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When a gas bubble grows by diffusion in a gas–liquid solution, it affects the
distribution of gas in its surroundings. If the density of the solution is sensitive to the
local amount of dissolved gas, there is the potential for the onset of natural convection,
which will affect the bubble growth rate. The experimental study of the successive
quasi-static growth of many bubbles from the same nucleation site described in
this paper illustrates some consequences of this effect. The enhanced growth due
to convection causes a local depletion of dissolved gas in the neighbourhood of
each bubble beyond that due to pure diffusion. The quantitative data of sequential
bubble growth provided in the paper show that the radius-versus-time curves of
subsequent bubbles differ from each other due to this phenomenon. A simplified
model accounting for the local depletion is able to collapse the experimental curves
and to predict the progressively increasing bubble detachment times.
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1. Introduction
Diffusive processes leading to bubble formation are present in many different

situations, such as gas-driven volcanic eruptions (Liu & Zhang 2000), bubble growth
in porous media (Li & Yortsos 1995) affecting, among others, oil production (Akin
& Kovscek 2002), bubbles emerging in carbonated beverages (Bisperink & Prins
1994; Liger-Belair, Voisin & Jeandet 2005; Uzel, Chappell & Payne 2006) such as
beer (Lee, McKechnie & Devereux 2011) and the recently discovered nanobubbles
(Lohse & Zhang 2015). Several different physical processes affect bubble nucleation
and growth in all these situations: diffusion, history effects (Peñas-López et al. 2016,
2017; Chu & Prosperetti 2016), electrolysis (Verhaart, de Jonge & van Stralen 1979;
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Sillen et al. 1982), catalysis (Somorjai & Li 2010), ultrasound (Stricker et al. 2013)
and others. In view of these and many other occurrences, the study of bubble diffusive
growth has been actively pursued for a long time, starting with the seminal works
by Epstein & Plesset (1950), Scriven (1959) and others. More recently, due to new
developments in experimental techniques (see e.g. Enríquez et al. 2014) and new
applications, such as energy generation by chemical reactions (Oehmichen, Datsevich
& Jess 2010), the topic has been the object of renewed attention.

In most previous studies, the long-term effects due to the gas depletion of the
volume surrounding a bubble nucleation site have not been studied in detail. Although
this depletion has limited effects on electrolytic bubble growth (Verhaart et al.
1979; Sillen et al. 1982), where gas is continuously generated, it has very marked
consequences in the situation in which the overall initial dissolved gas concentration
in the liquid is fixed. In this article, we qualitatively and quantitatively deal with
gas depletion effects when successive bubbles quasi-statically grow by diffusion on
a silicon chip. We follow the growth of several tens of bubbles from the same
nucleation site. Due to the small mass diffusivity of gases in liquids, this process
is very slow and each bubble takes many minutes to grow to its final radius before
detaching due to buoyancy. We will however find that also convective effects, which
less surprisingly appear in strongly supersaturated gas–liquid solutions (Kuchmaand,
Gor & Kuni 2009; Kuni, Kuchma & Adjemyan 2009), also play a very subtle but
dominant role towards the end of the bubble growth for a weak supersaturation level.

From a modelling point of view, the pure diffusion-driven growth of a spherical gas
bubble in an infinite supersaturated liquid is a well-known problem whose dynamical
equation has the following form (Epstein & Plesset 1950):

dR
dt
=D

cs

ρg

(
1
R
+

1
(πDt)1/2

)
ζ , (1.1)

where D is the diffusion coefficient, cs is the dissolved gas concentration by mass at
the bubble surface, ρg is the gas density in the bubble and ζ is the supersaturation
level, defined as

ζ =
c0 − cs

cs
, (1.2)

with c0 being the ambient dissolved gas concentration in the liquid. This equation can
be readily solved by defining two dimensionless variables, namely

ε ≡
R
R0
, x≡

√(
2Dζcs

ρgR2
0

)
t, (1.3a,b)

where R0 is a reference radius which Epstein & Plesset (1950) identify with the initial
bubble radius. The simplified solution can be written as

ε ≈ (γ + (1+ γ 2)1/2)x≡ Sx, (1.4)

where γ =
√
ζcs/2πρg. As mentioned before, this solution is valid for a bubble

growing in an unbounded domain, or in other words, an infinite bulk. The dynamical
equation (1.1) needs to be modified when the bubble grows on a solid surface,
which changes the boundary conditions to be applied to the solution of the diffusion
equation (Stricker et al. 2013). Enríquez et al. (2014) approximated the effect of
the solid surface by introducing the concept of an effective area through which gas
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diffuses into the bubble. In their experiment, the bubble grew out of a pit of radius
Rp on the solid surface. They set R0 = Rp in (1.3) and found:

ε ≈ (γ + ( 1
2 + γ

2)1/2)x≡ S∗x. (1.5)

Since the parameter S∗ is evidently smaller than S, the bubble is predicted to grow on
a solid surface at a smaller rate in comparison to a bubble in an unbounded liquid.

2. Experimental set-up
To grow bubbles in a controlled way, we use the set-up documented in Enríquez

et al. (2013). The system mainly consists of two containers which are used, one to
prepare the gas–liquid solution, and the other to perform the experiments. Pressure
and temperature are controlled throughout the whole experiment. The bubbles grow
out of a pit etched on a silicon chip, which ensures a growth on a designated spot.
The pit is coated with black silicon, an extremely hydrophobic material.

Our procedure starts with the preparation of a saturated solution of carbon dioxide
and ultra-pure degassed water at a certain pressure and temperature. The concentration
c of CO2 in the solution depends on temperature and pressure, according to Henry’s
law (originally documented in Henry (1803), see also e.g. Landau & Lifshitz (1980)):

c(T, P)= kH(T)P, (2.1)

where kH is a decreasing function of temperature and P is the pressure. This relation
shows that, after reaching thermodynamic equilibrium, a solution can become
supersaturated either by increasing the temperature or decreasing the pressure.
Experimentally, the easier option is the latter one, which we adopt in this study.
After preparing a saturated solution in the high pressure tank, we transfer it to the
other container, in which the chip has been previously introduced and all other gases
have been removed by flushing with CO2. The diameter of the experimental vessel
(12 cm) is much larger than any bubble radius at detachment (∼300 µm), therefore
any wall effect can be neglected. After lowering the pressure in the latter, according
to (2.1), the liquid becomes supersaturated and bubbles start to grow on the desired
spot. We record the succession of bubbles through a lateral window on the walls of
the experimental tank, see figure 1.

In the performed experiments, the temperature was measured to be 20.7 ◦C for
all the cases. We created the saturated condition at a pressure of 914 kPa (9.14
bars). Under this condition, the water contains around 15.5 kg m−3 of dissolved CO2.
Decreasing its value to 810 kPa (8.01 bars), we obtain a gas excess of approximately
2 kg m−3, which needs to be released in the form of bubbles. Thus, we achieve
a supersaturation level ζ = 0.14 which is small enough to assume a quasi-static
diffusion-driven evolution (see e.g. Enríquez et al. 2014). For most of the bubble
growth time, we can therefore neglect convective effects, except for the middle–late
stages of the bubble growth, in which natural convection becomes important (see
below). Accordingly, advective effects caused by concentration difference are also
neglected. The diffusivity has a value of D= 1.78× 10−9 m2 s−1 at saturation (Frank,
Kuipers & van Swaaij 1996; Cussler 2009; Lu et al. 2013), whereas the surface
tension is σ = 0.059 N m−1 (Lubetkin & Akhtar (1996), lower than the value for
pure water due to the high pressure level and the large amount of dissolved gas, as
can be found in Eötvös (1886)), the mixture density is ρm= 1016.7 kg m−3 (Hebach,
Oberhof & Dahmen 2004; International Association for the Properties of Water and
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FIGURE 1. (Colour online) (a) Schematic of the experimental set-up. The gas–liquid
solution is introduced into the tank through the valve V1. By lowering the pressure by
means of the controller, the solution becomes supersaturated and bubbles grow on the
designed location on the chip. The images are recorded through the lateral glass window.
(b) Bubble cycle: nucleation, growth and detachment. The sequence corresponds to the first
bubble growing on the substrate after the pressure decrease. It can be appreciated that the
bubble gains an almost perfect spherical shape from the very early stages after nucleation.
The last snapshot in the sequence corresponds to the moment prior to detachment.

Steam 2014) and the gas density is ρg = 14.53 kg m−3 (Pierantozzi 2007). These
parameters are necessary for computing the dimensionless values ε, x and γ , and
the value of the bubble detachment radius (defined in the next section). Under these
conditions, the temperature change due to cooling by evaporation has been calculated
to be of the order of 1T ≈ 1 µK. Therefore, this effect can be disregarded throughout
the whole experiment.

3. Analysis of experiments
We analyse a long succession of bubbles nucleating, growing and detaching from

the same pit over many hours, as depicted in figure 2, focusing on the differences
between the first and latest bubbles. It can be clearly detected that, as time goes
by and many bubbles have been growing and detaching, the growth rate decreases
significantly. In addition, figure 2 represents the bubble detachment radius over time.
The maximum value of the detachment radius is given by Fritz’s formula, which is
derived by balancing the buoyancy force for a perfect sphere, Fb = (4/3)πR3(ρm −

ρg)g, with the capillary force for a bubble attached to the pit of radius Rp = 10 µm
at the point where the buoyancy exceeds the maximum force that surface tension can
exert, Fc = 2πσRp (Fritz 1935; Og̃uz & Prosperetti 1993):

Rdet =

(
3σRp

2(ρm − ρg)g

)1/3

, (3.1)
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FIGURE 2. (Colour online) The radius of successive bubbles as function of time (solid
line). The vertical portions represent the detachment of each bubble, followed by the
nucleation of the subsequent one. Dots indicate the detachment radius. The dotted line at
the top is the radius given by Fritz’s formula (3.1). The dashed line shows the corrected
value considering the effective pinch-off radius, see figure 3(a) and equation (3.2). The
detachment frequency progressively decreases, as later bubbles grow more slowly due to
the depletion effect studied in this paper.

where g is the gravity acceleration. In our case, bubbles are attached to the inside
of the pit, forming a neck between the trapped gas and the actual bubble growing
outside, see figure 3. The neck radius is effectively smaller than the pit radius. We
can thus correct (3.1), accounting for the smaller neck radius, i.e. the effective pit
radius Reff , Fc = 2πReffσ . In that case, the following expression for the detachment
radius is obtained:

Rdet =

(
3σReff

2(ρm − ρg)g

)1/3

. (3.2)

From figure 3(b), the neck radius can be measured to be 4 µm, evidently smaller
than the nominal pit radius. The correction accounting for this effective smaller radius
is represented in figure 2 by the dashed line, presenting excellent agreement. From
the same figure, it can be appreciated that the detachment radius barely changes in
the succession. Therefore, we conclude that depletion does not affect the equilibrium
of forces which determine the detachment radius, but it does play a role in the
detachment time and the way bubbles grow.

To study the effect of successively growing bubbles, we need to understand how
gas diffuses through the concentration boundary layer formed around the bubble
while it grows. The thickness of the diffusion layer increases according to δ∼

√
πDt.

However, once a bubble detaches, part of this layer, together with the absorbed gas,
is taken away by the bubble, also breaking the approximately spherical symmetry
of the diffusion layer as the bubble escapes rapidly from the chip. To study how
gas depletion will affect future bubbles, we need to analyse the growth rates after
successive bubbles have been growing, see figures 4(a) and (b). The oscillations in
the latter figure are due to the numerical differentiation of the data in the former one.
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(a) (b)

(c)

FIGURE 3. (Colour online) (a) Sketch of a bubble attached to the hydrophobic pit (not
to scale). The bubble detaches from a neck smaller than the pit radius. The detached gas
volume is estimated as that of a perfect sphere. The error by assuming perfect sphericity
and by neglecting the gas contained in the pit has been calculated to be smaller than 0.3 %.
(b) Detail of the bubble just before detachment. The circle indicates the opening of the pit,
which is larger than the stem from which the bubble detaches (curved lines). (c) Scanning
electron microscopy (SEM) image of the hydrophobic pit. The black silicon coating the
bottom of the pit provides the preferential spot for bubble nucleation and growth.

In addition, since the bubbles in our experiment have typical detachment radius
Rdet≈ 0.3 mm, their (terminal) rise velocity in water is of the order of Ur∼ 5 cm s−1.
This terminal velocity can be regarded as an upper limit to our case scenario. This
leads to a Reynolds number Re ∼ 15, and consequently both viscous and inertial
effects may be important. Bubbles then rise to the free surface, which is typically
∼5 cm above the substrate, in approximately one second. Assuming dominance of
the Stokeslet term and a characteristic length corresponding to the bubble radius at
detachment (due to the presence of the chip, the distance to the closest boundary is
the appropriate length scale), the magnitude of the velocity near the chip during the
rise of the bubble will be set by u(t)∼URdet/(Rdet+Urt), where U is a characteristic
bubble velocity at the chip surface. So the velocity will decay approximately as Rdet/t
during most of this rising process. Any possibly present residual inertial fluid motion
near the substrate will damp out due to the presence of the chip. The time in which
this happens is set by the speed at which the chip momentum boundary layer grows
(approximately δm ∼

√
νt ∼ Rdet), such that this time can be estimated as t ∼ R2

det/ν,
where ν = 9.58× 10−7 m2 s−1 is the kinematic viscosity of water (Frank et al. 1996;
Bataller et al. 2009). This time is calculated to be of the order of tenths of a second.
One could argue that one should multiply this time with a rather large number because
in most of the momentum boundary layer the velocity would be closer to that in
the bulk rather than that at the substrate, but it will still be of the order of seconds
at most. Therefore, both rising and damping time are very small compared with the
bubble growth time (several minutes) and even to the time it takes for a bubble to
renucleate after the previous one has detached, which in our experiments is typically
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FIGURE 4. (Colour online) (a) Evolution of the bubble radius normalised by the pit
radius Rp as a function of the dimensionless parameter x ∝

√
t defined in (1.3) for

several bubbles from the sequence in figure 2. The line marked Epstein & Plesset (1950)
represents the simplified expression in (1.4) and the line marked Enríquez et al. (2014)
its modification (1.5) correcting for the presence of the chip. (b) Dimensionless growth
rate (1/S∗)(d/dx)(R/Rp) versus dimensionless time x for the same bubbles plotted in (a).
The line marked Epstein & Plesset (1950) (with asymptote S/S∗) shows the exact solution
given by these authors; the Enríquez et al. (2014) line accounting for the presence of the
chip asymptotes to 1.

of the order of ten seconds or longer. This implies that every new bubble starts to
grow in liquid that is essentially quiescent and convective flows remaining from the
rise of the previous bubble play no significant role.

The initial bubbles follow the tendency of the simplified Epstein–Plesset solution
(1.4) corrected for the presence of the chip, equation (1.5). From the middle stages
of the bubble growth until its detachment, there is a final faster volume increase which
results from the onset of density-driven convection, as found in Enríquez et al. (2014).
As subsequent bubbles grow and detach, the experimental data no longer approach
the theoretically predicted behaviour. This is the first indication of depletion, which
appears in figure 4(a) from the fifth bubble on. In figure 4(b), there are two main
events occurring for later bubbles in the sequence: the plateau indicating the diffusive
regime reaches a decreasingly lower value than the predicted one and the upward
slope starting at x≈ 20 (which is attributed to the onset of convection) becomes more
and more horizontal, i.e. the change from diffusion to convection at these late stages
becomes less pronounced. To quantify these effects, we plot in figure 5(a) the value
of the saturation plateau for each bubble in the sequence, whereas in figure 5(b) we
represent the slope values corresponding to the convective regime in the final stages of
the growth. To generate these values, we use the last 30 data points of each bubble
to fit the slope and the previous ones to generate the plateau (ignoring the first 10
points). We repeated the process varying the number of points between 25 and 35,
finding very similar results.

For further analysis, it is convenient to introduce two dimensionless numbers,
namely the Sherwood and Rayleigh numbers. The Sherwood number is the dimension-
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FIGURE 5. (Colour online) (a) Saturation plateau in the intermediate stage of bubble
growth (5 6 x 6 20 in figure 4b) and (b) convective slope gradient in the final stages
of the growth (20 6 x, see text). The decreasing tendency in (a) suggest that diffusive
growth suffers from gas depletion caused by the growth of earlier bubbles. The decrease
in (b) shows that the convective contribution to mass transfer progressively decreases for
the same reason.

less mass transfer rate into the bubble,

Sh=
2ρgRṘ

D(c0 − cs)
, (3.3)

where Ṙ is the growth rate. The Rayleigh number represents the ratio of buoyancy to
viscous forces and diffusive effects:

Ra=
gλc(c0 − cs)(2R)3

νD
, (3.4)

where λc is the concentration expansion coefficient, defined by

λc =
1
ρ

(
∂ρ

∂c

)
P,T

≈
1
ρm,0

ρm,s − ρm,0

cs − c0
, (3.5)

where subindices 0 and s refer to the states at saturated and supersaturated conditions,
respectively. For our specific case, λc has a value of 6.5× 10−4 m3 kg−1. Often, λc is
approximated by λc= (Mg/ρl)− Vg (Bataller et al. 2009), where Mg is the molecular
mass of the gas, ρl is the liquid density and Vg is the partial volume of the gas in the
mixture. However, this partial volume cannot be measured with the desired precision
by the means we have access to; therefore, we have used the original definition as in
(3.5).

In case of steady-state density-driven convection around a sphere in an infinite
medium, Sh depends on Ra as (see e.g. Clift, Grace & Weber 1978; Bejan 1993):

Sh= 2+KRa1/4, (3.6)
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FIGURE 6. (Colour online) (a) The data of figure 4 replotted in the form of Sherwood
number Sh versus Rayleigh number Ra; the continuous curve represents (3.6). (b)
Sherwood number S̃h versus Rayleigh number R̃a compensated for the local depletion of
the solution as explained in the text.

where 2 is the Sherwood number corresponding to pure diffusion (which occurs when
Ra� 1) and K is a fitting constant which is found to be 0.569 according to Rahman
(2013) and 0.535 as reported by Bergman et al. (2011). As documented in Enríquez
et al. (2014), plotting the experimental results for Sh versus Ra, the change from
diffusion to convection can be detected, since during the early stages of growth (Ra<
10), we experimentally find that Sh remains approximately constant irrespectively of
the value of Ra, whereas above Ra ≈ 102, the experimental curves start increasing
proportionally to Ra1/4 as in (3.6). Note that the relation (3.6) also holds for the
case of a dissolving droplet with lower density as that of the surrounding solvent, as
documented in Dietrich et al. (2016).

Rewriting Sh and Ra with the dimensionless parameters defined in (1.3), we obtain
the following expressions:

Sh= 2
ε

x
dε
dx
, (3.7a)

Ra=
8gλc(c0 − cs)R3

pε
3

νD
. (3.7b)

The experimental results for these quantities are plotted in figure 6(a). For
subsequent bubbles, the evolution differs from the first bubble, which grows in
an homogeneous, non-perturbed environment: the horizontal portion of the curves,
corresponding to purely diffusive behaviour, gradually decreases below the value
Sh= 2, indicating depletion of the concentration field around the bubble.

4. Simplified model of gas depletion effects
To model the depletion occurring around the n-th bubble, let us assume that it

grows in a locally depleted region where the concentration cn is smaller than the
concentration c0 in the bulk far away from the nucleation site (see figure 7). We now
define a depletion number,

Υn =
cn − cs

c0 − cs
. (4.1)
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2
3

4

(a)

(b)

FIGURE 7. (Colour online) (a) Schematic of the gas-depleted volume around a growing
bubble after the growth and detachment of several previous ones. The bubble depicted
is surrounded by a depleted solution with a concentration cn smaller than the initial one
c0, which still prevails at further distances. Because of the convective contribution to mass
transfer, which is faster than can be replenished by diffusion, each bubble leaves behind a
depleted volume of liquid as it detaches. This effect is expressed in the image by a less
intense colour around the bubble. (b) The upper boundary of each colour band depicts
the gas concentration for pure diffusion. The lower boundary is the gas concentration as
modified by the effect of convection. The area bounded by the two lines thus illustrates
the gas depletion caused by convection. The dashed lines on the right are the edge of
the diffusion layer generated by each bubble (not to scale). The vertical dotted lines show
the effective extent of the volume from which each bubble receives gas; α is a fitting
parameter introduced in (4.5).
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For the first bubble, of course, c1= c0 and therefore, Υ1= 1. We can define the local
Sherwood and Rayleigh numbers, S̃hn and R̃an:

S̃hn =
2ρgRṘ

D(cn − cs)
=

Sh
Υn

(4.2a)

R̃an =
gλc(cn − cs)(2R)3

νD
=ΥnRa, (4.2b)

A test of this simple conceptual model can be carried out by trying to collapse all
the data of figure 6(a) referring to the first bubble using Υn as a fitting parameter. Υn

is thus adapted to achieve a universal curve S̃hn(R̃an). The results for this curve are
shown in figure 6(b). The various values of Υn turn out to decrease for successive
bubbles, i.e. the gas concentration surrounding the bubble is reduced from cycle to
cycle, see figure 8(a). Equation (3.6) can be similarly adjusted to fit the experimental
data rewriting it in terms of S̃hn and R̃an.

By the definition (4.2b) and the results in figure 6(b), we find that the maximum
local Rayleigh number R̃an attained before detachment decreases for successive
bubbles, which is an indicator that convection diminishes, which agrees with the
decrease of mass transfer as subsequent bubbles keep growing and detaching, together
with the diminishing slope represented in figure 5(b).

Before providing a theoretical estimate of the depletion number Υn, we now first
discuss the origin of the depletion effect in a more qualitatively manner. If the bubble
could be modelled as a time-independent mass sink and if diffusion alone were to
be considered, a steady state would be rapidly reached in which the mass transfer
towards the bubble will be exactly equilibrated by the gas diffusion from the bulk
to the bubble surroundings. The concentration in a purely diffusive problem decays
proportionally to 1/r (as seen in many text books, such as Bejan (1993)), where
r refers to the radial distance measured from the point sink; thus, the gradient of
concentration proportionally changes to 1/r2, which is constant at every defined r
and independent of time. Therefore, if diffusion alone is set, then depletion does not
occur, since the gradient of concentration will be exactly the same for all times, i.e.
there would be an exact balance between the gas removed by the bubble and the
gas diffusing from the bulk liquid. When, however, natural convection starts to occur,
the mass flow into the bubble is enhanced and therefore, more gas will be locally
transported into the bubble than is supplied by the steady state diffusion profile,
leading to a local depletion in the region that surrounds the bubble. This depletion
occurs at least as long as the convective transfer is not strong enough to transport
gas-depleted liquid outside the immediate surroundings of the bubble.

Additionally, there are two other effects that need to be taken into account. The first
is that a bubble growing in a homogeneously supersaturated liquid according to the
diffusive Epstein–Plesset law, equation (1.5), is never in a steady state. It can be easily
verified from the approximate law R(t)∝

√
t that the mass flow rate into the bubble

is not constant but proportional to
√

t as well. Moreover, it can be shown that also
the diffusive boundary layer grows as

√
t. If one would consider a series of bubbles

diffusively growing from the same spot and if each bubble would detach as soon as it
reaches its detachment radius, equation (3.2), then after a couple of bubbles a diffusive
steady state would be reached similar to the one discussed in the previous paragraph,
and natural convection would be needed to create a sustained depletion effect as was
observed in our experiments. Therefore, we conclude that more gas is absorbed by
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each bubble than would be supplied by diffusion alone: this excess gas is supplied by
convection. As a result, each subsequent bubble grows in a new environment in which
the local concentration is lower than for the previous one, with a correspondingly
lower growth rate. The second additional effect is that there is a flow connected to the
detachment of the bubble. As each bubble rises, it advects a volume of liquid of the
order of half the bubble volume away from the region where the bubble grows. As
a result of the need to refill the space that is left by the rising bubble and the liquid
advected with it, the liquid in the bubble growth region will get mixed with liquid
that is less gas depleted, coming from somewhat farther away. From the Stokeslet
term, we can estimate the typical distance df travelled by a fluid particle during this
event by integrating the velocity near the chip u(t) over the rising time, which gives
df ∼ log(tr/t0), where t0 = Rdet/Ur ≈ 0.3× 10−3/5× 10−2

= 15 ms and the rising time
tr ≈ 1 s. So df ≈ 2Rdet ≈ 0.6 mm. This implies that the fluid that is mixed during the
detachment event typically comes from within the diffusive boundary layer around the
bubble.

Of course, all the above contributions to the depletion effect are difficult to model.
For a quantitative estimate of the successive values of the depletion number Υn, we
therefore assume that, at the start of the growth of the n-th bubble, the concentration
of dissolved gas in the surrounding liquid is smaller than if the preceding bubble had
grown by pure diffusion. A quantitative measure of this effect can be based on the
before-mentioned solution of the diffusion equation in the presence of a point sink
(derived in appendix A):

c= cn −
ṁn

4πDr
erfc

(
r

2
√

Dt

)
, (4.3)

where erfc is the complementary error function and ṁn is the average mass loss rate
value approximated from the gas content of the detached bubble as

ṁn =
4πρgR3

det

3tdet,n
, (4.4)

with tdet,n the experimentally measured detachment time of the n-th bubble and Rdet
the detachment radius, common for all the bubbles. This defined mass loss rate is
larger than the one which would be found in the case of pure diffusion. The solution
(4.3) only describes the concentration field up to a distance of the order of

√
πDtdet,n

from the bubble. As a justification for the use of the point sink approximation, we
may note that the ratio

√
πDtdet,n/Rdet increases from approximately 4 for the first

few bubbles to nearly 30 for the later ones: the depletion eats deeply into the gas
reservoir. Further out, the concentration tends to the bulk value c0, see figure 7(b). We
now identify the concentration c as given by (4.3) with r = Rdet + α

√
πDtdet,n (with

α a fitting parameter which characterises the distance within the diffusive boundary
layer in which the depleted concentration for the subsequent bubble in the succession
will be defined) as cn+1, the ambient concentration in which the next bubble will grow.
With this identification, we find:

Υn+1 =Υn −
ṁn

4πD(c0 − cs)(Rdet + α
√

πDtdet,n)
erfc

(
Rdet + α

√
πDtdet,n

2
√

D(tdet,n − tdet,n−1)

)
. (4.5)

This equation is solved by an iterative process in which the depletion number
depends on the corresponding depletion number of the previous bubble growing in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

62
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.623


486 Á. Moreno Soto, A. Prosperetti, D. Lohse and D. van der Meer

0.2

0.4

0.6

0.8

1.0

0 100 200

Experimental data
Theoretical model

300

0 5 10 15 20 25 30

Bubble number

Bubble numbert (min)

4

6

8

10

12

14

16

3010 20 400

(a) (b)

FIGURE 8. (Colour online) (a) The depletion number Υn, defined in (4.1) for successive
bubbles. The decrease of this number from 1 gives an indication of the progressive
depletion of the solution surrounding each bubble. The dots are the experimental points
and the line is the theoretical prediction according to (4.5), which is linearised in time in
order to join the calculated discrete points. (b) The detachment time of successive bubbles:
comparison between experiments (dots) and the approximate prediction of (4.6) (line).

succession. We compare both the experimental data and the predicted theoretical
behaviour, with best fitting constant α = 0.72, in figure 8(a). This value of α is
reasonable as one would expect c to tend to cn at the edge of the diffusion layer
corresponding to the n-th bubble, for which α ∼ 1. The agreement of this somewhat
crude model is gratifying. As an explanation of this somewhat surprising result, it may
be noted that, in spite of its foundation on pure diffusion, the effect of convection
is implicitly included in the use of the experimentally determined value of ṁn, as
given by (4.4). Thus, (4.3) represents the equivalent concentration field that would
produce the mass rate ṁn if diffusion were the only process in play. The so-defined
model does not directly face the onset of convection and mixing, but accounts for
their effect in an indirect way.

The detachment time for successive bubbles can be estimated using the depletion
number and combining equations (1.5) and (3.2), yielding

tdet,n =
ρgR2

det

2S̃∗2
n Dζ̃nc0

. (4.6)

This detachment time only considers diffusion-driven processes, as it is derived from
a pure diffusion equation. The change due to the depletion of the bubble surroundings
needs to be accounted for in the parameters ζ̃n and S̃∗n, namely

ζ̃n = ζΥn, S̃∗n =

√
ζ̃nc0

2πρg
+

(
1
2
+
ζ̃nc0

2πρg

)1/2

. (4.7a,b)
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The results for the corrected detachment time accounting for depletion effects
are presented in figure 8(b), where they are seen to be compatible with the data,
displaying qualitative agreement between experiments and theory. It is good to note
that the comparatively large difference between model and experiment in figure 8(b)
originates from the fact that (4.6) is based on pure diffusion and does not at all
account for the enhanced growth caused by the onset of natural convection during
the bubble growth. Nevertheless, the estimation (4.6) gives a good approximation for
the increase in detachment time as bubbles keep growing in succession.

5. Conclusions
The origin of depletion effects in the successive diffusive growth of gas bubbles

from the same nucleation site has been experimentally studied. A simplify theory
has been described which is able to account for the basic features of the data. The
depletion effect is caused by the contribution of natural convection to the bubble
growth beyond the purely diffusive process. Thus, depletion occurs because diffusion
is unable to replace the extra gas supplied by convection and removed by the
detaching bubbles. The progressively increasing depletion reduces the mass transfer
towards the bubbles and, therefore, their growth rate. The radius-versus-time curves
of successive bubbles are different from each other, but can be collapsed through
the introduction of a dimensionless depletion number Υn, which can quantitatively
account for the decrease of the local gas concentration around the bubble due to
depletion. As a result, every bubble evolution curve can be adjusted to a universal
evolution curve which accounts for diffusion when the Rayleigh number Ra is small
and changes afterwards to density-driven convection as Ra becomes larger and larger.
A first estimation of the detachment time can be also calculated from this depletion
number, qualitatively accounting for the increase in the time bubbles take to grow
and detach. Because of the depletion effect, the analytical solution given by Epstein
& Plesset (1950) and adapted by Enríquez et al. (2014) is found to be valid only for
the growth of the first few bubbles.
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Appendix A. Solution for the point sink diffusion-driven mass transfer equation
For the derivation of (4.3), we start from the diffusive mass transfer equation in

spherical coordinates, assuming that each bubble n grows in an infinite domain in
which the starting concentration corresponds to the depleted concentration cn left after
the previous bubble growth:

∂1c
∂t
=D

1
r2

∂

∂r

(
r2 ∂1c
∂r

)
, (A 1)

where 1c= c− cn is the concentration change with respect to a starting concentration
level cn. Since the mass transfer partial differential equation (PDE) (A 1) depends
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on two variables, one of them being involved in a second partial derivative, three
boundary conditions are needed to complete the final solution. As opposed to the
Epstein & Plesset (1950) solution, equation (1.4), in which the conditions were
given close to the bubble limit, we take a farther approach, namely, bubbles will be
considered as a gas sink, studying the evolution of the surroundings of that point,
which is extracting gas from the environment. Therefore, the boundary conditions can
be written as

1c(r, t= 0)= 0, (A 2a)
1c(r→∞, t)= 0, (A 2b)

lim
ξ→0

(
4πξ 2D

∂1c
∂r

∣∣∣∣
r=ξ

)
= ṁn, (A 2c)

where ṁn is the mass loss rate. To solve the partial differential equation (A 1) with
the boundary conditions (A 2a–c), we assume self-similarity and non-dimensionalise
in the usual way,

1c̃=D
r1c
ṁn

, (A 3a)

r̃=
r
√

Dt
. (A 3b)

We can thus reduce the partial differential equation (A 1) to an ordinary differential
equation,

−
1
2

r̃
d1c̃
dr̃
=

d21c̃
dr̃2

. (A 4)

The three boundary conditions (A 2a–c) for the PDE can be transformed into two for
the similarity ordinary differential equation (ODE) (A 4), namely

1c̃(r̃→ 0)= 0, (A 5a)

limr̃→0

(
r̃

d1c̃
dr̃
−1c̃

)
=

1
4π
, (A 5b)

with which equation (A 4) can be straightforwardly solved to give

1c̃=−erfc(r̃/2)/(4π), (A 6)

or in dimensional variables

1c=−
ṁn

4πDr
erfc

(
r

2
√

Dt

)
, (A 7)

which is equivalent to (4.3).
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