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STRUCTURAL IMPLICATIONS OF NORMS WITH
HOLDER RIGHT-HAND DERIVATIVES .

MICHAEL O. BARTLETT, JOHN R. GILES AND JON D. VANDERWERFP

We study a nonsmooth extension of Gateaux differentiability satisfying a directional
Holder condition. In particular, we show that a Banach space is am Asplund space if
it has an equivalent norm with a directionally Holder right-hand derivative at each
point of its sphere.

1. INTRODUCTION

An Asplund space is a Banach space where every continuous convex function on
an open convex subset of the space is Frechet differentiable on a dense Gs subset of its
domain. It is well known that a Banach space is Asplund if it has an equivalent norm
Frechet differentiable on its unit sphere, but Haydon [14] has given an example of an
Asplund space which has no equivalent norm Gateaux differentiable on its unit sphere.
Several variant differentiability properties have been studied which, when applied to an
equivalent norm or a continuous bump function imply that a Banach space is Asplund.

A real-valued function (j> on an open subset A of a Banach space X has a right-hand
derivative at x € A in the direction h € X if

(1.1) ^(x)(^M

exists and has a Frechet right-hand derivative at x if given e > 0 there exists a 6 > 0
such that

( 1 2 ) ^>{x + th)-4>(x) _ ^ + ( : c ) ( / l ) | <e for a l l 0 < t < S a n d a l l h e Sx

If <(>'+(x)(h) exists for all h 6 X and is linear in h then <j> is Gateaux differentiable at x

and if <f> is also Frechet right-hand differentiable at x then <j> is Frechet differentiable at
x. Godefroy [12] showed that a Banach space is Asplund if it admits an equivalent norm
which has a Frechet right-hand derivative at each point on its unit sphere.

We say that cf> is directionally Holder differentiable at x € A if there exists a linear
functional <j>'(x) € X* and 6 > 0 such that given h € Sx there are a/, > 0 and C/, > 0
where
(1.3) \<t>{x + th) - <j>{x) - t<f>'(x){h)\ ^ Ch \t\l+ah for all | t | < 6.
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It has been shown in [18] that a Banach space is Asplund if it has a continuous bump

function which is directionally Holder differentiable on X.

These two results have motivated us to study continuous convex functions whose

right-hand derivative satisfies a directional Holder condition.

We say that <j> has a directionally Holder right-hand derivative at x G A if there

exists 6 > 0 such that given h G Sx there are a^ > 0 and C/, > 0 where

(1.4) \<l>(x + th) - <j>(x) - t<j>'+{x){h)\ < Cht
1+ah for all 0 < t < 6.

If there exists an a > 0 such that this inequality is satisfied with aA = a for all h € Sx

we say that <f> has a directionally a-Holder right-hand derivative at x. Notice that for a
continuous convex function <f> on an open convex subset A of X, <j>'+(x)(h) exists for each
h G X and is a continuous sublinear function in h, [17, p. 5].

In Section 2 we study the particular properties of Holder right-hand derivatives
of continuous convex functions on open convex subsets of a Banach space. Although
for such functions directional Holder differentiablity implies Frechet differentiablity, we
give an example to show that directional Holder right-hand differentiabilty does not
necessarily imply Prechet right-hand differentiability. Notwithstanding, we show that if
such a function has a directional Holder right-hand derivative on a residual subset of its
domain then it is Frechet differentiable on a residual subset of its domain.

In Section 3 we develop the notion of Holder exposed faces of the dual ball and the
relationship to the directionally Holder right-hand differentiability of the norm. Using
the result of Godefroy [12] based on Simons' inequality we show that a Banach space is
Asplund if it has an equivalent norm directionally Holder right-hand differentiable on the
unit sphere. Finally, we see that a Banach space with an equivalent norm directionally
Holder right-hand differentiable on a residual subset of the unit sphere is superreflexive if
the strongly exposed points of the unit ball are dense in the unit sphere. We also observe
that Kunen's Asplund space does not admit an equivalent norm with a directionally
Holder right-hand derivative on its sphere.

2. HOLDER RIGHT-HAND DERIVATIVES OF CONVEX FUNCTIONS

Given a continuous convex function <j> on an open convex subset A of a Banach space
X, we say that <j> is Holder differentiable at x G A if there exist a > 0, C > 0 and S > 0
such that

(2.1) <t>(x + th)-(i>(x)-t<t>'(x)(h) ^C\t\1+a for all \t\ < 6 and h G Sx.

Clearly, if <j> is Holder differentiable at x G A then it is Frechet differentiable at x. We
begin with a variant of a surprising result of Borwein and Noll [2, Proposition 2.2].
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T h e o r e m 2 . 1 . If a continuous convex function <j> on an open convex subset A of a Banach

space is directionally Holder differentiable at x G A, then <j> is Holder differentiate at x.

P R O O F : We include the proof sketched in [16, p.615] for completeness. Consider

0 < 6 < 1 such tha t given h G Sx there exists Q/, > 0 and C/, > 0 for which

<t>{x + th) - 4>{x) - t<t>'(x)(h) < Ch \t\l+ah for all |t| < 5.

For each n G N, write

&Bx: <f>{x + th) - <j>{x) - t<t>'{x){h) ^ n | | i / i | | 1 + ( 1 / n ) for all \t\ <

Now Fn is closed and U Fn = Bx- Since Bx is second category and Fn is symmetric

there is an no € N such that ±ho + rBx Q F^ for some r > 0 and ho € BX- Given
h G Sx, then ±h0 + rh G Fn o, and for \t\ < r6 we have

</>(x + th)-<t>(x)-t<t>'(x)(th) < i

+ \ [<t>{x + ; ( -^o + rh)) - 4>{x) - 4>'(x)(^(-fio + r

Tin II i ||l+(Vno) n . | | + | |l+(l/no)^ I ^ ^ + ^ I +|^ft + r'l)|

where C = n0/r1+(1-'no\ D

However, the analogue of Theorem 2.1 does not hold for Holder right-hand deriva-
tives.

EXAMPLE 2.2. On any infinite dimensional Banach space there is an equivalent norm
and a point on its unit sphere where for any given a > 0 the norm has a directionally
o>H61der right-hand derivative but does not have a Prechet right-hand derivative.

PROOF: Our construction is similar to that in [1, p.1126]. Write X = Y x l . Now
Y is infinite dimensional, so by the Josefson-Nissenzweig theorem [6, p.219] there is a
sequence /* G Sy such that /* -¥w- 0. Define an equivalent norm on X by

\\(y,t)\\ = sup{||y|| + |t|, \4fk(y) + (1 - 1/A;)*|}.

We consider the right-hand derivative of ||-|| at (0,1) in the arbitrary fixed direction (y, r).

To compute this, we fix N > 0 such that /*(y) < \\y\\ /4 for all k ^ N and we choose
6 > 0 such that

(2.2) (a) 1 + t r ^ l for |t | < 6; and (b) \\ty\\ ^ ^ - for |t | < 5.
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According to (2.2a), we have

(2.3) \\ty\\ + \l+tr\=t \\y\\ + l + tr for 0 < t < 6.

On the other hand, for k ^ N and 0 ^ t < 6, using (2.2a) and then (2.2b) we obtain

4/*(*2/) + (1 — ! /&)( ! + * r ) ^ 4 \\ty\\ + 1 + tr — l/(2k)

(2.4) ^ 4 ||ty|| + l + tr- 1/{2N) < 1 + tr.

Now, | fk(y)| ^ \\y\\ /4 for k> N, and so for k> N, (2.2a) implies that

(2.5) \Afk{ty) + (1 - 1/*)(1 + tr)| ^ ||tj/|| + |1 + tr\ = t \\y\\ + l + tr for 0 ^ t < S.

The definition of ||-|| along with (2.3), (2.4) and (2.5) imply that

|(0 + ty, 1 + tr)\\ = t\\y\\ + 1 + tr for 0 ^ t < S.

Using this and the fact that (0,1) = 1, we obtain

I I.' 11(0+ ty, 1 +
| ( 0 , l ) | | + ( » f r ) = U m "^0+ t t-yO+

Consequently,

(2.6) | (0 > l )+ t (» l r ) | - | (0 , l ) | | - | (0 , l ) | ' + ( t i / , « r ) = 0 for 0 < t < 6

which implies that for any a > 0, ||-|| has a directionally a-H61der right-hand derivative

at (0,1).

To complete the proof, we show that ||-|| does not have a Frechet right-hand derivative

at (0,1). For this we consider the directions {(yk, O)}^! where yk S Sy is chosen so that

fk(Vk) > 3/4. Then

Because [1(0,1) (yk,0) = \\yk\\ — 1, this shows that the right-hand derivative is not

approached uniformly over the set of directions I(yjt,O)I C Bx- D

Using the fact tha t sup| | r rT | : |x 7 | < II^H^} < Halloo for x — {x7} G co(F), we can
easily establish the following example.

E X A M P L E 2 .3 . The usual norm on co(r) has a directionally a-H61der right-hand deriva-
tive at each point on its sphere.

The separable reduction argument known as Gregory's Theorem will enable us to
deduce information about the differentiability of convex functions that have directionally
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Holder right-hand derivatives on residual subsets of their domain. For our purposes we

need the following technical variant of the form of the theorem given in [10, p. 163]. We

recall tha t a set-valued mapping $ from an open subset A of a Banach space X into

subsets of the dual X* is said to be norm upper semicontinuous at x G A if for every

open subset W of X* where $ ( i ) C W there is an open neighbourhood U of x such

that $(£/) C W. A continuous convex function <j> on an open convex subset A of X is

Frechet differentiable at x G A if and only if the subdifferential mapping x \—> d(j>{x) is

single-valued and norm upper semicontinuous at x G A, [17, p. 19].

PROPOSITION 2 . 4 . Consider a set-valued mapping $ from an open subset A

of a Banach space X into subsets of the dual X* such that the set of points where <J>

is single-valued and norm upper semicontinuous is not residual in A. Then given any

residual subset Aw of A there exists a separable subspace Y of X and an open subset G

of A such that G l~l Aw n Y is a residual subset ofGHY and $ |y is nowhere single-valued

and norm upper semicontinuous on G C\Y.

P R O O F : A S in [10, p. 163], let G be an open subset of A where for some mo G N

the set

[x G A : there exists an / G $(a;) and sequences {yk} —>• x as k —> oo and

{gk} where gk G $(y*) satisfies \\gk - f\\ > l / m 0 for all k G

is dense in G. The separable subspace Y is constructed as the closure of the union of

a nested sequence of separable subspaces {Ys} as in [10, p.163], but we put an extra

constraint on their construction. Let Yo be any separable subspace such tha t GC\Y0 ^ 0,

but having constructed Ys we choose a countable set Ds in G D Aw such tha t G n Ys C Ds

and insist tha t Ys+i include Ds in its span. So as in [10, p.163] we obtain that $ | y is

nowhere single-valued and norm upper semi-continuous on G C\ Y. As G D Aw D Y is

residual in G D Y we need only check on density. Given x G G C\Y and e > 0 there is

an s G N such tha t d(x, Ys) < e. But by the constraints of our construction we have

d{x, Ds) < e and Ds C Ya+l nG nAw CY nG C\AW. D

While Examples 2.2 and 2.3 show that a directionally Holder right-hand derivative

is not an overly restrictive concept, the following result gives us insight into its structural

implications which we shall explore more fully in the next section.

Given a continuous convex function <j> on an open convex subset A of a Banach space

X we say that <j> is locally uniformly Holder differentiable on A if given x0 G A there exists

an open neighbourhood U of x in A and a > 0, C > 0 and 6 > 0 such that

(2.7) <j>{x + th)-(j){x)-t<j)'{x){h)^C\t\l+a for all |t| < <5, h G Sx and all x G U.

THEOREM 2 . 5 . Consider a continuous convex function 4> on an open convex subset

A of a Banach space X. If<j> has a directionally Holder right-hand derivative on a residual
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subset Aw of A, then <f> is locally uniformly Holder differentiable at each point of a dense
open subset of A.

P R O O F : Suppose that the set of points where <f> is Prechet differentiable is not resid-
ual in A. Then by Proposition 2.4 there is a separable subspace Y of X and an open
subset G of A such that Aw(lG is residual in G and 4>\Y is not Prechet differentiable at any
point of G n Y. However, by Mazur's Theorem [17, p. 12], <f>\Y is Gateaux differentiable
on a dense Gg subset d of G D Y. Now Aw n G\ / 0 and <j>\Y is Holder differentiable
at each point of Aw D Gy, which contradicts <j)\Y being not Frechet differentiable at any
point of G fl Y. Therefore <j> is Prechet differentiable on a residual subset D of A and <j> is
Holder differentiable on the residual subset Aw n D. Consider x0 £ A and choose 6 > 0
such that x0 + SBX Q A. For each n G N, write

6 i 0 + SBX : <£(x + /») - <£(*) - 4>'{x){h) < n | | / i | r ( 1 / n ) for all \\h\\ ^ -
n

Now F n is closed and <f> is Holder differentiable at x G x0 + <S.Bx if and only if x G F n for
some n G N. Therefore U Fn is residual in x0 + 5BX- Since U Fn is second category

ngN ngN

there exists n0 G N such that Fn o contains a nonempty open set on which </> satisfies (2.7)
with a = l/n0. D

The variant of Gregory's Theorem given in Proposition 2.4 enabled us in Theorem
2.5 to assume that the differentiability property of </> occurs only on a residual subset
of A rather than on all of A. Proposition 2.4 can similarly be used to improve [11,
Theorem 2.2] where the differentiability property of <j> is weak Hadamard right-hand
differentiability.

3. STRUCTURAL IMPLICATIONS OF NORMS WITH HOLDER RIGHT-HAND

DERIVATIVES

Given a Banach space X, for u G X \ {0}, write J{u) = {/ G Sx- • f(u) - | |u | |}.
As in [9, p.49] we develop a notion of "exposed faces" of the dual ball which is dual
to directional right-hand differentiability of the norm. This result can be viewed as a
nonsmooth directional analogue of [7, Proposition 2.2] and as such has an analogous
proof.

LEMMA 3 . 1 . Consider a Banach space X with u G Sx and h G X. Then given

a > 0, t i e following are equivalent.

(a) There exists C > 0 such that

\\u + th\\ - \\u\\ - t \\u\\'+ (h) ^ Ct1+a fort^Oandhe {-h, h}.

(b) There exists K > 0 such that dist^+ ( 1 / a ) ( / , J(u)) ^ K[l - /(«)] for each

f€Bx., where distA(/, J(u)) = inf{|(/ - g)(h)\ : g G J(u)}.
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P R O O F : (a) => (b): If dist/,(/, J(u)\ = 0, the result is obvious. So we consider

distA(/, J(u)) > 0. Now, either f(h) = sup{y(/i) : g 6 J(u)} + distA (/ , J(u)) or

f{-h) - sup{g(-h) : g e J (u)} + distA(/ , J (u ) ) . So we fix h € {h, -h} such that

f(h) = sup{g(h) : g 6 J(u)} + dis t h ( / , J (« ) ) .

Choose /„ € J(u) such that ||u||'+ f/i) = fuCh). Then for t ^ 0, (a) implies that

( / - /«.) (t/i) - Ctl+a ^ ( / - /„) («/i) - ||u + ih\ + \\u\\ + /„ (fh)

1Putting t = ( (( / - / u)(/ i jJ/(C(l + cm 1 which is positive in the inequality yields

\(f - f«)(h)\1H1/QU K[l - / („)] where A" = [C(l + *)]1/a(l + i ) .

This shows that (a) implies (b) because disthf/, J(u)J ^ (/ — fu)\h) •

(b) => (a): Fix h G {-/i, /i} and t > 0. Choose /„ € J(u) such that fu(Jij = \\u\\'+
and choose / € Sx- such that f(u + ih\ = u + th . Then

(3.1) ^ (/-/u)(t/i)--idisti+(1/Q)(/,J(u)).

Now, /u(h) = max{/(/i) : / € J(u)} and so 0 ^ (f - fu)(th) = mm{(f - g)[th) :

5 6 J(u)\. Consequently, (/ — fu){th\ — tdist/,(f, J(u)J. Putting this in (3.1) yields

||u + fh\\ - \\u\\ - t ||u||'+ (h) < tdistA(/, J(«)) - ^dist i+ ( 1 / o ) ( / , J(u)) ^ Ct1+a

where C = Ka/a{\ + (l/a))1 +° is independent of t and / . D

According to Example 2.2, the exposed faces given in Lemma 3.1(b) are not neces-
sarily strongly exposed in the sense of [9, p.49]. Nevertheless this duality is sufficient to
prove Lemma 3.3 which is what we shall need to establish our Asplund space property.
We use the following computational property.

FACT 3.2. If for a Banach space X given x e Sx and he Bx, there exist Ch > 0, ah > 0
and 6 > 0 such that

||z + th\\ - \\x\\ - t \\x\\'+ (h) ^ Cht
1+a» forallO<t<6
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then for 0 < a ^ ah there exists K > 0 such that

\\x + th\\ - \\x\\ - t \\x\\'+ (ft) ^ Ktl+a for all t > 0.

PROOF: For all t > 0, ||x + *ft|| - ||x|| -t\\x\\'+(h) ^ 2t. Then ||z + ift|| - ||x|| -
t \\x\\'+ (ft) ^ Kht

1+a"> for all t > 0 where Kh = max{Cfc, 2/6a"}. But also for 0 < t < 1,
||x + i/ i | | - | |a; | | - t | |x | | '+(/ i) ^ Kht

1+a for 0 < a < ah. Then ||x + th\\-\\x\\-t \\x\\'+ (ft) <
Ktl+a for 0 < a < ah where K = max{2, Kh). D

LEMMA 3 . 3 . If the norm on a Banach space X has a directionally Holder right-
hand derivative at each point on its unit sphere and W is a weak"-dense subset Bx-,
then for any u G Sx, we have dist(W, J(u)) — 0.

PROOF: Using Fact 3.2 we have that given u € Sx and h £ Bx there exist K > 0
and ah > 0 such that ||u + thj - \\x\\ -t \\u\\'+ (ft) < Ktl+a» for alU ^ 0 and ft € {-ft, h}.
Lemma 3.1 implies that for each ft G Bx, there exists C/, > 0 and an > 0 satisfying

(3.2) dist£+(1/aft) (/ , J(«)) $ Ck [l - /(«)] for all / G B* . .

For each n G N, write

Fn - {ft G 5 X : distjj(/, J{u)) ^ n ( l - / («)) for all / G Bx.}.

It can be easily checked that F n is closed. Moreover, (J Fn D B^/2 because for ||ft||
neN

^ 1/2 we have dist/,(/, J(u)) ^ 1 for all / G Bx*, and this with (3.2) implies that

dist£(/, J(u)) < n[ l - / (u)] for all / G Bx-, and n ^ maxj l + —, Ch\.

Since U F n is second category there exists an N G N, ft0 G Bx and 5 > 0 such that

ft0 + 5B X C FN. Therefore

(3.3) d is t^( / , J(u)) ^ N(l - / («) ) for all h G ft0 + <5SX) and all feBx>.

Given e > 0, and using the weak*-density of W in Bx- we fix a;* G W such that

(3.4) (a) x*(h0) > sup{/(ft0) : / G J(u)} - j and (b) x » > 1 - ^ .

Now suppose distfx*, J(u)j > e. Because J{u) is weak'-compact and convex, we use the
separation theorem to choose ft G Sx such that

x'(ft) > sup{/(ft) : / G J(u))+e.

This implies that

x*{5h) > <5(sup{/(ft) : / G J(u)} + e), which with (3.4a) implies

x*(fto+<5ft) > sup{/(fto + (5ft):/G J ( ) } +
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Consequently dist/,0+(sfc(z*, J(u)) > 6e/2 whirh with (3.3) and then (3.4b) implies that

6NeN , „ -x 6NeN

j V ( l » ) <

This contradiction shows that distfar*, J(u)J ^ e, and so distfw, J(u)) < e. D

With Lemma 3.3, using ideas and results based on Simons' inequality that were
discovered by Godefroy [12] and later refined in [3, 13] we can readily prove our main
result. First, let us recall that a subspace N C X* is said to be 1-norming if ||z|| =
sup{\f(x)\:f €NnBX'} for all xe X.

THEOREM 3 . 4 . A Banach space X where the norm has a directionally Holder
right-hand derivative at each point on its sphere is an Asplund space and its dual X*
contains no proper closed 1-norming subspaces.

PROOF: TO show that X is an Asplund space, it is sufficient to show that every
separable subspace Y has separable dual V*, [17, p.24]. As in the proof of [13, Lemma
3], consider N a closed 1-norming subspace of Y*. Because Y is separable, we fix a
countable set W that is a weak* dense subset of N D By- Then W is weak*-dense
in By because N is 1-norming. Because the restricted norm on Y has a directionally
Holder right-hand derivative at each point on its sphere, it follows from Lemma 3.3 that
(W + \BY) n J(y) ^ 0 for each y € SY- According to [3, Lemma 2.2], Y* is the closed
linear span of W. Therefore Y* is separable and moreover N = Y*. So A" is Asplund
and moreover Y* has no proper closed 1-norming subspace. Because Y was an arbitrary
separable subspace of X, [13, Lemma 4] shows that X has no proper closed 1-norming
subspace. D

The norming result in this theorem has the following immediate consequence.

COROLLARY 3 . 5 . If a Banach space X has an equivalent dual norm on X* with
a directionally Holder right-hand derivative at each point of its unit sphere then X is
reflexive.

We observe that not every Asplund space has an equivalent norm with a directionally
Holder right-hand derivative on its sphere.

REMARK 3.6. Kunen's C(K) Asplund space where K is constructed using the continuum
hypothesis does not have an equivalent norm with a directionally Holder right-hand
derivative at each point on its sphere.

P R O O F : This follows from Theorem 3.4 and [15, Corollary 4.4(i)] which shows that
given any equivalent norm on X, X* has a closed proper 1-norming subspace. U

As a final illustration of the structural implications of directionally Holder right-hand
derivatives we sketch the following result that complements [8, Theorem 3.3].

THEOREM 3 . 7 . A Banach space X is superreBexive if the norm has a directionally

Holder right-hand derivative at each point of a residual subset ofSx and the set of strongly

exposed points of Bx is dense in the Sx-
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PROOF: By Theorem 2.5, there exists an open ball U centred on Sx where the norm
is uniformly Holder differentiable. But this implies that the norm is uniformly smooth
on U D Sx- Since UnSx contains a strongly exposed point of Bx we follow the proof of
[4, Proposition V.1.3, p.188-189] to show that X is superreflexive. D

Comparable results from papers [5, 16, 18] lead us to pose the following questions.

QUESTIONS 3.8.

(a) Is a Banach space an Asplund space if it has a continuous bump function
with directionally Holder right-hand derivative?

(b) Is a Banach space superreflexive under the conditions in Corollary 3.5? Or
more generally is it superreflexive if it has the RNP and a continuous bump
function with a directionally Holder right-hand derivative at each point of
its domain?
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