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Large-scale coherent structures in incompressible turbulent pipe flow are studied for a
wide range of Reynolds numbers (Reτ = 180, 550, 1000, 2000 and 5200). Employing the
Karhunen–Loève decomposition and a novel approach based on the Voronoi diagram, we
identify and classify statistically coherent structures based on their location, dimensions
and Reτ . With increasing Reτ , two distinct classes of structures become more energetic,
namely wall-attached and detached eddies. The Voronoi methodology is shown to
delineate these two classes without the need for specific criteria or thresholds. At the
highest Reτ , the attached eddies scale linearly with the wall-normal distance with a slope
of approximately ly ∼ 1.2y/R, while the detached eddies remain constant at the size of
ly ≈ 0.26R, with a progressive shift towards the pipe centre. We extract these two classes
of structures and describe their spatial characteristics, including radial size, helix angle
and azimuthal self-similarity. The spatial distribution could help explain the differences
in mean velocity between pipe and channel flows, as well as in modelling large and
very-large-scale motions (LSM and VLSM). In addition, a comprehensive description is
provided for both wall-attached and detached structures in terms of LSM and VLSM.
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1. Introduction

Turbulent flows, although chaotic, are dominated by organised, vortical motions popularly
known as coherent structures (Brown & Roshko 1974). In a turbulent flow field, a coherent
structure can be defined as the spatial domain over which, underlying the randomly
fluctuating vorticity field, there is instantaneous coherent vorticity (Hussain 1986).
Instantaneous snapshots of coherent structures were educed by Hussain (1986) from the
three-dimensional vorticity fields in a variety of shear flows in the laboratory and in silico.
The near-wall turbulence has been extensively studied in the past, concluding that there is
competition among different mechanisms (Kim, Kline & Reynolds 1971; Hamilton, Kim
& Waleffe 1995; Schoppa & Hussain 2002). In particular, the autonomous streak cycle
dominates, consisting of coherent low-speed streaks that regenerate quasi-streamwise
vortices (Jeong et al. 1997; Jiménez & Pinelli 1999). However, in the logarithmic
and outer layers, our knowledge of the various coherent structures is still limited.
Based on two-dimensional visualisations, Kovasznay, Kibens & Blackwelder (1970),
Adrian, Meinhart & Tomkins (2000) and Deng et al. (2018) observed indications of
coherent hairpin packets, i.e. clusters of attached loop-like vortical structures, partially
self-amplifying. To what extent the hairpin vortices are statistically relevant structures in
fully turbulent flows is still a matter of debate (Schlatter et al. 2014; Eitel-Amor et al. 2015).
Subsequent works (Del Álamo & Jiménez 2003; Balakumar & Adrian 2007; Monty et al.
2007) reported and described large-scale motions (LSMs) and very-large-scale motions
(VLSMs). Large-scale motions are eddies resulting from the alignment of boundary layer
vortices that travel at a common convective velocity with a region of low-momentum
fluid among themselves (with a streamwise wavelength < 3R), while VLSM are long
meandering regions of low- and high-speed momentum in channels and pipes (with a
streamwise extent >3R). Note that R is the pipe radius and an equivalent definition is found
for channel and boundary layer flows based on the channel half-height and the boundary
layer thickness, respectively. Hutchins & Marusic (2007) defined the superstructures in a
turbulent boundary layer (TBL), equivalent to VLSM and with an extension larger than 10
times of the boundary layer thickness. Differences in the VLSM were observed between
internal and external flows. As expected, structures in internal geometries exhibit less
meandering compared with the TBL’s motions, leading to larger length scales (Deshpande
et al. 2021).

In an attempt to model the statistical behaviour of the coherent motions, Townsend
(1951, 1961, 1976) first introduced the attached eddy hypothesis (AEH), i.e. geometrically
self-similar attached eddies, which exist over a range of scales limited by the TBL
thickness, i.e. by the Reynolds number. The AEH deserves careful consideration as it
applies only to asymptotically high-Reynolds-number wall-bounded flows, where the
inertial scales (large compared with the viscous length) populate the log region. However,
no property about the shape and the organisation of the eddies is provided directly by
the AEH. Despite the attached eddies model being effective in estimating flow statistics
within the logarithmic range, accurately classifying the attached eddies by this model is
challenging. The approach employed to extract these eddies, which may involve reliance on
self-similarity or wall-attachment criteria, has the potential to reveal a variety of structures.
Del Álamo et al. (2006) classified geometrically self-similar vortex clusters, i.e. groups
of neighbouring points where the discriminant of the velocity gradient tensor exceeds a
certain fraction of its root-mean-square value in the wall-parallel plane. Lozano-Duràn,
Flores & Jiménez (2012) generalized the quadrant analysis to three dimensions by
considering the intense Q events that contribute most to the tangential Reynolds stress
in plane turbulent channels. The quadrant analysis, as originally introduced by Wallace,
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Eckelman & Brodkey (1972) and Willmarth & Lu (1972), is typically employed to
categorise data points based on their location within the parameter plane defined by
streamwise and wall-normal velocity fluctuations, represented as u and v in the context
of plane channel flow. The identification of Q1 events (outward interactions, (u > 0,
v > 0)), Q2 events (ejections, (u < 0, v > 0)), Q3 events (inward interactions, (u < 0,
v < 0)) and Q4 events (sweeps, (u > 0, v < 0)) relies on a user-defined threshold. More
recently, using a data-driven approach, Cheng et al. (2019) identified modes that resemble
Townsend’s attached eddies. They employed the adaptive mode decomposition, known as
bidimensional empirical mode decomposition, which in principle does not necessitate a
predefined set of basis functions, but still needs a threshold value.

Other studies aimed at going beyond the AEH, attempting to model eddies that are
not wall attached (Robinson 1991). Indeed, wall-attached eddies represent only a facet
of the puzzle and do not offer a complete description of wall-bounded flows. Perry
& Marusic (1995) enhanced the attached eddy model through the integration of three
distinct categories of eddies. Particularly, in addition to the type A, labelled as ‘wall
structures’ (wall-attached eddies) whose vortex lines extend to the wall, they introduced
the type B, referred to as ‘wake structures’ (wall-detached eddies) that do not reach
the boundary, and the type C, also called Kolmogorov-scale eddies, which contribute
to the high-wavenumber motions. Expanding upon Perry & Marusic (1995), Baars &
Marusic (2020a,b) introduced a data-based spectral decomposition method that employs
two spectral filters to distinguish type-A and type-B eddies. In a recent study, Hu, Yang
& Zheng (2020) explored the statistical properties of detached eddies, proposing a model
that represents these eddies as flow structures centred at the midpoint of the log layer.

In the context of data-driven techniques, proper orthogonal decomposition (POD) has
been demonstrated to be effective in the detection of both attached and detached eddies
(Wang, Pan & Wang 2022a; Wang et al. 2022b). For turbulent pipe flows, Hellström, Sinha
& Smits (2011) employed particle image velocimetry (PIV), focusing on radial–azimuthal
planes and employing Taylor’s hypothesis. Their findings indicated that by reconstructing
the flow field using the 10 most energetic POD modes, they could effectively capture
all the fundamental characteristics of a VLSM. This suggests that VLSMs are primarily
composed of the most energetic POD modes, giving rise to the appearance of extensive
meandering structures. Additionally, the four most energetic modes bear a resemblance to a
combination of two helical response modes identified through the linear stability analysis
by McKeon & Sharma (2010) and Sharma & McKeon (2013). Hence, Hellström et al.
(2011) endorsed the linear mechanisms associated with the propagating response modes
proposed by McKeon & Sharma (2010). Similarly, Große & Westerweel (2011) employed
PIV measurements to study structures within pipe flows, providing compelling evidence
of highly extended streamwise velocity structures. Their findings further confirmed
the existence of low- and high-speed regions extending across several pipe radii in
the streamwise direction. More recently, Hellström, Marusic & Smits (2016) presented
evidence of a geometric self-similarity in certain POD modes and identified a universal
length scale that characterises these modes. This length scale is found to scale with
the distance from the wall. All of the aforementioned experimental studies face similar
limitations. Firstly, they rely on Taylor’s hypothesis to deduce streamwise spatial variations
from two-dimensional fields collected at short time intervals. Consequently, significant
discrepancies can arise when comparing instantaneous fields with those generated using
Taylor’s hypothesis (Zaman & Hussain 1981; Wu, Baltzer & Adrian 2012). Secondly, the
measurement of the velocity near the wall poses challenges. Given these experimental
constraints, data from direct numerical simulations (DNS) are particularly well suited
for examining the characteristics of LSMs and VLSMs. Earlier, Duggleby et al. (2007),
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Duggleby, Ball & Schwaenen (2009), Bailey & Smits (2010) and Baltzer, Adrian &
Wu (2013) conducted DNS to investigate structures in turbulent pipe flows at moderate
Reynolds numbers, proposing a classification between propagating and non-propagating
POD modes. However, the moderate Reynolds number and the reduced domain sizes were
the main limitations of previous DNS.

In this study we examine a comparably long pipe (Lz = 10πR) across a wide range of
five Reynolds numbers, spanning from Reτ = 180 to 5200, the highest ever considered
for such dimensions. The friction Reynolds number is based on the friction velocity
(uτ ), the pipe radius (R) and the kinematic viscosity (ν). In particular, we show that
the POD effectively distinguishes between wall-attached and detached eddies based on
their energy content. Introducing a novel methodology based on Voronoi analysis, we
eliminate the need for velocity filtering (Perry & Marusic 1995; Lee & Moser 2019;
Baars & Marusic 2020a,b) or defining intense events using a specific threshold (Moisy
& Jiménez 2004; Lozano-Duràn et al. 2012; Atzori et al. 2018). This is especially
relevant when the Reynolds number is moderately high. From the two-point spatial
(temporal) correlation tensor of statistically converged data, the POD extracts statistical
eddies (space eigenfunctions) along with their corresponding (linearised) dynamics
(time coefficients). The extracted spatial functions, known as POD modes, are coherent
structures representing ‘the deterministic function which is best correlated on average
with the velocity realisations’ (Lumley 1967). Following Jiménez (2018), these should
be termed ‘compact eddies’, denoting an expansion based on an energy-optimal basis
where no dynamics is included. However, it is crucial to realise that the dynamics of the
linear modal representation can be assimilated by extracting the corresponding temporal
coefficients. Throughout the rest of this paper, we use the terms eddy and structure
interchangeably. This is because, in their statistical and linearised representation, the POD
modes encompass both aspects (Massaro 2024).

The remainder of the paper is organised as follows. First, numerical simulations are
detailed in § 2, followed by a brief review of the Karhunen–Loève (KL) decomposition
in § 3. Section 4 discusses the main findings of turbulent pipe flows at various Reynolds
numbers (Reτ = 180, 550, 1000, 2000, 5200). The novel methodology for quantifying the
density of POD modes in the radial direction, as introduced by Massaro et al. (2024),
is discussed, and the characteristics of the attached and detached eddies are explored.
Concluding remarks are in § 5.

2. Direct numerical simulations

The large-scale coherent structures in turbulent pipe flow at various Reynolds numbers
are studied by using the DNS datasets of incompressible turbulent pipe flows. The
simulations were conducted with the pseudo-spectral code Openpipeflow (Willis
2017). The primitive-variable solver uses a cylindrical coordinate system, where the radial,
axial and azimuthal directions are denoted by r, z and θ , respectively; y = R − r is the
wall-normal distance. The momentum equations for the corresponding ur, uz and uθ

velocity components are time-integrated coupled with the pressure-Poisson equation and
supplemented by proper initial and boundary conditions. Periodic boundary conditions
are set in the axial (streamwise) direction and, at the wall, the no-slip and impermeability
conditions are imposed. A second-order semi-implicit time-stepping scheme is adopted
for time marching.

In the space representation, a Fourier discretisation is used in z and θ , whereas a
high-order central finite-difference scheme with a nine-point stencil is used in the radial
direction. The number of grid points in the radial direction (Nr) and the number of Fourier
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Reτ Reb Nr × Nθ × Nz �tUb/R N �TUb/R k̃ k k%

180 5300 192 × 256 × 1024 0.01 178 2 0.0147 0.0168 87.5 %
550 19 000 256 × 768 × 2048 0.005 101 2 0.0074 0.0126 58.7 %
1000 37 700 384 × 1280 × 3072 0.002 82 4 0.0048 0.0112 42.9 %
2000 83 000 768 × 2560 × 6144 0.001 88 2 0.0028 0.0101 27.8 %
5200 240 000 1024 × 5120 × 12 288 0.0005 77 2 0.0023 0.0085 27.1 %

Table 1. Numerical details of the DNS data sets: the friction Reynolds number Reτ , the bulk Reynolds
number Reb (Reb = 2UbR/ν), the spatial resolutions (Nr × Nθ × Nz) and the time step for the time integration
(�tUb/R). Numerical details of the modal decomposition: the number of collected snapshots (N), the time
interval between snapshots (�TUb/R), the kinetic energy contained in the first {Nθ × Nz} = {32, 32} modes
(k̃), the total kinetic energy estimated from the statistics (Yao et al. 2023) and the percentage of total kinetic
energy captured from the first 322 POD modes (k% = k̃/k).

modes in the axial (Nz) and azimuthal (Nθ ) directions have been carefully assessed to
ensure a DNS resolution and to capture the smallest spatial scales (Yao et al. 2023);
see also table 1. In physical space the number of grid points in the axial and azimuthal
directions is increased by a factor of 3/2 to account for dealiasing. The grid points are
distributed radially with a hyperbolic tangent function, ensuring precise resolution of steep
wall-normal velocity gradients within the viscous layer. Furthermore, points near r = 0 are
clustered to preserve the high-order characteristics of the finite-difference scheme near the
pipe’s axis. The computational domain is significantly longer than in the previous DNS
available in the literature to capture the largest motions; a topic we revisit later in the
paper. The axial extension is Lz = 10πR, based on the pipe radius. The flow is driven
by a variable pressure gradient, adjusted to ensure a constant mass flux through the pipe.
Further details on the implementation are given by Willis (2017).

A set of five different simulations are used in the present study, performed at
Reτ ≈ 180, 550, 1000, 2000 and 5200, where Reτ = uτ R/ν is the friction Reynolds
number. The one-point statistics and one-dimensional energy spectra are reported by Yao
et al. (2023), where a comprehensive comparison with the numerical and experimental
state of the art is provided. Yao et al. (2023) also reported the time-averaging uncertainty
that is estimated using the method by Oliver et al. (2014) and Rezaeiravesh et al. (2022).

3. Karhunen–Loève decomposition

Originally developed by Karhunen (1947) and Loève (1948) in the 1940s, the KL
modal decomposition is a bi-orthogonal stochastic process expansion. Commonly referred
to as both principal component analysis and POD, the KL decomposition seeks to
approximate a generic vector function u(x, t), with x = (r, θ, z), over a domain of interest
D = Ω × [0, T] as a finite sum of functions of variables separated in space x and time t.
The finite spatial domain is indicated by Ω . This is achieved through the minimisation
of residual energy between the nonlinear field, which comprises the collected snapshots,
and its linear representation (Tropea, Yarin & Foss 2007). The KL expansion generates
(POD) modes that are designed to be the orthogonal basis representing the optimal energy
projection of the most dominant flow features. The spatial orthogonality condition and the
hierarchical description of fluctuating energy within statistical structures are fundamental
aspects of this modal decomposition. We adopt the snapshot POD method outlined by
Sirovich (1987b), which enables the analysis of three-dimensional flows with a number
of grid points significantly larger than the number of snapshots, unlike the classical POD
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method introduced by Lumley (1970). In contrast to the three-dimensional snapshot POD,
the KL decomposition first exploits the two space homogeneities in the pipe flow, i.e. in
the azimuthal and axial directions.

The derivation follows the work by Webber, Handler & Sirovich (1997) for the minimal
channel flow. First, we Fourier expand the velocity field u(x, t) in z and θ ,

u(r, θ, z, t) =
∞∑

κθ=−∞

∞∑
κz=−∞

û(κθ ,κz)(r, t) exp(2πiκθθ/Lθ ) exp(2πiκzz/Lz)

=
∞∑

p=1

ûp(r, t) exp(2πiκθθ/Lθ ) exp(2πiκzz/Lz), (3.1)

where (κθ , κz) indicates a wavenumber pair with the azimuthal and streamwise (axial)
wavenumbers, and Lθ and Lz are the domain lengths in the corresponding directions.
The Fourier transforms of u in the axial and azimuthal directions û(κθ ,κz) are functions
of the radial distance and time for a given pair of (κθ , κz). The expansion is recast as a
function of the index p, which corresponds to the wavenumber pair (κθ , κz). The index p
spans only the positive quadrant (κθ ≥ 0, κz ≥ 0) since all modal solutions can be derived
from the eigenmodes found within a single quadrant of the wavenumber space, exploiting
the statistical invariance of the pipe flow under axial shift and azimuthal rotation (Sirovich
1987a). The index p varies between 1 and N̂, i.e. the number of pairs in the positive
wavenumbers space. In the inhomogeneous radial direction, each term ûp(r, t) in (3.1)
is modally decomposed into spatial and temporal components:

ûp(r, t) =
∞∑

q=1

â(q,p)(t)Φ̂(q,p)(r). (3.2)

Here â(q,p)(t) and Φ̂(q,p)(r) are the time coefficients and the space functions, respectively.
The space functions form a set of orthonormal bases obtained from the eigenfunctions
that minimise, in the least squares sense, the residual energy between the nonlinear field
and its linear representation. The index q, called quantum index (Webber et al. 1997),
ensures to include all realisations and symmetries (Ñ), where Ñ is 2N and not 4N because
the azimuthal homogeneity is imposed by considering only the positive quadrant. For a
wavenumber pair p, the order of the modes goes from the most (q = 1) to the least (q = Ñ)
energetic one. Therefore, a specific eigenfunction associated with a wavenumber index pair
is fully defined by the triplet k = (q, κθ , κz) = (q, p).

The calculation of time coefficients â and spatial functions Φ̂ involves transitioning from
the current continuous to a discrete formulation. In the discrete framework the solution
is represented using a finite number of grid points for a limited number of snapshots.
Since the POD focuses on large scales, the original DNS resolution (Yao et al. 2023) is
unnecessary. Additionally, it is impractical due to memory constraints. To address this,
we perform data dimensionality reduction in the radial direction by downsampling the
grid points, particularly for cases with the highest Reynolds numbers. The effect of the
downsampling and the temporal convergence of the POD modes have been carefully
assessed (Massaro et al. 2024). Similarly to Hellström et al. (2016), a reduced set of axial
and azimuthal wavenumbers is kept, in particular, the first 32 modes in each direction. The
corresponding percentage of the total kinetic energy (k̃) contained in {Nθ = 32, Nz = 32}
is calculated; see table 1. After conducting Fourier transforms in the axial and azimuthal
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directions for each snapshot, the snapshot matrix is assembled. The snapshot matrix Ûp
is constructed only for p = (κθ ≥ 0, κz ≥ 0) by stacking the Fourier coefficients of each
snapshot into a single column vector. For any given pair p, the snapshot matrix appears as

Ûp = [û0, û1, . . . , ûm−1] ∈ C
n×m, (3.3)

where n = nr × nvel is the number of radial points (nr) times the number of velocity
components (nvel = 3) and m = 2N is the double number of snapshots. The snapshots
were sampled at constant intervals of �TUb/R = 2 (for almost all Reynolds numbers;
see table 1) over a duration that encompasses the slowest frequency according to the
Nyquist criterion. It is analytically established that the spatial eigenfunctions are derived
from the singular value decomposition (SVD) of the matrix (3.3). Note that each column
of X̂ p ∈ Cnxm and T̂ p ∈ Cm×m corresponds to a specific Φ̂(q,p)(r) and â(q,p)(t) in the
continuous formulation. The orthogonal basis function X̂ p and the corresponding time
coefficients T̂ p are computed via SVD of the snapshot matrix as

Ûp = X̂ pΣpŴ ∗
p, (3.4)

where the matrix Ŵ ∗
p ∈ Cm×m is the right singular vectors matrix (∗ indicates the

conjugate transpose) and Σp ∈ Rm×m is the diagonal matrix of singular values of Ûp
(i.e. the energies). The time coefficients are retrieved as

T̂ p = ΣpŴ ∗
p. (3.5)

To ensure that each mode has unit energy, proper normalisation must be considered:

‖X̂ p‖M = I, ‖Ŵ p‖N = I. (3.6a,b)

Here M ∈ Rnxn and N ∈ Rm×m are the mass and the temporal weight matrix, respectively,
and I is the identity matrix. When the snapshots are collected with equidistant time
intervals, N is the identity matrix N = I . The mass matrix M contains the volume
quadrature weights dV = rdr dθ . The unit energy normalisation is obtained by considering
M1/2ÛpN1/2 into (3.4) and decomposing as

M1/2ÛpN1/2 = X̂ pΣpŴ ∗
p, (3.7)

where X̂ ∗
pX̂ p = I and Ŵ ∗

pŴ p = I . Note that X̂ p and Ŵ ∗
p are different from X̂ p and

Ŵ ∗
p as the mass and temporal weight matrices are considered. Eventually, the modes are

reconstructed as
X̂ p = M−1/2X̂ p, (3.8)

with unit energy and orthogonal to each other, while the time coefficients are

T̂ p = Σp(N−1/2Ŵ p)
∗ = ΣpŴ ∗

p, (3.9)

where the energies are given by the diagonal matrix Σp. For each wavenumber pair p, the
matrix Σp contains Ñ energies λ(q,p) that are ordered according to the quantum index q;
where q = 1 is the most energetic POD mode for a pair p = (κθ , κz).

Moreover, for determining the overall energy ranking, it is essential to consider
the proper degeneracy, denoted as dk. This is particularly crucial as we perform the
SVD for only the first quadrant of the wavenumber space. It has been established that
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(e)

(b)(a) (c)

(d )

Figure 1. Instantaneous streamwise velocity contours (uz) with low- and high-speed velocity streaks in blue
and red, respectively. Panels (a–e) show a cross-stream plane and a near-wall cylindrical shell (y+ ≈ 15) at
Reτ = 180, 550, 1000, 2000 and 5200.

an eigenvalue λ(q,(κθ ,κz)) is equal to the eigenvalues in the other quadrants, namely
λ(q,(κθ ,−κz)), λ(q,(−κθ ,κz)) and λ(q,(−κθ ,−κz)); see Webber et al. (1997). Therefore, the
contribution to the total kinetic energy of a specific triple, denoted as k = (q, p), is
determined by ek = dkλ(q, p). In particular, the degeneracy is defined as dk = 1, 2 and
4 for (κθ = 0, κz = 0), (κθ /= 0, κz = 0) and (κθ = 0, κz /= 0), and (κθ /= 0, κz /= 0). The
importance of degeneracy is further emphasised in the reconstruction of the flow field,
as discussed by Massaro et al. (2024). Note that, hereafter, the percentage of energy
contribution, f (%), can be calculated by normalising λ(q,p) with respect to the total kinetic
energy (k) obtained from DNS statistics.

4. Results

We begin with an overview of the instantaneous flow evolution as the Reynolds number
increases. A characterisation of large-scale statistically coherent structures is then provided
by using an energy-based classification of the structures. We analyse the radial shapes of
the POD modes obtained through the KL decomposition and order these modes based on
their contributions to the total kinetic energy. In particular, we focus on the four Reynolds
numbers Reτ = 180, 550, 2000 and 5200 since the intermediate Reτ = 1000 does not
provide further insights. At the lowest Reynolds numbers the results have been assessed
by Massaro et al. (2024), showing an excellent agreement with the literature (Duggleby
et al. 2007, 2009), and also discussing the limitations of previous classifications. Presented
here is a novel Voronoi-based analysis that enables the extraction of two classes of modes:
wall-attached (or simply attached) and detached eddies. Finally, the key properties of these
structures are discussed.

4.1. Instantaneous flow visualisation
Observing the instantaneous flow reveals the emergence of numerous spatial scales as Reτ

increases. Figure 1 shows streamwise velocity uz contours in a cross-stream plane and on
a near-wall cylindrical shell at y+ ≈ 15 (y+ = (R − r)+), similar to Pirozzoli et al. (2021)
but with a much longer axial extent.
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Reτ = 180 Reτ = 550 Reτ = 1000 Reτ = 2000 Reτ = 5200

κθ κz q f (%) κθ κz q f (%) κθ κz q f (%) κθ κz q f (%) κθ κz q f (%)

1 6 1 1 1.087 3 1 1 0.712 2 1 1 0.809 3 0 1 0.745 3 0 1 0.881
2 4 1 1 1.009 2 1 1 0.600 1 1 1 0.572 2 2 1 0.498 2 1 1 0.668
3 2 1 1 0.983 4 2 1 0.524 2 4 1 0.438 4 2 1 0.479 5 1 1 0.612
4 5 1 1 0.969 2 2 1 0.479 1 3 1 0.437 4 1 1 0.424 3 2 1 0.539
5 3 1 1 0.785 3 0 1 0.453 1 2 1 0.418 4 3 1 0.388 1 0 1 0.523
6 4 2 1 0.730 4 1 1 0.442 3 0 1 0.340 1 1 1 0.373 1 1 1 0.429
7 5 2 1 0.653 1 1 1 0.399 1 0 1 0.336 3 2 1 0.286 4 2 1 0.357
8 3 2 1 0.619 3 2 1 0.362 2 3 1 0.332 2 1 1 0.277 3 1 1 0.350
9 8 2 1 0.591 3 3 1 0.339 2 2 1 0.308 5 2 1 0.271 4 4 1 0.239
10 7 1 1 0.571 2 3 1 0.300 1 4 1 0.246 5 1 1 0.218 4 1 1 0.236

Table 2. The 10 most energetic POD modes at Reτ = 180, 550, 1000, 2000 and 5200: the azimuthal and
streamwise wavenumber (κθ , κz), the quantum index (q) and the fraction of the total fluctuating kinetic energy
( f = λ(q,p)/k, with p =(κθ , κz)).

In the cross-stream planes the flow consistently exhibits a limited number of bulges
distributed azimuthally. These low azimuthal wavenumber patterns correspond to regions
where high-speed fluid enters from the pipe’s core while low-speed fluid is ejected from
the wall. As discussed below, their resemblance to the POD modes is quite striking, as
previously reported at lower Reynolds numbers by Hellström, Ganapathisubramani &
Smits (2015). In all cases, large scales dominate in the central region of the pipe. Figure 1
shows, among the multitude of small streaks, elongated regions of low and high velocity,
in blue and red, respectively. These streaks have an average spacing of (Rθ)+ ≈ 100 and
are elongated in z. In the near-wall cylindrical shell at y+ ≈ 15, streaks are observed with
an arrangement visibly connected to the cross-stream pattern, as seen at Reτ = 180 in
figure 1(a). As Reτ increases, the scale separation gets larger, the near-wall streaks scale in
wall units, and the centre modes scaling in integral scales become more and more distinct.

Decomposing the flow according to the KL expansion, we aim to understand the
spatial (temporal) correlation between instantaneous structures. The near-wall dynamics
of streaks have been extensively discussed in the past and the influence of the Reynolds
number on the autonomous wall cycle is limited, if not entirely negligible (Jiménez &
Pinelli 1999). Therefore, for the remainder of the paper, our focus is on the larger scales in
the outer layer, rather than the buffer layer and viscous sublayer.

4.2. The POD modes hierarchy
The 10 most energetic modes at the five Reynolds numbers considered are listed in table 2.
For each wavenumber pair (κθ , κz), the corresponding quantum index and the fraction of
the fluctuating energy f = λ(q,p)/k are reported. The energy fraction is computed relative
to the total fluctuating energy. Note that the mean flow is not subtracted in advance, thus,
it corresponds to the zeroth POD mode, and it is not reported in table 2.

At the lowest Reynolds number (Reτ = 180), the most energetic modes are characterised
by a large number of streaks in the cross-stream planes, with the azimuthal wavenumber
varying from 2 to 8. The POD mode 1 corresponds to six pairs of streamwise streaks
that qualitatively resemble the evenly distributed low-speed streaks in figure 2(a). Their
maximum magnitude is located at y+ ≈ 20, with an azimuthal separation of �Rθ+ ≈ 85
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–1.0 –0.5 0 0.5 1.0

(a)

(b)

Figure 2. (a) From left to right, cross-stream planes of the streamwise velocity of the most energetic POD
modes Φ̂(q=1,p)(r) (normalised by their maximum) at Reτ = 180, 550, 2000, 5200. (b) Scaling of the most
energetic POD mode at Reτ = 180, i.e. near-wall streaks, at higher Reynolds numbers Reτ = 550 and 1000.

and an axial wavelength of �z+ ≈ 1000. The POD mode 1 makes a substantial
contribution, approximately 1.1 %, to the total kinetic energy. Note that a single POD mode
does not represent a dynamic flow feature, but it does provide an indication of the energetic
level of such structures. Therefore, we have examined the evolution of the POD mode 1 as
Reτ increases to understand how the mode and its energetic contribution vary. Since only
the first 32 modes in the axial and azimuthal directions are retained in the POD calculation,
we can identify the equivalent mode at Reτ = 550 and 1000 only. At higher Reynolds
numbers, the mode exhibits wavenumbers beyond 32. As one would expect, the mode
shape is maintained, i.e. the mode resembles near-wall streaks, but the energy contribution
drops significantly; see figure 2(b). This decrease occurs because larger structures in the
outer layer contain the majority of the energy. The POD mode 342 (κθ = 18, κz = 3)
at Reτ = 550 and the POD mode 2382 (κθ = 32, κz = 6) at Reτ = 1000, contribute only
0.0259 % and 0.0017 % to the total kinetic energy, respectively. The energy is spread across
a wider range of scales with the larger scales containing a higher portion of the energy.
As stated earlier, the energy contributions of multiple POD modes that describe a single
dynamical feature, such as the streaks, should be combined.

When the Reynolds number increases, the energy contribution of the top-ranked modes,
as the POD mode 1, gradually diminishes. Notably, starting from Reτ = 550, a mode
with κz = 0 appears in table 2. This becomes the dominant mode at the highest Reynolds
numbers, contributing 35 % more energy than the POD mode 2. Observe that an eddy
with κz = 0 represents a structure with a wavelength longer than the entire pipe, despite the
considerable length of the current set-up (Lz = 10πR). Modes with κz = 0 were previously
classified by Duggleby et al. (2007) as non-propagating modes, and further categorised
into shear (κθ = 0) and roll (κθ /= 0) modes. The contribution of the non-propagating
modes to the total fluctuating energy increases with the Reynolds number. In particular,
these modes constitute approximately 1.6 % and 2.1 % of k at Reτ = 2000 and 5200,
respectively. The shear modes contribute 0.38 % and 0.54 % at Reτ = 2000 and 5200,
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respectively, while the roll modes contribute more: 1.22 % and 1.56 % at Reτ = 2000 and
5200, respectively.

In general, a distinct pattern emerges: with increasing Reynolds numbers, structures
that maintain spatial correlation over more than 3R become more energetically significant.
These structures have been referred to as VLSMs in turbulent pipe flows (Adrian et al.
2000). Using an array of hot wires and operating under Taylor’s hypothesis, Monty et al.
(2007) also documented the existence of long meandering features in both pipe and
channel flows. These features qualitatively resemble those observed in boundary layers,
with lengths of the order of O(20δ) (Hutchins & Marusic 2007). Based on the above
definition of the VLSM (λz > 3R), the VLSM contribution to the total k is seen to increase
with Reynolds number, particularly reaching around 14 % and 16 % at Reτ = 2000 and
5200, respectively.

The VLSM with κθ = 3 and κz = 0 appears as most energetic at Reτ = 2000 and 5200
and consistently ranks among the top six from Reτ = 550 to 5200. It is worth noting
that this mode (κθ = 3, κz = 0) has already been reported previously. Bailey & Smits
(2010), despite not observing a clear distinction between VLSMs and LSMs, reported that
a VLSM tends to be concentrated within the lower azimuthal modes, typically around
κθ = 3. This observation aligns with the large transverse scales reported in the spectrally
filtered results, also discussed in Bailey & Smits (2010). In contrast, the LSM appears to
be distributed across a broader range of azimuthal scales, hence, no dominant transverse
scale and spanning a wide range of streamwise and transverse scales. Our results, covering
a wider range of Reynolds numbers and higher values, support their observations, as
illustrated by the mode hierarchy in table 2. This finding is also in line with other studies
that consistently identify modes around (κθ = 3, κz = 0) as the energetically dominant
(Baltzer et al. 2013; Hellström et al. 2016). Furthermore, there may be a noteworthy
connection with transitional pipe flow. Faisst & Eckhardt (2003) and Eckhardt et al.
(2007) predicted that nonlinear travelling wave instabilities exhibiting threefold azimuthal
symmetry are the first to appear with increasing Reynolds numbers, marking the transition
to turbulence in pipe flow. Experimental observations by Hof et al. (2004) have also
identified states with up to sixfold symmetry. Their findings align with the range of
the azimuthal modes observed in the VLSM wavenumbers within turbulent flows. This
suggests that the VLSMs stem from the persistence of unstable travelling waves that
originate during the transition phase and continue into the turbulent flow regime. However,
as discussed by Bailey & Smits (2010), some inconsistencies need to be considered. Firstly,
the formation mechanism of these travelling waves in transitional flows is inherently
unstable, making it challenging for these modes to persist in turbulent flows where the
mean shear is significantly different. Secondly, the wavelengths observed by Faisst &
Eckhardt (2003) are much shorter than those of the VLSM. This latter difference could
be explained by the fact that the wavelength of the instability depends on the Reynolds
number and azimuthal mode, generally increasing with higher Reynolds numbers and
decreasing with higher azimuthal modes.

From our perspective, the persistence of the roll modes with κθ = 3 at different
Reynolds number regimes (and in many different works) is unlikely to be a mere
coincidence. A possible explanation could be that these modes represent exact solutions
in the state space of parallel shear flows (Pringle & Kerswell 2007; Duguet, Willis &
Kerswell 2008). Although further studies are required in this direction, the consistency
between VLSMs and the travelling wave instability with κθ ≈ 3 is important and further
corroborated by the present results at high Reynolds numbers.
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Figure 3. Illustration of the spatial characteristics of a generic POD mode. The modulus of the (complex)
streamwise velocity is shown together with the height of the largest peak h (blue), the wall-normal position of
the peak yp and the thickness of the mode ly (orange). The wall distances at half-amplitude, yw and yc, indicate
the beginning and the end of the structure, respectively. The wall and the pipe centre are located at y = 0 and
y = R, respectively. All the lengths are normalised by R.

4.3. Spatial classification
The POD analysis has proven valuable by providing insights into energy variations
across the inhomogeneous wall-normal direction (Hellström et al. 2016). In the
current formulation, the KL decomposition exploits the two homogeneous directions,
defining one-dimensional modes (varying in the radial direction) for a given triplet
k = (q, κθ , κz) = (q, p). For each mode, we only consider the dominant peak, specifically
using q = 1 for each triplet, which represents the most energetic structure within a
wavenumber pair p. It is important to note that the below classification holds when all
pairs are included, i.e. q = 1, . . . , Ñ for each triple k = (q, p) (Massaro et al. 2024).

A MATLAB code is used to extract the spatial characteristics of the POD modes, as
shown in figure 3. Each structure is characterised by the peak height (h), peak location
(yp) and mode thickness (ly), all normalised by R. The size ly represents the radial
extension ly = yc − yw. The coordinates yw and yc are the radial locations where the peak
halves towards the wall (y = R − r = 0) and towards the centre (y = 1), respectively. The
positions yw and yc mark the structure’s start and end points, offering insight into the
degree of asymmetry, as the peak is not necessarily symmetric. The depiction of the
coordinates yw and yc as the positions where the peak halves occur is reasonable and
customary, but to some extent arbitrary. Alternative definitions for assessing the size of
the structure would yield a similar classification, albeit leading to a potentially unrealistic
estimation of the radial thickness. The classification is conducted in spectral space for
the streamwise velocity component uz. The solid black line in figure 3 illustrates |uz| and
the spatial characteristics of the POD mode for a generic k = (q = 1, p). Similar results
are obtained by classifying in physical space and then averaging in the streamwise and
azimuthal directions.

4.3.1. Voronoi tessellation
The KL decomposition produces spatially orthogonal modes whose energetic
contributions add up to the total fluctuating kinetic energy. Therefore, when examining
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the energy distribution in the radial direction, the density of POD modes at a particular
location is essential, as their contributions are cumulative. An example at Reτ = 2000
is displayed in figure 4. In panel (a) each point represents the energy contribution of a
mode with size ly and the peak at radial position yp. The intensity of the colour (over
the blue-to-red range) indicates the mode’s contribution to the total fluctuating energy. In
panel (b) the contour plot of scattered points reveals a region with high energy between
0.12 < yp/R < 0.5 for ly/R > 0.45 (upper vertex of the triangular contour plot). However,
this plot represents the average energetic intensity and does not consider the density of the
POD modes. Neglecting this aspect can lead to misleading results. For instance, a cluster
of points at a specific y location may contribute more to the total energy than a single point
with high energy at the same location. This issue has been highlighted by Massaro et al.
(2024). Thus, the density of points (ρ) should be considered. When we weigh the energy
contribution, it significantly alters the shape of the contour plot, as shown in figure 4(c).
The radial classification based on energy reveals the emergence of two branches, although
they are not fully separated at this Reτ . These branches are classified and analysed in detail
in the rest of this paper. Note that the contour plot undergoes substantial changes due to
the consideration of the POD mode density. To accurately estimate the density ρ for each
point, a Voronoi diagram is utilised.

Given a discrete set of points {xj, yj} for j = 1, . . . , NTOT , the Voronoi diagram
decomposes the space around each point (xj, yj) into a region of influence Ωj, which
ensures that any arbitrary point within Ωj is closer to point j than to any other point.
The Voronoi region Ωj, with an area Aj, is referred to as the Voronoi region, and the
collection of all these Voronoi regions forms the Voronoi diagram. A MATLAB algorithm
was implemented to account for the external boundaries, where an infinite area of interest
was generated. Further details can be found in Massaro et al. (2024), and an example is
given in the supplementary material available at https://doi.org/10.1017/jfm.2024.776. The
code defines an area (Aj) for each point, and the inverse of this area provides the density
(ρj), representing the two-dimensional concentration of points. The Voronoi diagram,
originally employed in fluid mechanics to describe the spatial structure of dispersed phases
(Monchaux, Bourgoin & Cartellier 2010; García-Villalba, Kidanemariam & Uhlmann
2012), is now utilised to represent the spatial energy distribution of the POD modes.

4.4. Attached and detached eddies
The Voronoi-based contour plot effectively quantifies the energy, more precisely, the
logarithm of the energy contribution weighted by its density. As the Reynolds number
increases, a clear trend emerges, and two different classes of POD modes emerge.
We begin by providing a comprehensive description of the spatial properties of these
modes and how the Reynolds number affects the size of the most energetic structures
(figure 5). Henceforth, the energy contribution, i.e. the ratio of the eigenvalue obtained by
the KL decomposition λq,p to the total kinetic energy k, is weighted by the Voronoi density
ρ to account for the density of points in a region of the (ly/R, yp/R) space. A logarithmic
scale is used for (λq,p/k)ρ. Note that the plots depicted in figure 5 do not capture energy
information near the wall (y = 0). This occurs as our analysis focuses specifically on
LSMs, considering only the first 32 azimuthal and streamwise wavenumbers. Additionally,
the classification of space is based on the location of the largest peak (yp/R = 0), which
accurately represents the near-wall location only in an idealised scenario, as depicted in
figure 3. However, the shapes of POD modes are more complex and asymmetric. These
factors contribute to the lack of populated regions near the wall. It is important to keep
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Figure 4. (a) Scatter plot of the points corresponding to the radial size of the POD mode (ly) at the wall-normal
location of the peak (yp) at Reτ = 2000. The colour of the point indicates the energy content: the more intense
the colour (in the blue–red scale), the more energetic the content is. (b) Contours of the energy in the scatter
plot in (a). (c) Contours of the energy in the scatter plot in (a) weighted by the density estimated through the
Voronoi tessellation.

these considerations in mind to avoid misinterpretation, as no near-wall filtering or shifting
was applied.

In figure 5 a specific yp/R point corresponds to the radial location of the largest peak
of a structure that extends radially (not symmetrically) with a thickness denoted as ly. At
the lowest Reynolds numbers, the energy is concentrated in relatively small structures near
the wall (Massaro et al. 2024). Omitting the discussion of the results at the intermediate
Reτ = 1000 (which aligns with those at Reτ = 2000), we find that at Reτ = 2000, the
energy is distributed across structures of varying sizes. The peak is located within a
broad range of radial positions, specifically between 0.1R and 0.6R. Among the most
energetic structures, some exhibit peak positions beyond 0.5R, near the centre of the
pipe. In particular, the contour plot in (a) shows two distinct high-energy branches: the
first is steep and extends up to y/R ≈ 0.4 and the second reaches up to y/R ≈ 0.6, but
with a much lower slope. The distinction between these two classes of modes becomes
even more obvious at Reτ = 5200, where the two branches are definitely set apart; see
figure 5(b). The first family represents a highly energetic class of POD modes, with
their size linearly correlated to the wall-normal distance of their peak, denoted as yp.
The inclined dashed line (class I) exhibits a slope of ly ∼ 1.29y/R and ly ∼ 1.20y/R
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Figure 5. Density-weighted energy contour of the scattered points {yp, ly}: yp is the radial location of the
largest peak and ly is a measure of the structure’s size. Plots (a,b) refer to Reτ = 2000 and 5200, respectively.

at Reτ = 2000 and 5200, respectively. The horizontal line represents another class of
structures (class II) where the size remains nearly constant as the peak moves toward the
centre of the pipe. The approximate values are ly ≈ 0.25R at Reτ = 2000 and ly ≈ 0.26R
at Reτ = 5200, respectively.

However, the structure’s size alone does not provide the complete picture. We also
need to account for the degree of asymmetry. To this end, we calculate density-weighted
contour plots for the starting (yw) and ending (yc) locations of the modes. Indeed, the
energy distribution of the starting and ending points of the POD modes supports the
classification into two distinct classes. At the two highest Reynolds numbers in the left
panels of figure 6(a,b), two distinct branches are observed for yw, which represents the
wall-normal location of the beginning of the structures. The left panels show that the
beginning of the detached eddies scales with y as these structures detach from the wall. The
scaling relationship is yw ∼ 0.836y/R at Reτ = 2000 and yw ∼ 0.938y/R at Reτ = 5200.
Additionally, the horizontal energetic branch near yw ≈ 0 represents modes where the
beginning is ‘attached’ to the wall, meaning that yw is constant over a range of yp. As
expected, the ending of the structures scales for both types of eddies, with linear trends of
yc ∼ 1.03y/R for both Reynolds numbers.

The sets of points in the two branches are extracted based on the high-energy content
and linearly fitted in the least squares sense. The resulting classes are indeed distinct in
terms of the axial and azimuthal wavenumbers. At both Reτ = 2000 and 5200, class I
(attached) and class II (detached) include only POD modes with κθ > κz and κθ < κz,
respectively. According to the previous classification by Duggleby et al. (2007), these
correspond to the wall and lift propagating modes, respectively, i.e. structures that turn
azimuthally more than they lift axially (κθ > κz) and that lift axially more than turning
azimuthally (κθ < κz). All the three highest Reynolds numbers depict these two classes,
but, at Reτ = 5200, in particular, they are clearly distinct. Figure 7 shows the modes
that belong to class I and class II with blue and black lines, respectively. As observed
above, class I consists of eddies whose size scales linearly with the wall-normal distance,
whereas the size remains constant for class II. Figure 7(a) is crucial, as it concisely
illustrates the core distinction between wall-attached (blue lines) and detached (black lines)
eddies. This illustration makes the definition of the term ‘attached’ evident, reflecting the
model outlined in Perry & Chong (1982). At a low Reynolds number the classification
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Figure 6. Density-weighted energy contour of the scatter points (left) {yp, yw} and (right) {yp, yc}: yp is the
radial location of the highest peak, yw and yc are the wall-normal distances indicating the beginning and the
end of the structure, respectively. Plots (a,b) refer to Reτ = 2000 and Reτ = 5200, respectively.

by Duggleby et al. (2007) indicates a comparable energy content between the wall and
lift modes, i.e. classes I and II, respectively. At Reτ = 5200, the energy contained in the
attached eddies is around 2 times larger than the energy in the detached eddies. This finding
is of particular interest, especially in the context of the attached eddy model as discussed
below.

As previously outlined, the size of the attached structures linearly scales with the
wall-normal distance: ly ∼ 1.29y/R and ly ∼ 1.20y/R at Reτ = 2000 and Reτ = 5200,
respectively. The result is consistent with the attached eddy model (Townsend 1976; Perry
& Chong 1982) as well as the previous findings (Hu et al. 2020). As Reτ increases,
a trend is also observed, with the slope decreasing from 1.42 (Reτ = 1000) to 1.20
(Reτ = 5200). However, it is important to note that studying a simplified one-dimensional
representation of the statistically coherent structures emerging from the KL decomposition
has its limitations. For example, the behaviour of λz and λRθ as functions of y cannot be
investigated, in contrast to other studies (Hwang 2015; Deshpande et al. 2021).

Eventually, the degree of asymmetry is also reported in figure 8 at Reτ = 2000 and
5200, respectively. The asymmetry of the mode is measured with respect to the radial
location of the largest peak (yp). The distance between where the structure begins (yw) and
the largest peak (yp), and the distance between where the structure ends (yc) and the largest
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Figure 7. (a) Modulus of the (complex) streamwise velocity of the POD modes belonging to the inclined
(blue) and horizontal (black) branches. The legend indicates the POD mode number according to the global
energy-based ordering. (b) The points belonging to the two red branches in figure 5 are extracted according to
their energy level. As shown in (a), these correspond to attached and detached eddies, respectively. The dashed
lines are obtained via linear regression in the least squares sense for the two sets of points, separately. Only
data at Reτ = 5200 are considered in (a,b).
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Figure 8. Histograms of the degree of asymmetry (da) are reported (with a constant unitary area for each
diagram). Panels (a,b) refer to Reτ = 2000 and 5200, respectively.

peak (yp) are used to estimate the asymmetry of the mode: da = log(|yc − yp|/|yw − yp|).
For da = 0, the structure is perfectly symmetric. In both cases, most of the modes are
symmetric. A few structures with a remarkably non-symmetric behaviour appear for da >

2 towards the centre of the pipe. These outliers are more numerous at higher Reynolds
numbers. However, overall, the increase in the Reynolds number indicates a rise in the
symmetry of the POD modes, with 64 % and 76 % of the modes falling within the range
|da| < 0.4 at Reτ = 2000 and 5200, respectively.

4.5. Modal self-similarity
The POD modes in the azimuthal and streamwise directions are Fourier harmonics and,
therefore, inherently self-similar. On the other hand, the modes in the radial direction
are data driven, and their shape function is not known a priori. Following Hellström
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Figure 9. Modal self-similarity of the POD modes Φ̂(q=1,p)(r). Plots (a,b) refer to Reτ = 2000 and
Reτ = 5200, respectively. The wall-normal length scale is estimated as radial extension yp/R, with the scaling
law yp/R ∼ C(κθ R)−1 and C ≈ 0.32. Attached and detached eddies are shown in blue and black, respectively.
The dashed lines are obtained via linear regression in the least squares sense for the two sets of points.

et al. (2016), we explore the self-similarity to examine the presence of a universal length
scale for the attached and detached eddies. In this context, we specifically focus on the
self-similarity of the modal peak location.

The azimuthal and radial length scales of the eddies are estimated as follows. For any
POD mode Φ̂(q=1,p)(r), similar to the approach used in Hellström et al. (2016), we estimate
the azimuthal wavelength as λθ = 2π(R − yp)/κθ , where (R − yp) represents the radial
location of the mode maximum. For the radial size, we employ the wall-normal location
of the peak. In figure 9 we present the wall-normal (yp/R) and the azimuthal length scale
(κθR). In panel (a) the Reynolds number is reasonably close to the value in the experiments
by Hellström et al. (2016), namely Reτ = 2460. The agreement is striking: the structure
exhibits a self-similar behaviour over more than a decade of κθR ∈ [2, 42], with a radial
extension of yp/R ∈ [0.1, 0.3] (blue points). Similar to the findings in figure 5 of Hellström
et al. (2016), our results also indicate a deviation for the smaller eddies. Hellström et al.
(2016) suggest that this deviation is related to their proximity to the wall, implying
that these eddies are influenced by the viscosity. They excluded these structures when
estimating the scaling law. However, our previous energy-based classification allowed us
to distinguish between the attached and detached eddies, represented in black and blue,
respectively, in the various figures.

This distinction shows that the two clusters of points in figure 9(a) correspond to the two
previously extracted classes of modes. Therefore, the black modes do not constitute a set of
deviated POD modes but rather a topologically distinct set of modes, i.e. detached modes,
which also exhibit self-similarity. In fact, by extrapolating the constant of linear scaling
for these two groups individually, it becomes evident that they both exhibit self-similarity,
with a similar constant C ≈ 0.3. This value is in close agreement with the estimation by
Hellström et al. (2016) at Reτ = 2460, where this ‘deviating set of modes’ was excluded
since it was not previously identified as detached eddies. Nevertheless, as suggested by
Hellström et al. (2016), this deviation is likely an effect of the low Reynolds number.
Therefore, considering that the two classes are not very distinct at Reτ = 2000, as seen
in figure 5(a), we also examine the highest Reynolds number, Reτ = 5200, where the
two branches exhibit two distinct slopes; see figure 5(b). The set of points converges to a
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single, overlapping group of modes, showing a slope of yp/R ∼ 0.32(κθR)−1. Figure 9(b)
indicates a linear scaling for κθR ∈ [0.2, 37]. The most energetic structures located in
the logarithmic and outer layers, which were categorised above as attached and detached
eddies, clearly exhibit a single azimuthal length scale. The geometric self-similarity of
the energy-containing motions, for both attached and detached eddies, is reported here for
the first time as it necessitates a high Reynolds number and the subsequent separation of
scales. This observation aligns with the findings of Hwang (2015) for turbulent channel
flows and constitutes a fundamental aspect for models based on Townsend’s AEH.

4.6. Helix angle of the modes
To comprehensively characterise the spatial arrangements of the attached and detached
eddies within the logarithmic layer and above, we measure the dominant helix angle,
which represents the azimuthal inclinations relative to the streamwise direction. For this
analysis, we exclusively focus on the highest Reynolds number, namely Reτ = 5200,
since an adequate separation of scales is needed. When examining instantaneous velocity
streaks longer than 3R (as shown on the cylindrical shells in figure 1), they frequently
exhibit relatively straight configurations, indicating minimal variation in their azimuthal
inclinations with respect to the streamwise direction. While they may maintain constant
angles on the shell (Baltzer et al. 2013), these extended streaks can take on the appearance
of a helix in the three-dimensional space. Therefore, we now refer to the angle between
the streamwise direction within a cross-stream plane (r, θ ) as the ‘helix angle’. The helix
angle, denoted as αh, can be either positive or negative, depending on whether the helix
rotates clockwise or anticlockwise when viewed from a downstream location.

For the POD modes, the helix angle can be measured following the definition by Baltzer
et al. (2013), where αh is defined as

αh ≈ arctan
(

(R − y)2πκz

Lzκθ

)
, (4.1)

a function of the wall-normal distance y, the axial length (Lz) and wavenumber (κz). In
the current classification, we estimate αh for each POD mode using the location of the
largest peak (yp). In 95.2 % of cases, both classes exhibit a helix angle below 6.5◦. This
consistency with the helix angles measured in the instantaneous fluctuating axial-velocity
structures and the dominant streaks of the two-point correlations by Baltzer et al. (2013)
is noteworthy. Their study was conducted in a pipe of similar length (30R) and moderately
high Reynolds number (Reτ = 685). They also performed POD and measured angles of
≈5.1◦ and ≈6.8◦ for the most energetic modes. The energy-based classification introduced
above allows us to observe how the helix angles vary for the specific classes that contribute
significantly to the energy, i.e. attached and detached eddies.

The two classes exhibit distinct helical behaviours. The attached eddies, primarily
located in the logarithmic region (y/R < 0.3), consistently exhibit helix angles of less than
3.2◦; see figure 10(a). This results from the combination of two effects. First, the size of the
attached eddies scales linearly with the wall-normal distance, as discussed earlier, but the
peak does not shift significantly toward the centre of the pipe. Additionally, these modes
can have large wavelengths; see figure 10(c). When these observations are combined
in (4.1), the resulting helical twist remains relatively small (figure 10). In contrast, the
detached eddies exhibit significant variability. As mentioned in the previous section, a
clear separation between the two classes only occurs at the highest Reynolds number.
This could potentially explain why Baltzer et al. (2013) did not report larger αh values
among the most energetic modes. The detached eddies maintain an almost constant size
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Figure 10. Helix angle of the attached (blue) and detached (black) POD modes Φ̂(q=1,p)(r), as a function of
(a) the peak location, (b) the radial size of the mode and (c) the axial extension, i.e. the axial wavenumber. All
the panels refer to Reτ = 5200.

regardless of their wall-normal location and have helix angles ranging between 3◦ and 7◦,
with some outliers having a helix angle exceeding 7.5◦. The outlier modes do not have an
exceptionally long streamwise length, with their axial wavelength always remaining below
5; see figure 10(c). However, they do exhibit a significant shift towards the centre of the
pipe with a peak occurring around y/R ≈ 0.5. This implies that as the eddies detach from
the wall while maintaining an almost constant size, they progressively exhibit a larger
twisting with an angle of up to 11.2◦. This is also evident in figure 11, where we present
the POD modes 27 and 7, as examples. The attached eddy in figure 11(a) exhibits a smaller
twist, with the streamwise velocity streaks remaining attached to the wall. In contrast, the
detached mode in figure 11(b) displays a more pronounced twisting, attributed to a stronger
azimuthal velocity.

Thus, the two classes exhibit distinctive helical characteristics. Remarkably, they share
similarities with very long fluctuating axial motions and the two-point correlation, as
reported in Baltzer et al. (2013). However, the POD modes display organised, periodic
patterns around the circumference of the pipe. These vector patterns remain consistent
for each POD mode as z varies, with the only variation being a rotation around the pipe
axis in a helical manner. Note that while the counterclockwise modes are presented in
figure 11, there is always an equivalent set of clockwise modes for oppositely signed
wavenumbers. The only difference is that the azimuthal variations are mirror images of the
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Figure 11. Illustration of the spatial development and corresponding helical angle for the (a) attached and
(b) detached POD mode with wavenumbers (κθ = 4, κz = 2) and (κθ = 2, κz = 7), respectively. From left to
right: positive and negative three-dimensional isosurfaces of the axial velocity uz (corresponding to 50 % of
the maximum magnitude) and cross-stream planes of the radial and azimuthal velocity. Both panels refer to
Reτ = 5200.

illustrated modes. In general, these motions exhibit characteristics resembling roll cells in
a statistical sense. As a result, these mode patterns may not appear visually symmetric in
the instantaneous planes, especially as they approach the core.

4.7. Large- and very-large-scale motions
Large-scale motions are commonly described as the coalescence of vortex packets
generated when multiple structures travel at the same convective velocity (Kim & Adrian
1999; Adrian et al. 2000; Balakumar & Adrian 2007). In particular, LSMs involve the
alignment of vortical structures within the packet in the streamwise direction, leading
to the creation of zones with reduced streamwise momentum (Adrian et al. 2000;
Ganapathisubramani, Longmire & Marusic 2003). In turbulent pipe flows, LSMs are
associated with structures of a size of approximately 3R (Baltzer et al. 2013). In addition
to these, energetic modes that are not only longer but also taller have been observed. These
‘VLSMs’ are defined as motions that are longer than the mean bulge length (Jiménez 1998;
Kim & Adrian 1999). In the outer region of fully developed turbulent pipe flow, VLSMs
reach wavelengths well beyond dozens of the pipe radius in length (Guala, Hommema &
Adrian 2006; Monty et al. 2007). In this context, our objective is to identify whether the
two previously detected classes correspond (or are related) to LSMs and VLSMs. Note
that both sets of the POD modes, calculated for {Nθ × Nz} = {32, 32}, predominantly
exhibit their largest peak in the outer layer. Figure 12 illustrates the regions of interest
in the current study, which focuses on LSMs. Let us emphasise once more that the
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Figure 12. (a) Mean velocity profile and (b) wavenumber pre-multiplied energy spectrum kθ Ezz/u2
τ for

Reτ = 5200. The light-blue area refers to the locations where the largest peak of the most energetic modes
for {Nθ × Nz} = {32, 32} are located.

transparent light-blue region in figure 12 is not intended as a threshold for filtering, but
rather represents an outcome of the energy-based classification.

The distribution of POD modes for each of the two classes is measured in terms of
the axial size (lz), the largest peak location (yp) and the beginning/end of the structure.
Probability density functions (PDFs) are obtained via histograms (with a constant unitary
area for each diagram) and the conclusions drawn in this section are not affected by the
binning choice. In figure 13(a) the PDF of the streamwise length is shown (lz = 10πR/κz).
Note that a distinction is necessary between the streamwise wavelengths defined using
the streamwise Fourier decomposition and the streamwise wavelengths defined based on
the presence of azimuthal wavering (Baltzer et al. 2013). In an experimental hot-wire
rake measurement of turbulent pipe flow, Monty et al. (2007) observed exceptionally
long streamwise velocity structures, reaching lengths of up to 25R. These structures
exhibited a 180◦ rotation about the pipe axis, as well as meandering with large helix
angles. This interpretation of sinusoidal meandering is in agreement with the view of
attached eddies with high (and almost constant in y) helix angles. It is also consistent
with the interpretation based on shorter streaks with azimuthal inclinations interacting
with a helix angle varying in z. Both scenarios can generate two-point correlation patterns
consistent with those observed in experiments (Monty et al. 2007; Baltzer et al. 2013).
However, the current energy-based statistical approach makes it impossible to distinguish
the two interpretations. An alternative decomposition based on dynamic evolution, such
as dynamic mode decomposition (Schmid 2022), might provide additional insights. In
that case, identifying the most ‘relevant’ mode becomes critical, as no clear hierarchy is
inherently present.

In this section, our focus is not to delve into the mechanism of VLSM formation.
Instead, we aim to quantify the presence of VLSMs and LSMs within the two energetic
classes of attached and detached structures. Our findings strongly suggest that the VLSM
structures are most likely attached. This conclusion is supported by the observation that
all POD modes in class I (see figure 5) exhibit an elongation greater than 3R in the axial
direction (κz < 10). In contrast, the detached eddies exhibit similarities to LSMs, with
approximately 83 % of them having an axial extension smaller than 3R (lz � 3). The few
VLSMs within the detached eddies still have relatively short lengths, ranging from 3.1R to
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Figure 13. Discrete PDF of the attached and detached eddies for (a) axial extension, (b) the largest peak
location, (c) the beginning and (d) the ending of the POD mode in the radial direction. The blue and black
areas are normalised to guarantee a unitary area. All the panels refer to Reτ = 5200.

6.1R, whereas the VLSM attached motions consistently exhibit lengths exceeding 8R; see
figure 13(a).

The largest peak location in the radial direction also exhibits an interesting pattern.
In the case of attached eddies, i.e. VLSM, approximately 97.8 % of these structures
have their peaks in the log region (y/R < 0.3), as shown in figure 13(b). Thus, the
proposed characterisation outlines the attached nature of these motions; see figure 13(c).
The beginning of these structures, denoted by yw, is consistently located near the wall.
These VLSMs typically terminate around 0.5R, not extending far into the pipe’s central
region (figure 13d), consistently with the modes shown in figure 11. However, this situation
changes for the detached motions. Only 33.1 % of them have the largest peak in the log
layer, with structures progressively shifting towards the pipe centre. They reach up to a
wall-normal distance of approximately 0.8R, with their beginnings completely detached
from the wall. Figure 13(c) clearly illustrates this detachment as structures become
progressively more centralised.

5. Concluding remarks

We study the large-scale coherent structures in turbulent pipe flows at various Reynolds
numbers (Reτ = 180, 550, 1000, 2000 and 5200) using data from DNS of Yao et al.
(2023). We modally decompose the data through the KL bi-orthogonal expansion, also
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commonly referred to as POD. The resulting POD modes are one-dimensional functions
of the wall-normal distance and are arranged based on their energy content. A novel
Voronoi-based analysis is employed to assess the cumulative energy contribution of the
POD modes (Massaro et al. 2024). The study provides insights into the hierarchy of modes,
their spatial characteristics and their dependency on the Reynolds number. We extract and
explore structures from the outer region exclusively, i.e. a reduced set of the axial and
azimuthal wavenumbers is considered.

As Reτ increases, the contribution to the total turbulent energy (k) becomes more
uniformly distributed among the modes. The POD modes with a streamwise wavenumber
κz = 0, i.e. with an axial wavelength greater than 10πR, emerge as the most energetic.
This suggests a long spatial correlation, in a statistical sense. Similar structures have been
documented in TBL flows by Hutchins & Marusic (2007), as well as in channels and
lower-Reynolds-number pipe flows (Monty et al. 2007). At Reτ = 1000, 2000 and 5200,
modes with an azimuthal wavenumber (κθ = 3, κz = 0) are consistently observed among
the most energetic. Similar modes were identified in transitional and turbulent pipe flows.
Faisst & Eckhardt (2003) and Eckhardt et al. (2007) predicted nonlinear travelling wave
instabilities with κθ = 3 and Hof et al. (2004) identified similar states. The formation
mechanism of these travelling waves in transitional flows is inherently unstable, making
it challenging for these modes to persist in turbulent flow. However, the presence of roll
modes with κθ = 3 in various Reynolds number ranges (and in various works, as Guala
et al. 2006; Bailey & Smits 2010; Baltzer et al. 2013; Hellström et al. 2016) is unlikely to
be a coincidence. We suggest that these modes might represent the exact solutions in the
state space of parallel shear flows (Pringle & Kerswell 2007; Duguet et al. 2008). Further
research is needed in this direction, but the consistency between VLSMs and the travelling
wave instability with κθ ≈ 3 is a remarkable finding.

The POD modes are characterised by assessing the radial energy distribution for a
specific quantity of interest, such as the structure’s size. We employ a Voronoi diagram
to compute a density-weighted energy contour plot, which accounts for the density of
structures in a particular region when determining the energy contribution, as detailed
in Massaro et al. (2024). At high Reynolds numbers, this innovative representation
effectively distinguishes two highly energetic classes of structures: class I, characterised
by a thickness (ly) that linearly scales with the wall-normal distance, and class II, with
a size that remains (almost) constant. These two classes represent wall-attached and
detached eddies. They are both modally self-similar and have helix angles typically below
approximately 6.5◦. However, differences arise in their radial and axial distributions.
Specifically, the attached eddies consist entirely of VLSMs, meaning that they are longer
than 3R, whereas the detached eddies are most likely LSMs. The attached eddies always
have their largest peak located within the distance of 0.1R from the wall and extend into the
central part of the pipe, reaching a wall-normal distance of approximately 0.5R. Their size
scales linearly with y, having slopes of ly ∼ 1.29y/R and ly ∼ 1.20y/R at Reτ = 2000 and
5200, respectively. In contrast, the detached eddies have an approximately constant size
of ly ≈ 0.25R at Reτ = 2000 and ly ≈ 0.26R at Reτ = 5200, progressively moving away
from the wall towards the central part of the pipe. Of particular interest is the behaviour in
the central region of the pipe, as it may provide insights into the differences between the
streamwise velocity in pipes and channels (Monty et al. 2009). Our study indicates that
these differences are likely to be associated with detached eddies rather than attached ones.
An interesting avenue for further research would be to compare the current results with
the POD analysis of turbulent channel flow at a similarly high Reynolds number to gain
a deeper understanding of these two classes of modes in distinct geometries. Speculating
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about possible implications of the dominant role played by the very large scales in wall
turbulence, POD also offers the opportunity to create a reduced-order model. Such a model
can be useful for large eddy simulations or in generating turbulent inflow conditions. This
is particularly valuable because the very-large-scale components are challenging to be
statistically modelled.

To conclude, this study uses a novel classification that distinguishes between attached
and detached eddies based solely on their energy contributions, thus eliminating the
need for any threshold or filtering. The primary limitation of this approach remains the
requirement of a sufficiently high Reynolds number to ensure a clear separation of scales.
Nevertheless, the insights gained from examining attached and detached structures at high
Reynolds numbers are significant and provide valuable contributions to advancing the
numerical modelling of turbulent pipe flows and understanding the nature of the large-
(and very-large-) scale motions in pipes, as well as other types of wall turbulence.

Supplementary material. Supplementary material available at https://doi.org/10.1017/jfm.2024.776.
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