With the previous approximation to s_9 the angle obtained is 32° 43′ 32″.5. The true angle is 32° 43′ 38″.1.

The equation $\frac{1}{2}\sin\theta = \tan\psi$ gives :

 $\theta = 40^{\circ}$; $\psi = 18^{\circ} 50' 58'' 5$, thus approximating to s_{10} . With $\theta = 20^{\circ}$; $\phi = 18^{\circ} 52' 54'' 1$, again approximating to s_{10} .

where the angle is $18^{\circ} 56' 41''$.

With
$$\theta = \frac{360^{\circ}}{19}$$
; $\phi = 17^{\circ} 59' 19''$. From which s_{19} gives s_{20} .

As s_{20} can be found exactly, this construction can be reversed.

With $\theta = 18^\circ$; $\phi = 17^\circ 10' 19'' \cdot 3$. From which s_{20} gives s_{21} the correct angle for s_{21} being 17° 8' 34''.

§ 4. In fig. 22, AB, CD are two diameters of a circle perpendicular to each other; AE, BF, tangents at A, B, are equal to four times the radius and the radius respectively. Join EF cutting the circle at M, N; and join AM, AN, cutting CD at m, n. Through m, n draw parallels to AB, namely GH, IK. The pentagon CIHGK is regular. M. Henri Barral, in *Nouvelles Annales*, XI. 388-390 (1852).

The construction above is given by Herr Staudt without proof in Crelle XXIV. (1842).

Terquem in a note says, "The construction of Herr Staudt is remarkable because it indicates an analogous construction for the division of the circumference into 17 equal parts." See also *Nouvelles Annales*, XVI. 310 (1857).

Among the calculations made for this paper the following occurred :---

$$61.5 - 10 \sqrt{5} = 39.139320225,$$

a near approximation to the length 39.13929 ... inches of the seconds pendulum in London.

On Electrolysis.

By Professor MORRISON.