With the previous approximation to s_{9} the angle obtained is $32^{\circ} 43^{\prime} 32^{\prime \prime} \cdot 5$. The true angle is $32^{\circ} 43^{\prime} 38^{\prime \prime} \cdot 1$.

The equation $\frac{1}{2} \sin \theta=\tan \psi$ gives :
$\theta=40^{\circ} ; \psi=18^{\circ} 50^{\prime} 58^{\prime \prime} \cdot 5$, thus approximating to s_{18}
With $\theta=20^{\circ} ; \phi=18^{\circ} 52^{\prime} 54^{\prime \prime} \cdot 1$, again approximating to $s_{10 n}$
where the angle is $\quad 18^{\circ} 56^{\prime} 41^{\prime \prime}$.
With $\theta=\frac{360^{\circ}}{19} ; \phi=17^{\circ} 59^{\prime} 19^{\prime \prime}$. From which s_{19} gives s_{200}.
As s_{20} can be found exactly, this construction can be reversed.
With $\theta=18^{\circ} ; \phi=17^{\circ} 10^{\prime} 19^{\prime \prime} \cdot 3$. From which s_{20} gives s_{21} the correct angle for s_{21} being $17^{\circ} 8^{\prime} 34^{\prime \prime}$.
§4. In fig. 22, AB, CD are two diameters of a circle perpendicular to each other ; AE, BF, tangents at A, B, are equal to four times the radius and the radius respectively. Join EF cutting the circle at M, N; and join AM, AN, cutting CD at m, n. Through m, n draw parallels to AB, namely GH, IK. The pentagon OIHGK is regular. M. Henri Barral, in Nouvelles Annales, XI. 388-390 (1852).

The construction above is given by Herr Staudt without proof in Crelle XXIV. (1842).

Terquem in a note says, "The construction of Herr Staudt is remarkable because it indicates an analogous construction for the division of the circumference into 17 equal parts." See also Nouvelles Annales, XVI. 310 (1857).

Among the calculations made for this paper the following occurred :-

$$
61 \cdot 5-10 \sqrt{5}=39 \cdot 139320225
$$

a near approximation to the length $39 \cdot 13929 \ldots$ inches of the seconds pendulum in London.

On Electrolysis.
By Professor Morrison.

