Un,i, Tn,i}i~l. Then, Tn,[ny]lan < 1 implies
that Nn,an :::: [ny] :::: ny - 1. So, Nn,anln :::: y - lin. Since this holds for all y < A:;1 (1), we
have

Nn•an 2:A-I(1)-~.
n n n

Similarly, letting y > A;l(I), we conclude that Nn,anln ::s y + lin. As this holds for all
y > A;l (1), we have

(21)

From (20) and (21), we have

- lINna-I 1A- (l) __ <_,_n <A- (1)+-
n n- n - n n

and, more specifically,

(22)

Since abnln -+ 1 as n -+ 00, for all e > 0, n(1 - s) ~ abn ~ n(l + s) for all large n. This

implies that for all large n, Nbn,nO-s) s Nbn,abn ~ Nbn,nO+s). This yields, by (22),

(23)

As {bnl issuchthatabnln -+ 1andna;a L(an) -+ I, which implies that e, (abn)-a L(abn) -+ I,
that is.b; ""'ab IL(abn) ""'naIL(n). Sobn(1+s)/bn "'" (1+£)aL(n)IL(n(I+£» -+ (l+£)Cl
asn -+ 00 fornall e > -1. SinceAb:zI(I)-+A-l(l)a.s.and(23)holdsforaIls > O,we
conclude that

A-I (1) ~ lim inf N;:.n with probability 1.

Similarly, A: -1 (1) :::: lim sup Nbn,nlbn with probability 1 and, hence, lim Nbn,nlbn = A-1 (I)
with probability 1.

By the definition of (An, En),
Bbn(Nnlbn)

JNnlbn

has the same distribution as
Bbn(Nbn,nlbn)

Jihn.nlbn

Since Nbn,nlbn -+ A-I (1) a.s., Ebn(0) -+ B(.) a.s. in e[O, 00), and B(.) has continuous
trajectory

Bbn(Nbn.nlbn) ---+ B(A-I (1»

J Nbn.nlbn J A-I(l)
a.s.
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From (18), we see that

L~~l (Vi - A) _ Bbn (Nn/bn) .

-J"F[;,a - JNn/bn '

1143

hence, (6) is proved.
Next, to prove (7), we see from (17) it suffices to show that

L~:;l (Vi - >..) j n
a ~ Q =; B(Va).

Nna L(n) Va

Applying the above embedding used to prove (6), it is enough to show that

Bbn(Nbn,n/bn)~a_ --- ~ Q a.s.
Nbn,n/bn L(n)bn

This follows from the argument used in the proof of (6) and the fact that na / {L (n )bn } ~ 1 as
n ~ 00.

Since by the strong law of large numbers, a; ~ a 2 a.s. as n ~ 00, (9) and (10) follow
from Slutsky's theorem, (6) and (7).

ProofofTheorem 2. The SSRW Markov chain {Xn}n:::O is null recurrent (see, e.g. [14,
Section 8.4.3]) with the counting measure on Z being the unique (up to multiplicative constant)
invariant measure for {Xn}n:::O. Hence, the SSRW Markov chain {Xnln:::o is regenerative with
regeneration times To = 0, Tr+l = inf{n: n 2: T; + 1, X; = OJ, r = 0,1,2, ... and the proof
of (11) follows from the strong law of large numbers; see also [2].

Let N(j) == Li~Ol l{xj=j} be the number of visits to the state j during the first excursion

{Xi }i~Ol for j E Z. Note that Xo = 0 and N(O) = 1. Without loss of generality, for the rest
of the proof we assume that n j = 1 for all j E Z. Since

T}-l

L \f(Xj)\ = L \f(j)\N(j),
j=O jEZ

by Minkowski's inequality, we have

(Tt-
I )2 ( )2 ( )2

lE ~ 1!(Xj)1 = lE ~ 1!(j)IN(j) ~ ~ 1!(j)IJE(N(j))2 .
J=O JEZ JEZ

For the SSRW on Z, it has been shown by [3] that for r ¥= 0, lE(N(r» = 1 and var(N(r» =
41rl- 2. So

2 l41rl - 1 if r ¥= 0,lE(N(r» = var(N(r» + 1 = .
1 If r = O.

Thus, LjEZlf(j)l-JUT < 00 implies that lE(L~~llf(Xj)1)2 < 00.

Since IP'(TI > n) '"'J J2/Jrn- I / 2 as n ~ 00 (see, e.g. [7, p. 203]), from (4), we have

Nn D 0
.fii ---+ V"2 IZI,

where Z '"'J N(O, 1); see, e.g. [8, p. 173].
Then (12), (13), and Theorem 2(iv) follow from (6), (7), and Theorem l(iii)(c).
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ProofofTheorem 3. The proof of (14) is given in [2]. We now show that LrEZg(r)M <
00 implies that lE(L;~ollf(Wj)I1T(Wj»2 < 00. Without loss of generality, we assume that
p(x) == 1 for all x E Rd. Since the {Vij: i = 0,1, ... ; j = 1,2, ... , d} are i.i.d. uniform
(-!' !)and are independent of {Xn}n~O, we have

where N (r) is as defined in the proof of Theorem 2, the number of visits to the state r

during the first excursion {Xi }i:!:OI and Vi == (Vii, Vi2, ... , Vid), with the Uu being i.i.d.
uniform(-!, !). By Minkowski's inequality, we have

{ (
N(r) )2}1/2 {[N(r) ]2}1/2

lE L?= f(K(r) + Ui) ~ L lE ?= f(K(r) + u', . (24)
rEZ 1=1 rEZ 1=1

For any fixed r E Z, another application of Minkowski's inequality yields

where g(r) is defined in (15). Hence, the rest of the proof follows from (24) and using similar
arguments as in the proof of Theorem 2.
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