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This work investigates the stability and transition to turbulence in a diverging channel
subjected to a time-varying trapezoidal-shaped inflow boundary condition. Numerical
simulations are performed for different deceleration rates and Reynolds numbers while
maintaining a constant acceleration rate. The flow transition begins with two-dimensional
primary instability with the formation of inflectional velocity profiles, followed by local
separation and the emergence of an array of shear layer vortices. We divide simulation
cases systematically into three categories based on the onset of secondary instability and
the generation of streamwise vorticity. At low and medium Reynolds numbers (type I),
the spanwise vortex rolls formed by inflectional instability remain two-dimensional and
diffuse at the channel centre without exhibiting further instabilities. At high Reynolds
numbers and deceleration rates (type II), the rolled shear layer exhibits secondary
instability during the zero mean inflow phase, followed by local incipient turbulent
structure formation. The streamwise vorticity that develops over the shear layer structures
causes oscillations with a spanwise wavelength similar to those associated with the
elliptic instability in a counter-rotating vortex pair. Using the Lamb–Oseen approximation
of vortices in conjunction with the dynamic mode decomposition algorithm of the
three-dimensional flow field, we captured successfully the characteristics of the secondary
instability. The third category (type III) is characterized by periodic unsteady separation,
secondary instability, and merging of shear layer vortices, which occurs when Reynolds
numbers are high and deceleration rates are low.

Key words: shear-flow instability, transition to turbulence

1. Introduction

The stability and transition mechanisms in the adverse pressure gradient (APG)
boundary layer have been studied extensively (Brinkerhoff & Yaras 2011; Lambert &
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Yarusevych 2019; Sengupta & Tucker 2020), given their frequent appearance in various
engineering applications. For instance, the performance of turbo-machines, including
pumps, turbines and compressors, is affected adversely by the flow separation occurring
from APG conditions (Greenblatt & Wygnanski 2000; Sandberg & Michelassi 2022).
A recent review by Sandberg & Michelassi (2022) summarizes the consequences of
flow separation and various modelling approaches in axial turbo-machines. During such
complex real-world applications involving APG conditions, the boundary layer thickness
can vary spatially and temporally, bringing about a set of inflectional velocity profiles at
random times and points along the surface, making the investigation difficult.

Historically, separation bubble formation and growth were isolatedly investigated by
employing blowing/suction (Alam & Sandham 2000; Embacher & Fasel 2014), spatially
varying wall contours (Mariotti et al. 2013), and attaching distinctive shapes to the wall
(Wissink & Rodi 2006; Garcia-Villalba et al. 2009). Further, the receptivity analysis
is used extensively to delineate the mechanism that amplifies or decays the velocity
field disturbances within the boundary layer of laminar and marginally separated flows
(Goldstein & Hultgren 1989; Diwan & Ramesh 2009; Jain, Ruban & Braun 2021). These
studies demonstrated that the Lambda vortex-induced breakdown of a separated shear
layer occurs in short laminar bubbles, and their absolute instability nature. Despite the
absence of disturbances upstream, the disintegration produced by separation bubbles
was characterized by the evolution of low-frequency oscillations with a high amplitude
within itself (Sandham 2008). A time-varying external flow or free-stream turbulence may
enhance or reduce an adverse pressure gradient and alter the separation location over
time, further complicating the problem. Hence the effect of unsteady inflow conditions
on non-uniform channels has been the subject of many studies (Tutty & Pedley 1993;
Rosenfeld 1995; Wissink, Michelassi & Rodi 2004; Wissink & Rodi 2006; Das, Srinivasan
& Arakeri 2013, 2016).

Numerical simulations are employed frequently to investigate the effects of periodic
external oscillations on separation flow dynamics. In a stepped channel, Tutty & Pedley
(1993) analysed the formation and propagation of ‘vortex waves’ generated during
an oscillatory flow’s forward and backward phase, using two-dimensional simulations.
Alternatively, Rosenfeld (1995) examined the influence of Reynolds number and Strouhal
number on vortex formation and propagation in a constricted channel. Wissink & Rodi
(2006) investigated the effect of oscillatory flow in transitional separated flow over a
smooth converging and diverging section by employing three-dimensional numerical
simulations. Wissink et al. (2004) further investigated the heat transfer aspects of a laminar
separation bubble affected by the oscillating external flow.

The effects of spatial and temporal pressure gradient conditions on vortex formation and
associated instabilities have been extensively examined experimentally under trapezoidal
mean flow conditions coupled with various geometrical configurations (Das & Arakeri
1998; Das et al. 2013, 2016; Ramalingam & Das 2020). Trapezoidal flows, in contrast
to pulsating ones, are appropriate for investigating the effects of constant acceleration
and deceleration on flow dynamics. Das & Arakeri (1998) used a trapezoidal variation
of the mean flow created by piston motion to study the instabilities of rapidly decelerating
pipe flows. Das et al. (2013) analysed flow structures originating from bluff bodies and
critical time scales for similar mean flow conditions. Recently, Ramalingam & Das (2020)
performed a detailed visualization study on the flow structures in a water channel flow
using direct visualization and particle image velocimetry. Das et al. (2016) conducted
a fascinating experimental investigation in a diverging water channel to investigate the
transition mechanism in APG conditions. In response to two-dimensional inflectional
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instabilities, an apparent roll-up of the shear layer is observed in both the lower and
upper walls. One crucial experimental observation in their study was the highly localized
transition to turbulence of shear layer vortices generated by primary instability.

The stability characteristics of flows with non-zero mean velocity have been the subject
of several studies. Through a quasi-steady approach, Hall & Parker (1976) investigated the
growth of the disturbance velocity field associated with the inflectional velocity profiles in
a decaying laminar flow. Based on a linear instability analysis of the inflectional velocity
profiles generated in an oscillating pipe flow, a relationship between the flow stability
and inflection point was posited by Das & Arakeri (1998). The wavenumber associated
with the highest growth rate for such profiles is nearly constant. Additionally, a linear and
weakly nonlinear analysis of a laminar flow subjected to rapid acceleration/deceleration by
Ghidaoui & Kolyshkin (2002) reinterprets the stability region predicted by Das & Arakeri
(1998). Furthermore, it was discovered that the Ginzburg–Landau equation governs the
amplitude of the most unstable mode. Using optimal growth analysis of normal modes,
Nayak & Das (2017) provide accurate growth rate predictions for unsteady channel flows.
Recently, Kannaiyan, Natarajan & Vinoth (2022) investigated the stability characteristics
of laminar pipe flow with a step-like flow rate increment, by using a linear modal stability
framework combined with a quasi-steady assumption.

Multiple researchers have analysed the secondary instability and the transition of
shear layer vortices resulting from separated flows (Caulfield & Kerswell 2000; Jones,
Sandberg & Sandham 2008; Mashayek & Peltier 2012; Zhiyin 2019). Shear layer vortices
are susceptible to secondary instability in the elliptic and hyperbolic regions (core and
braid regions, respectively), resulting in periodic streamwise vortices formation. For
example, Mode A and Mode B instabilities in the transitional cylinder wake correspond to
hyperbolic and elliptic instability in the wake vortices, respectively (Leweke & Williamson
1998). Caulfield & Kerswell (2000) described mathematically the braid region instability
arising over the hyperbolic stagnation points in mixing layer flows. Jones et al. (2008) have
confirmed the destabilization of the braid region between vortex structures emerging from
a separated flow over the surface of an aerofoil and relate it to the mode-B instability of
hyperbolic streamlines in two dimensions; the same is often true for bluff-body wakes.

A study by Abdalla & Yang (2004) demonstrated that the onset of turbulence could be
attributed to a helical pairing of spanwise vortex rolls originating from Kelvin–Helmholtz
instability. For the vortices shed from laminar separation bubbles, Marxen, Lang & Rist
(2013) posited multiple instability mechanisms that lead to turbulent transitions. The
first mechanism, identified as elliptical instability, distorts the vortex structure with a
spanwise wavelength in the order of the vortex dimension. In contrast, the other instability
develops in the braid region with a higher spanwise wavenumber. Recently, by analysing
the three-dimensional coherent structures arising in the wake of a wall-attached body,
Sarath & Manu (2022) showed that the vortices shed from boundary layers displayed
simultaneously both elliptical and hyperbolic instability.

Various theoretical models are used to measure the growth rate of vortices associated
with secondary instabilities. Rankine vortices and Lamb–Oseen vortex pairs are generally
used to approximate vorticity distributions for estimating the theoretical growth rates of
primary vortices (Le Dizes 2000a). Furthermore, Le Dizes (2000b) developed a growth
rate relation by neglecting the viscous effects for a multipolar vortex in a rotating flow
field, with estimates comparable to the global instability analysis results for various
vorticity distributions such as Kirchhoff (Miyazaki, Imai & Fukumoto 1995) and Moore
and Saffman (Moore & Saffman 1971) vortices. A consolidated review of Kerswell (2002)
discusses in detail the emergence of elliptical instability in different flow scenarios.
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An extended investigation by Le Dizes & Laporte (2002) identifies a relation to predict
the elliptic instability growth rate in a vortex pair, and establishes a critical region for the
Reynolds number based on the circulation. A recent review on the instabilities arising in
a vortex pair by Leweke, Le Dizes & Williamson (2016) proposes a revised estimation of
the growth rate for elliptic instability.

The present work examines the flow breakdown mechanism in a decelerating
diverging channel through numerical simulation using a flow configuration similar to the
experiments of Das et al. (2016). High-fidelity simulations are performed here to determine
the evolution of the flow features within a diverging channel with variable inflow velocity,
and the three-dimensional aspects of the vortex flow features are identified, which are
largely unexplored by Das et al. (2016). By studying velocity profiles, we examine the
primary mechanism of instability, while streamwise vorticity analyses are used to study the
secondary instability mechanism. The stability of coherent flow features and their temporal
characteristics are identified from dynamic mode decomposition (DMD) analysis. Further
analyses of the vortex’s stability are conducted using theoretical growth rate estimates
using the vortex parameters identified from a comparable Lamb–Oseen approximation.

This paper is arranged as follows. Section 2 includes the details about the computational
methods, along with the boundary conditions involved, and the validation results obtained
via comparison with experimental observations. Section 3 describes the various flow
instability traits discovered in three-dimensional simulations, and the details about the
classification of cases using streamwise vorticity evolution (type I to type III). Vortex flow
evolution characteristics in categories type I, type II and type III are provided in §§ 4,
5, and 6, respectively. Section 7 summarizes the observed flow dynamics and instability
analysis results.

2. Numerical methodology

2.1. Governing equations
The time-dependent three-dimensional flow field is obtained by solving the following
governing equations. The continuity and momentum equations for a three-dimensional,
incompressible and viscous flow are given as

∇ · V = 0,

∂V
∂t

= −∇p − 1
2

[∇(V ⊗ V ) + (V · ∇)V ] + ν ∇2V + f .

⎫⎬
⎭ (2.1)

In the above equation, V is the velocity vector with components u, v and w in the
streamwise, wall-normal and spanwise directions, respectively. Here, t, p and ν correspond
to flow time, pressure and kinematic viscosity. The nonlinear terms in the governing
equation are expressed in the skew-symmetric form since it is resilient to aliasing errors
(Kravchenko & Moin 1997). The embedded body region in the computational domain
is enforced by the body force field ( f ) in the momentum equation using the immersed
boundary method (IBM). For numerically solving the governing equations, a high-order
finite-difference flow solver Incompact3d (Laizet & Lamballais 2009; Laizet & Li 2011),
with a Cartesian mesh, is used. Incompact3d has been used extensively for various
transitional and turbulent flow studies (Bempedelis & Steiros 2022; Giri et al. 2022).

In this code, spatial discretization of governing equations on a uniformly spaced
Cartesian mesh is accomplished using a sixth-order compact finite-difference scheme. A
third-order Adams–Bashforth approach is used for the time integration of the discretized
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Figure 1. Computational domain along with boundary conditions: (a) three-dimensional view of the
computational domain; (b) dimensions of the diverging section; (c) mean inflow variation during a pulse; and
(d) variations in the inlet velocity profile during different velocity phases. (All the dimensions are in metres.)

governing equation. A staggered pressure grid from the velocity grid by half mesh length
is implemented to avoid spurious pressure oscillations. The modified Poisson equation
obtained by imposing the IBM is dealt with by spectral methods using the modified
wavenumber formalism. 2Decomp&FFT (Li & Laizet 2010), a domain decomposition
library, performs fast Fourier transforms involved in spectral techniques. The library
also contains a domain decomposition algorithm for efficient scaling and distribution of
memory in high-performance computing systems.

2.2. Computational domain and boundary conditions
A sketch of the computational set-up of flow in a diverging channel is shown in figure 1.
The computational domain chosen for this study is a small segment of the experimental
set-up employed by Das et al. (2016). Here, X, Y and Z are streamwise, wall-normal and
spanwise distances, respectively. In the simulation, the computational domain has length
1.2 m, width 0.142 m, which is equal to half the width of the experimental section, and
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height 0.15 m, as illustrated in figure 1(a). At the constant channel section, the embedded
body section has height 0.07 m. After a length 0.3464 m, the edge starts to curve along
an arc with radius (R) 0.1 m. Later, the curve joins smoothly to the diverging section with
angle of depression 6.2◦ (figure 1b). Similarly, the end of the diverging part joins fluidly
with the bottom wall of the channel.

A no-slip boundary condition is enforced on both top and bottom walls for devising
identical experimental set-up conditions in the computational domain. A time-varying
inlet condition based on the analytical solution of trapezoidal mean flow variation is
imposed at the inlet of the computational domain. The free-slip condition is applied to
both the right and left boundaries. The one-dimensional advective outflow equation is
implemented as the exit boundary condition is given by

∂u
∂t

∣∣∣∣
X=lx

+ Uc
∂u
∂X

∣∣∣∣
X=lx

= 0, (2.2)

where the mean velocity of the inlet velocity profile is taken as the advection velocity (Uc),
and lx is the domain length in the streamwise direction.

The following equations give the mean inflow velocity for the four phases of piston
motion:

up(t) = Up
t
t0

for 0 ≤ t ≤ t0,

= Up for t0 ≤ t ≤ t1,

= Up
t2 − t
t2 − t1

for t1 ≤ t ≤ t2,

= 0 for t > t2. (2.3)

A trapezoidal pulse of mean inflow constitutes a constant acceleration phase (0 to t0),
a constant mean inflow phase (t0 to t1), and a constant deceleration phase (t1 to t2).
Here, Up is the mean inlet velocity in the constant inflow phase (figure 1c). Such an
inflow configuration can study the individual effects of the acceleration and deceleration
phases of the inflow pulse. Analytical solutions of a trapezoidal mean inflow variation
(2.3) for a two-dimensional channel following Das & Arakeri (1998) are imposed at the
inlet. Time-varying small-amplitude perturbations are generated by the combination of two
parts of the analytical velocity solution (A5). The inlet boundary condition is not modified
to account for free-stream turbulence. Details on the governing equations and solution
procedures, along with velocity profiles imposed at the inlet during different phases, can
be found in Appendix A. This approach shortens the entrance length and allows a shorter
domain, reducing computational load. Since the inlet velocity profiles are built upon the
assumption of a two-dimensional channel, using a subdomain guarantees the application
of a slip boundary on the sidewalls. The work of Sarath & Manu (2022) provides additional
information about the procedure to obtain the inflow velocity profile.

Four typical velocity profiles imposed at the inlet during different phases are shown
in figure 1(d). The analytical solution generates oscillating components, which cause
small-amplitude oscillations, as shown in the figure. The amplitude of oscillations depends
on the phase of the mean inflow velocity, and decreases when the mean inflow velocity
is constant, as shown in instances V2 and V4. A spanwise width 0.142 m is sufficient to
allow the domain to accommodate spanwise oscillations formed by the three-dimensional
instability. Keeping the same channel height while reducing the area under consideration
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in the streamwise and spanwise directions allows for denser grid analysis and minimizes
the computational load. A complete domain simulation demonstrated minor deviations
(less than 1 %) in the wavelength of spanwise oscillation, affirming the selection of such a
section for numerical analysis.

In the remaining sections of this paper, flow features are illustrated using
non-dimensional spatial scales. Streamwise distance is non-dimensionalized as x =
(X − Xs)/hb, where hb is the embedded body height at the inlet, and Xs denotes the
start of the diverging section (Xs = 0.3464). Wall-normal and spanwise distances are
non-dimensionalized by using the body height defined by y = Y/hb and z = Z/hb,
respectively. As in the experiments of Das et al. (2016), the working fluid is selected to
be water with kinematic viscosity (ν) 10−6 m2 s−1. The parameters provided below are
used to analyse the flow dynamics.

The Reynolds number is

Reh = Uph
ν

. (2.4)

The acceleration Reynolds number is defined as

Rea =
√

ah3

ν2 , (2.5)

where h is the inlet channel height, and a is the acceleration (Up/t0). Similarly, for varying
deceleration cases, a deceleration Reynolds number is defined by

Red =
√

dh3

ν2 , (2.6)

where d is the deceleration (Up/(t2 − t1)). In the present work, the Reynolds numbers
based on the viscous length scales are defined as

Reδ = Upδ

ν
and Reδ∗ = Upδ

∗

ν
, (2.7a,b)

where δ and δ∗ represents boundary layer and displacement thicknesses, respectively.
Circulation of vortices for a particular time instance is calculated by Γωz = ∫∫

AΓ
ωz dA.

Here, the area AΓ is set appropriately to determine the circulation for top and bottom
vortex flow features while omitting the wall boundary region (as depicted in figure 1b),
and ωz indicates the spanwise vorticity (ωz = ∂v/∂X − ∂u/∂Y). Similar to other vortex
flow evolution studies (Le Dizes & Laporte 2002; Leweke et al. 2016), the vortex Reynolds
number based on spanwise circulation is estimated by

ReΓω,z = Γωz

ν
. (2.8)

Table 1 shows the simulation parameters for 12 different flow cases. Each case is
assigned an alphanumeric code to identify its simulation parameters. Of 12 simulations,
cases with identical mean inflow velocity (Up) are marked by letters A, B, C and D,
respectively, for low, moderate, high and very high inflow velocities. In addition, numerals
indicate cases with different deceleration parameters and the same Reynolds number:
numbers 1, 2 and 3 refer to high, moderate and low deceleration. For all the cases, the
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Case Up t0 t1 t2 ts Red Reh Reδs t∗3D
(m s−1) (s) (s) (s) (s)

A1 0.1372 0.6 2 3.00 2.15 8381 10 976 750 —
A2 0.1372 0.6 2 5.00 2.55 4840 10 976 810 —
A3 0.1372 0.6 2 8.00 3.15 3422 10 976 861 —
B1 0.1830 0.8 1 1.55 1.18 13 052 14 640 544 —
B2 0.1830 0.8 1 2.33 1.50 8393 14 640 613 —
B3 0.1830 0.8 1 5.00 2.25 4840 14 640 865 —
C1 0.2745 1.2 2 2.83 2.09 13 013 21 960 1449 3.67
C2 0.2745 1.2 2 4.00 2.21 8383 21 960 1530 1.58
C3 0.2745 1.2 2 8.00 2.48 4840 21 960 1707 0.53
D1 0.3203 1.4 2 3.17 2.11 11 839 25 624 1666 2.26
D2 0.3203 1.4 2 4.08 2.21 8879 25 624 1694 1.29
D3 0.3203 1.4 2 9.00 2.46 4840 25 624 2020 0.38

Table 1. Simulation parameters (Rea = 10 822).

α = 0.1826,

β = –0.668

α = 0.1565,

β = –0.668α = 0.1036,

β = –0.660

α = 0.0781,

β = –0.666

0.60.4

0.30

0.15

0.8 1.0

Case A1

Case B1

Case C1

Case D1

X

U

Figure 2. Streamwise velocity variation in inviscid region along the streamwise direction (y = 1.4286,
z = 1.0).

acceleration Reynolds number (Rea) is kept constant at 10 822. The Reynolds number
based on the boundary layer thickness (Reδs) for all cases at separation time is given in
table 1.

As a measure of the spatial pressure distribution, the variation of the streamwise velocity
component in the inviscid region (Ux) along the streamwise direction is shown in figure 2.
The velocity profile is shown at half the constant velocity period. Since the acceleration
and constant inflow velocity period remain the same, α and β remain the same for varying
deceleration cases. In figure 2, the continuous line represents the fitted curve, while the
symbols represent the velocity obtained from the simulation. The symbols are placed at a
distance of 15 grid point spaces between each pair. The velocity variation in the diverging
section (from X = 0.4 to X = 1.06) can be approximated by using the relation

Ux = αxβ, (2.9)

where α and β are constants and vary with Reynolds number (Reh). The obtained values
for α and β for all cases are marked in figure 2.
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Figure 3. Computational model validation: (a) streamwise velocity variation in the streamwise direction
(before separation, t∗ = 0.631). (b) Streamwise velocity variation in the wall-normal direction (after separation,
t∗ = 0.946). (c) Experimental comparison of ts.

The following non-dimensionalized time scales are used to distinguish flow events.
At first, flow time is non-dimensionalized by t2 to differentiate between both the
pulse phase and the zero mean inflow period (t∗ = t/t2). In order to compare
different deceleration cases, a non-dimensionalized time scale is identified as t∗d =
(t − t1)/(t2 − t1). Also, a critical flow time associated with three-dimensionally unstable
cases, t∗3D = (t3D − t1)/(t2 − t1), is identified from the t3D physical time at which a
visible secondary instability initiates in three-dimensionally unstable cases. The t∗3D values
observed for cases showing three-dimensional disintegration are provided in table 1. In low
and moderate Reynolds number cases, the flow stays in the two-dimensional regime; hence
t∗3D is absent for these cases.

2.3. Grid independence and numerical validation
The grid-independent analysis is performed by comparing the evolution of streamwise
velocity (case D1) for different grids with elements 961 × 193 × 181 (grid A), 1501 ×
301 × 289 (grid B) and 1921 × 385 × 361 (grid C). Figure 3(a) shows the streamwise
velocity through the central axis (y = 1.3143, z = 1.0) of the diverging channel at the
end of the constant velocity phase for different grid sizes. The velocity component
is non-dimensionalized by the maximum velocity magnitude for the flow instance
(u∗ = u/umax). The velocity profiles for three different grid sizes are shown in figure 3(b)
following the onset of initial instability at x = 0.5, z = 1.0. Grids A and B differ by
approximately 1.5 %, three times greater than grids B and C. The root-mean-square (r.m.s.)
deviation of streamwise velocity component (urms) of the velocity field during constant
mean inflow phase is calculated as

urms =
(

1
N

l=N∑
l=1

(u′(l))2

)1/2

, (2.10)

where the velocity perturbation (u′) is calculated by

u′(l) = u(l) − umean and umean = 1
N

l=N∑
l=1

u(l), (2.11a,b)

for N snapshots belonging to the constant velocity phase. A comparison of the r.m.s.
deviation of the streamwise velocity component developed over the constant mean inflow
period reveals a difference of 8.4 % between grids A and B, while the difference between
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Figure 4. Flow evolution at low Reynolds number case A3: (a) boundary layer thickening, (b) initial
oscillation, (c) vortex formation, (d) vortex formation at top wall, (e) vortex detachment, and ( f ) interaction of
top and bottom wall vortices.

grids B and C is below 4 %. Consequently, grid B is selected for the numerical simulations
due to accuracy and computational economy. Based on time step dependency analysis with
time steps ranging from 1 × 10−3 s to 1 × 10−5 s, a time step 1 × 10−4 s (CFL = 0.02)
was found to be computationally and accurately affordable.

Comparison of time of flow separation (ts) with the results of Das et al. (2016) (figure 3b)
validates the computational method. The previous experimental works incorporated a
two-dimensional simulation of vortex evolution to calculate flow separation time. Here,
by taking the flow time and position of zero wall shear stress, we determine the flow
separation time and separation point. All the cases show an excellent match with the
reported experimental values (less than 8 % difference). An experimental and simulation
comparison of the flow field for a high-velocity case is provided in § 3.

3. Initial observations and flow classification

Initially, the contour of non-dimensional spanwise vorticity (ω∗
z = ωzh/Up) at various flow

instances is used to analyse the evolution at low and high Reynolds number cases. Figure 4
illustrates the contours of spanwise vorticity at six flow instances for low Reynolds number
(case A3). The boundary layer thickness increases temporally due to the transient inflow
boundary condition (figures 4a,b). The flow generally remains attached to the channel
surface during the acceleration and constant velocity phases. Further, the flow undergoes
two-dimensional inflectional flow instability during the deceleration phase. Associated
vortex formation occurs during either deceleration or the zero mean velocity phases, as
reported in previous experiments. The formation of the separation bubble is evident in
figure 4(b) at the initial part of the diverging section (x = 0 − 2). The initial instability
amplifies with the flow time, resulting in shear layer roll-up (figure 4c). Due to the reverse
velocity profiles formed near the channel surface during the deceleration phase, the shear
layer vortices advect into the upstream region as the flow progresses.

Analogous to the bottom wall flow features, the oscillation developed over the top wall
moves upstream during the deceleration phase (figure 4d). As a result of the primary
negative vortex developed during deceleration, a secondary positive vortex is induced from
the bottom wall. During the zero mean inflow phase, vortices eject from the top and bottom
channels as a result of the mutual induction of vortex pairs (figure 4e). Further, both top
and bottom wall vortices diffuse during the zero inflow phase (figure 4 f ).
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Figure 5. Flow evolution at high Reynolds number (case C1) compared with the experimental snapshots of
Das et al. (2016): (a) two-dimensional snapshots, and (b) three-dimensional snapshot.

The initial development of flow instability in the case of a high Reynolds number
is qualitatively similar to the low Reynolds number case. At high Reynolds numbers,
characteristic features such as boundary layer thickening, inflectional instability and shear
layer roll-up are observed. However, the subsequent evolution of vortices varies depending
on the Reynolds number and deceleration rate. The structures exhibit secondary instability
at high Reynolds numbers, and subsequently, the flow becomes turbulent. The spreading
and development of three-dimensional structures differ with the deceleration rate.

Figure 5 shows the comparison of flow evolution in numerical simulation with
experimental results of Das et al. (2016). At t = 3.13 s, dye visualization manifests the
formation of vortices in the diverging part, and similar flow formations are observable in
the spanwise vorticity contours of simulation results. Vortex structures spread locally over
the initial diverging section (x = 0.5 − 2). The maximum pressure gradient point also lies
in the initial diverging section (x ≈ 0.46). The upward movement of vortices is apparent
during the deceleration period. Simultaneously coalescence of multiple vortex structures is
also noticeable. At t = 5.6 s, the spanwise vorticity contour of numerical simulation also
demonstrates the secondary instability formations. However, only a dense cloud of dye
can be seen in the experimental visualization. A three-dimensional development of the
vortex interaction makes dye visualization challenging due to the difficulty in identifying
individual vortex structures. Localized turbulent vortex formations are observed near
the maximum pressure gradient region of the diverging section. Similar to the dye
visualization images, the onset of secondary instability over spanwise vortex structures
at the end of the constant area section of the channel is visible in the three-dimensional
snapshot (figure 5b). The spanwise oscillation evolution is evident, indicating an onset of
secondary instability in flow evolution.

As a result of the APG conditions, inflectional profiles develop, which can eventually
lead to boundary layer separation, instability, or both. Figure 6 compares the inflectional
nature of flow instability associated with the two-dimensional primary for low and
high Reynolds number cases. Figures 6(a) and 6(b) indicate the temporal evolution of
instantaneous streamwise velocity profiles developed over the bottom wall in low Reynolds
number (case A3) and high Reynolds number (case C1) cases, respectively. During the
acceleration phase, the velocity profile is close to the wall surface without any reverse flow
region. Here, the velocity profiles are similar to the wall-jet profiles during the deceleration
phase. Depending on the Reynolds number and the deceleration rate parameters, reverse
flow velocity profiles are observed at specific locations and instances. Since both cases
differ in deceleration characteristics, the profiles show slight variations in the initial phase
(t∗ = 0.5).
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Figure 6. Velocity profiles across the separation point: (a) bottom wall (case A3, x = 0.0615), (b) bottom
wall (case C1, x = 0.0635), (c) top wall (case A3), and (d) top wall (case C1).

The flow enters into the deceleration phase resulting in a flow separation in case A3,
while case C1 lies in the constant velocity phase. A strong adverse pressure gradient
develops when the inflow decelerates, resulting in a reverse flow region. At t∗ = 0.8, both
cases indicate a reverse flow region, while for case A3, the profile is highly inflectional.
In the high-deceleration case C1, the profile is highly inflectional close to the end of
deceleration (t∗ = 0.95). The extent of the reverse flow zone declines in the zero mean
inflow region (t∗ = 1.15), and the velocity profiles also alter due to the spanwise vortices
passing through the selected point (t∗ = 1.5). The velocity profile developed over the top
wall is illustrated in figures 6(c) and 6(d) for cases A3 and C1, respectively. Similar to
the bottom wall velocity profiles, the top wall velocity profile variations follow the same
evolution pattern. Top wall velocity profiles tend to show a higher boundary layer region
than bottom wall velocity profiles.

Based on secondary instability features, streamwise vorticity growth and secondary
instability initiation time (discussed in detail in subsequent sections), the simulation cases
are classified into three categories. A schematic representation of the development of
vortices at two critical flow instances in each category is shown in figure 7. The type I
category represents low and moderate inflow velocity cases, which do not exhibit spanwise
oscillations and remain two-dimensional. Mutual induction of primary and secondary
vortices evolved during the flow progression is indicated in the inset on the right of
figure 7(a). Vortex pairs stretch, diffuse, and do not exhibit three-dimensional oscillations
when in motion.

The second category, type II, a secondary vortex that emerges from the bottom boundary
in the zero mean inflow phase, exhibits secondary instability and three-dimensional
oscillations. Vortex evolution in a locally unstable three-dimensional case (type II) is
illustrated in figure 7(b). Here, the value of secondary instability initiation time (t∗3D) is
significantly higher than 1. In a rapidly decelerating case, as depicted in the inset on
the left of figure 7(b), the flow generally takes a route similar to the two-dimensional
instances during the initial stages. Flow structures evolve near the separation bubble
and move upstream during the zero mean inflow stage. However, shear layer vortices
undergo secondary instability, characterized by a spanwise oscillation with wavelength
λ, as indicated by the second inset in figure 7(b). The spanwise oscillation intensifies with
flow time, culminating in a locally turbulent structure.
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Figure 7. Illustration of flow evolution for: (a) type I, advecting and decaying two-dimensional vortices;
(b) type II, local instability formation; and (c) type III, spatially unstable flow scenarios.

In the third category, the flow shifts from two-dimensional to three-dimensional during
the deceleration phase (t∗3D < 1). The extended deceleration period induces continuous
shedding of vortex structures from the separation bubble and advection of the vortex
structures. Figure 7(c) illustrates the development of spatially unstable flow with multiple
vortices formed over the bottom wall. Due to the streamwise movement of primary vortices
over diverging sections, vortex structures downstream merge to form a large structure,
further instigating three-dimensional flow characteristics. Advecting three-dimensional
structures from the separation bubble and the associated three-dimensional vortices create
turbulent flow in the diverging region.
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Figure 8. Temporally averaged streamwise vorticity in three-dimensional cases belonging to: (a–d) locally
unstable flow evolution cases (type II); and (e, f ) spatially unstable flow evolution cases (type III).

The contour of streamwise vorticity (ωx = ∂w/∂Y − ∂v/∂Z) can reveal the onset
and spread of turbulence. A temporally averaged two-dimensional snapshot of
non-dimensional streamwise vorticity (ω∗

x = ωxh/Up) for three-dimensional cases is
presented in figure 8. For N number of snapshots, a temporally averaged streamwise
vorticity is obtained by

ω∗
x , avg = 1

N

l=N∑
l=1

ω∗
x (l). (3.1)

Flow field data between flow instances t∗st taken as the first snapshot and t∗fi taken as the final
snapshot are used to perform temporal averaging, and respective values for each case are
given in figure 8. For locally unstable cases (C1, C2, D1 and D2), time step 0.05 s is used,
while for spatially unstable cases (C3 and D3), time step 0.1 s is used. The first category of
cases (type I) represents two-dimensional spanwise vortices that advect and decay in the
channel region. Therefore, a temporal average of streamwise vorticity does not yield valid
results for this category (cases A1–A3 and B1–B3) and is hence excluded in figure 8. The
second category of cases illustrates the flow features evolving near the separation region. In
these cases, the spanwise flow formations remain confined to the entrance of the diverging
area and generate three-dimensional oscillations on the secondary vortex structures during
the zero mean flow stage. The formation of streamwise vorticity also remains confined to
a narrow region near the separation bubble. The third flow category (type III) involves
periodic vortex shedding, secondary instability and vortex merging. Flow features develop
near the separation region and advect downstream during the deceleration phase. Such
cases manifest three-dimensional oscillation in the deceleration phase and disintegrate at a
later flow instance. The streamwise vorticity formed over the diverging section is indicative
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Figure 9. R.m.s. of fluctuations in the spanwise velocity component in three-dimensional cases.

of turbulent advective flow for the third category, as shown in figures 8(e, f ). Near the top
wall, streamwise vorticity production indicates similar three-dimensional disintegration of
top wall vortex structures.

The contours of the non-dimensional r.m.s. spanwise velocity component (w∗
rms =

wrms/Up) for all three-dimensional cases are provided in figure 9. The r.m.s. of the
spanwise velocity component is calculated using a similar expression of urms given by
(2.10) and (2.11a,b). The evolution of the spanwise component shows a relatively high
magnitude near the three-dimensional unstable region, identical to the non-dimensional
mean streamwise vorticity (figure 8). The peak fluctuations in the spanwise velocity
component spread around the separation bubble for type II cases, indicating a local
evolution of the three-dimensional oscillation. Due to the advection of the flow structures
during the deceleration period, the intensity of the spanwise fluctuations is higher in
spatially unstable cases (type III). In such cases (C3 and D3), advection and later
disintegration lead to a spread of the fluctuation intensity over the domain, as shown
in figure 9. Identical to the streamwise vorticity contour, spanwise fluctuations are also
present over the top wall for type III cases.

4. Type I: advecting and decaying two-dimensional vortices

We now investigate the effect of Reynolds number, and deceleration rate, on vortex
flow evolution characteristics in the first flow category. Figure 10 depicts the temporal
variation of the Reynolds number based on the displacement thickness calculated using
the velocity profile over the separation point for cases belonging to the first category. As
the flow accelerates, a thin boundary layer appears over the bottom wall. Broadening of
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Figure 10. Temporal evolution of Reynolds number based on displacement thickness for advecting and
decaying cases (filled circle indicates ts, open square indicates tv) over the separation point.

the boundary layer causes an increase in displacement thickness. The displacement
thickness remains nearly constant during the constant velocity phase (figure 10). For
high-deceleration Reynolds number cases (A1 and B1), deceleration happens in a short
period, resulting in a significant increase in displacement thickness. During the zero mean
inflow phase, the reverse flow region remains constant, manifesting a constant Reδ∗ .

Both low and moderate Reynolds number cases show identical flow evolution and are
evidenced by the displacement thickness variation. The gradual increase of displacement
thickness for low-deceleration cases (A3 and B3) is attributed to the more extended
deceleration period. The time at which wall shear stress is zero (ts) and vortex formation
time (tv) are marked with filled circle and hollow square symbols, respectively. Figure 10
shows that two-dimensional flow separations occur in the Reδ∗ band 420–640, and vortex
formation occurs between 560 and 780. During the zero mean inflow phase, the vortices
pass across the separation point, causing the abnormality in the temporal variation of
displacement Reynolds number.

The three-dimensional vortex structures developed in the zero mean inflow phase
(t∗ = 2.0) for advecting and decaying cases exhibit distinct two-dimensional evolution
characteristics (figure 11). The initial flow develops along the general route of broadening
boundary layer thickness and inflectional streamwise velocity profile, followed by flow
separation. In figure 11, the most amplified vortex pair formed due to the inflectional
instability is labelled BV and bv for primary and secondary vortices, respectively. Vortex
structures advect upstream due to the reverse velocity in the boundary layer during the
zero mean inflow phase. In high and moderate-deceleration cases (A1 and A2), the vortex
structures remain close to the bottom wall boundary (figures 11a,b). The induced angular
velocity by the vortex pair is shown to be more substantial for moderate deceleration
(case A2) compared to the high-deceleration case (A1), pushing the vortex pair towards
the top wall. The flow evolution in the low-deceleration case (A3) shows multiple vortex
formations in the diverging and constant channel regions. The extended deceleration
period leads to the development of multiple vortices, advecting upstream in later flow
instances.

Flow evolution in the moderate Reynolds number cases (B1, B2 and B3) is qualitatively
similar to the low Reynolds number case. Compared to low Reynolds number cases, the
flow structures in moderate Reynolds number cases lie in the initial stages. Figures 11(d)
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Figure 11. Spanwise vortex roll-up in two-dimensional (type I) flow evolution cases: (a) case A1,
(b) case A2, (c) case A3, (d) case B1, (e) case B2, and ( f ) case B3.

and 11(e) reveal the presence of a noticeable vortex pair at x = 0, which is comparable
to the respective deceleration cases in the low flow Reynolds number regime. The vortex
structures are well developed in the low-deceleration case (B3), similar to case A3. As
shown in figure 11( f ), vorticity rolls form in the diverging and constant channel regions.
In case B3, the streamwise location of the magnified vortex structure lies in the diverging
section (x = 1 − 2), as in case A3. The vorticity patch in figure 11( f ) indicates that the
vortex is beginning to form over the top wall, signifying a higher vortex formation on both
the top and bottom walls during the dead inflow phase.

The advective nature of the vortices and their influence on the deceleration rate are
quantified by tracking the vortex core trajectory. The core of the vortex is identified
by minimum and maximum vorticity for primary (BV) and secondary (bv) vortices,
respectively. Figure 12 shows the temporal evolution vortex core for the primary negative
vortex and the secondary positive vortex for cases A1, A2 and A3. The time step between
the data points for negative and positive vortices is distinct within each case, which is
marked aside from the core positions in figure 12. In high-deceleration events (case A1),
the flow evolution happens near the end of the constant channel region (x = −0.4 − 0),
as shown in figure 12(a). Prior to being ejected into the core flow area, primary and
secondary vortices developed over the bottom wall advect upstream. Increasing the
deceleration period causes the vortices to develop during the deceleration phase in the
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Figure 12. Temporal evolution of vortex core in advecting cases: (a) case A1 (first data point t∗ = 1.33, last
data point t∗ = 3.833); (b) case A2 (t∗ from 1.15 to 2.4); and (c) case A3 (t∗ from 1.375 to 2.8).
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Figure 13. Temporal evolution of (a) spanwise Reynolds number based on circulation, and (b) maximum
spanwise vorticity, for advecting and decaying cases (filled circle indicates ts, open square indicates tv).

downstream region. The vortex core position in figure 12(b) shows the advection of
developed vortices upstream during the early part of the zero mean inflow period in case
A2. Vortex cores moving upwards are apparent in the low-deceleration case (figure 12c).
Contrary to the high-deceleration case, the vortex pair moves closer to the top wall and
interacts with the top wall vortices in the low-deceleration case.

To quantify vorticity generation, the temporal evolution of the circulation-based
Reynolds number is presented in figure 13(a). The circulation within the channel region
is calculated by considering a subdomain, as shown in figure 1(b). This small domain
can characterize both positive and negative vortex formations near the bottom wall,
while skipping the boundary layer vorticities and avoiding interference from the top
wall structures. The stronger vortex flow features developed in the low-deceleration
cases (A3 and B3) cause an increase in circulation during the deceleration period. For
high-deceleration cases (A1 and B1), spanwise vortex roll-up is weaker compared to the
low-deceleration cases, resulting in a flatter circulation Reynolds number curve. As the
flow stage proceeds into zero mean inflow, the primary vortex interaction over the channel
surface leads to the production of positive vortices. The generation of a positive vortex
roll-up and subsequent diffusion decay contribute to a decline in circulation during the
zero mean inflow phase.

A quantitative analysis of the temporal evolution maximum spanwise vorticity
magnitude of the primary vortex (BV) against non-dimensionalized deceleration time is
provided in figure 13(b). Vortex formation begins towards the end of the deceleration phase
in cases A1 and B1. During the zero mean inflow period, the primary vortex in cases A1
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Figure 14. Temporal evolution of (a) Reynolds number based on displacement thickness, and (b) Reynolds
number based on spanwise circulation, for locally unstable cases (filled circle indicates ts, open square
indicates tv).

and B1 reaches its maximum vorticity in a short time, as shown in figure 13(b). In low- and
moderate-deceleration cases, flow separation is achieved during the deceleration period,
and the vorticity magnitude attains its maximum at the end of the deceleration phase.
Unlike the high-deceleration cases, low-deceleration cases attain maximum vorticity
magnitude during the initial deceleration phase. All cases show a steady reduction of the
vorticity magnitude with an identical slope indicating the decay of vortex flow structures.

5. Type II: locally evolving three-dimensional vortices

The growth of the boundary layer prior to inflectional instability is qualitatively the same
in type II cases as in type I. The temporal evolution of the displacement thickness based
on Reynolds number for high Reynolds number cases is depicted in figure 14(a). The
displacement thickness increases when the boundary layer broadens due to deceleration.
These cases exhibit flow separation in a Reδ∗ range 840–1050, while vortex formation
occurs in a higher range of Reδ∗ (970–1170). It is evident that displacement thickness
for very high Reynolds number cases (D1 and D2) is much higher at the end of the
deceleration phase than for high Reynolds number cases (C1 and C2). The generation of
vortices during the zero mean inflow period leads to an erratic variation in displacement
thickness. Similar to type I cases, the circulation evolution in high Reynolds number cases
reaches a maximum and subsequently drops. Cases C1 and D1 with high deceleration
demonstrate a sustained rise in circulation even after the deceleration phase, implying
vortex development in the zero mean inflow period. Vortex generation near the end of the
deceleration period results in maximum circulation in moderate-deceleration cases (C2
and D2).

The evolution of fluctuations in the spanwise velocity component can characterize the
growth of the three-dimensional flow disturbances in the flow domain. In the present
simulation, the source of perturbations is limited to the two-dimensional fluctuations
associated with the analytical solution, which are imposed at the inlet of the domain,
and the unavoidable numerical error related to the numerical scheme. As shown in the
simulation, these values are of the order of 10−6. In figure 15, the evolution of the
amplitude of the spanwise fluctuations ((w′)2 = (w − wmean)

2/U2
p) is plotted for locally

three-dimensional cases. The probe location is selected as the maximum spanwise velocity
component average position.
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Figure 15. Growth of the spanwise velocity component fluctuation in type II cases.

For all cases, the non-dimensional spanwise fluctuation amplitude increases during the
dead inflow region, indicating the three-dimensional disintegration process. Oscillation
amplitudes reach high magnitudes for very high Reynolds cases (D1 and D2) and
are near 0.01, whereas they peak at around 0.005 for high Reynolds cases. Also, the
spanwise velocity component growth is affected by the deceleration period. While
low-deceleration cases (C1 and D1) achieve their peak amplitudes later, after the pulse
ends, moderate-deceleration cases (C2 and D2) attain their peak amplitudes earlier.
The highest amplitude is observed in case D2, with a sharp increase in the oscillation
amplitude.

5.1. The emergence of secondary instability and local breakdown
In high Reynolds numbers, the vortices formed by two-dimensional primary inflectional
instability further undergo secondary instability, creating three-dimensional structures.
Vortex flow structures developing in a high-deceleration case (C1) are revealed by the
iso-surfaces of non-dimensionalized spanwise vorticity in figure 16. Primary inflectional
instability causes the formation of negative vortices (LP1–LP4), which further induces
secondary positive vortices (lp1–lp4) from the bottom wall boundary layer (figure 16a).
This secondary vortex and the primary vortex form a pair near the wall proximity. Due
to the mutual induction of the vortices, the pair detaches from the bottom wall, still
pertaining to the two-dimensional nature (t∗ = 1.25). Most flow features evolve near the
initial diverging section emphasized by the non-dimensionalized streamwise scale on the
top wall. The induced angular velocity of the upstream vortex pair (LP1, lp1) drives
them to roll towards the vortex pair at the downstream location, (LP2, lp2). Such a flow
development results in stretching and splitting of the positive secondary vortex by the
primary vortices (lp2a, lp2b in figure 16b). The residual momentum pushes the secondary
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Figure 16. Temporal evolution of three-dimensional flow features identified by spanwise vorticity for case C1.

vortex (lp1) from the upstream pair to join the downstream couple; such a tri-vortex group
further amplifies the roll-on process (t∗ = 1.93). Inflectional profiles in the boundary layer
seed multiple vortices from the boundary layer, as portrayed in figure 16(b) (pairs 5 and 6).

The secondary vortex structure (lp2b) exhibits a spanwise oscillation while orbiting
the primary vortex (LP1), as shown in figure 16(c). Similar vortex flow features are
exhibited by the vortex pairs detaching from the bottom wall surfaces downstream (pairs
3 and 4). A secondary vortex (lp4) downstream (x ≈ 1.0) undergoes a similar fashion of
vortex splitting, creating multiple positive vortices as in the former time instances for the
upstream secondary vortex (lp2).

The merging of the primary vortex cores (LP4 and LP6) is visible in the same instance
(t∗ = 1.93). As the flow progresses, oscillations amplify in the secondary vortex circling
the primary vortex. A sandwiching effect of the merged negative vortex cores (MG1 and
MG2) stretches the secondary vortices around them (figure 16d). After the stretching,
spanwise oscillations disintegrate into loops around the primary spanwise vortex flow
structures (MG1 and MG2). However, the initially ejected secondary vortex (lp1) survives
the vortex interactions and shows a three-dimensional oscillation while orbiting the
primary vortex. In a later flow instance (t∗ = 2.72), the secondary vortex structure
breaks down into spanwise loops around partially disintegrating primary vortices (LP1;
figure 16e). A complete transition to a turbulent structure with a negative vorticity core is
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Figure 17. (a) Flow features identified (LP1 and lp2b) using the λ2 method contoured by streamwise vorticity
(λ2 = −1). (b) Section through the spanwise oscillation contoured by spanwise vorticity (x = 0.29). (c) Section
through the spanwise oscillation contoured by streamwise vorticity.

observed as the flow progresses (t∗ = 3.18). Simultaneous production of two-dimensional
vortices and merging transitions is observable in the upstream and downstream positions in
figure 16( f ). Since this flow development lies in the zero mean inflow phase, advection of
three-dimensional roll-ups is not evidenced for case C1, and flow features are confined to
a small area near the initial diverging section (x = 0.4 − 1.5). For case C1, flow evolution
over the top wall has not yet been developed at t∗ = 3.18. Induction from the bottom wall
vortices creates a positive vorticity patch over the top wall at t∗ = 3.18, indicating vortex
roll-up in later flow time.

The three-dimensional topology of vortex structures is identified further using the
λ2 method and contoured by non-dimensional streamwise vorticity in figure 17, which
illustrates the spanwise oscillation developed over the secondary vortex for case C1 at
t∗ = 1.93. The alternate streamwise vorticity originated over the spanwise vortex roll-ups
displays a symmetrical pattern. A cross-section (Y–Z) through the central plane of vortex
pairs (x = 0.308) is taken, to understand the nature of oscillations. Non-dimensionalized
spanwise vorticity contoured snapshots (figure 17b) provide a clear visual of secondary
vortex developing oscillations. The presence of alternating streamwise vorticity is further
explained by superimposing the vector plot in figure 17(c). Circulation regions are
discernible over the spanwise vortex roll-ups, as seen in the inset.

The temporal evolution of flow vortices in cases similar to case C1 (type II) is evidenced
in figure 18. Vortex flow structures at two flow instances are shown: the first flow instance
portrays the three-dimensional oscillations during the early transition phase, while the
second instance illustrates the flow structures in the turbulent phase. Identical to case
C1, primary instability in the deceleration phase develops into a vortex pair, which
moves downstream and interacts with similar vortex pairs. Figures 18(a,b) indicate the
formation of spanwise oscillations over the secondary vortices in case C2. Stretching of
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Figure 18. Temporal evolution of three-dimensional flow features identified by spanwise vorticity for cases
belonging to type II instability: (a,b) case C2, (c,d) case D1, and (e, f ) case D2.

the secondary vortex around the primary vortex is evidenced at t∗ = 2.0. Along with
three-dimensional disintegration, vortex pairs eject into the flow core at a downstream
position due to the induced velocity. As flow progresses, analogous to case C1, the
formation of a turbulent three-dimensional structure with negative spanwise vorticity
is illustrated in figures 18(a,b). Unlike case C1, the formation of top wall vortices is
evidenced for case C2 as depicted in figures 18(a,b). During the zero mean inflow phase at
t∗ = 2.13, the ejected vortex pair interacts with the top wall boundary layer. Figures 18(c,d)
and 18(e, f ) show identical flow evolution for cases D1 and D2. Three-dimensional
disintegration initiates with vortex pair interaction, resulting in a locally turbulent region.
The turbulent region develops earlier for high Reynolds number cases (D1 and D2) than
for high flow Reynolds number cases (C1 and C2).

5.2. Modelling of secondary instability
The DMD algorithm is used to analyse secondary instability over the shear layer vortices
resulting from primary inflectional instability; it identifies the underlying dynamics of the
coherent flow features developed during the flow evolution. We use the snapshot-based
approach introduced by Schmid (2010) to identify the secondary instability features along
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with their temporal dynamics. A review by Taira et al. (2020) offers further examples of
this approach to identify underlying features in many transitional and turbulent flows.

The DMD algorithm starts by arranging state vectors from simulation data snapshots
column-wise into two snapshot matrices U1 and U2, with two consecutive time intervals
(	τ ). DMD analysis identifies a best-fit linear operator A that relates matrix U1 to the
matrix U2:

U2 = AU1. (5.1)

By taking the singular value decomposition (SVD) of the snapshot matrix (U1), we obtain
left and right eigenvectors (S and D, respectively), along with the eigenvalue (Λ). In order
to build a best-fit linear operator correlating both matrices, we take the pseudo-inverse
of U1 (by taking the conjugate transposes of SVD vectors (S∗, D∗) together with U2 as
follows:

A = U2D∗Λ−1S∗. (5.2)

By eigen-decomposition, the low-dimensional model is decomposed into eigenvector
(W ) and eigenvalues (λD). The temporal dynamics of the system can be identified from
the eigenvalues using the following relations for growth rate and frequency:

σDMD = log (Re(λD))

2π 	τ
, (5.3)

fDMD = log (Im(λD))

2π 	τ
. (5.4)

In order to obtain the DMD modes (Φ), the low-dimensional model is reconstructed
from its eigenvectors as

Φ = U2DΛ−1W . (5.5)

Through a three-dimensional DMD of streamwise vorticity data, the most unstable flow
features associated with secondary instabilities are identified (figure 19). For the DMD
calculation, three-dimensional snapshots are taken with time step 	τ = 0.05 s between
each snapshot. The Ritz circle obtained from the DMD for cases belonging to the second
category is presented in figure 19(a). The position of the mode with respect to the unit
circle outlined in the figure indicates the stability of the modes. In general, a mode lying
outside a circle indicates an unstable mode, while lying within signifies a stable mode;
and when it lies on a circle, it is neutrally stable. In all cases, at least one mode displays an
unstable trait, illustrated by the circle in figure 19(a). Figure 19(b) shows the growth rate
and frequency distribution for the DMD modes. The highest growth rate mode obtained
from DMD analysis is indicated by 1σ .

When streamwise vortex growth is unstable, vortex roll-ups will experience
three-dimensional destabilization, as manifested by the positive growth rates for all cases.
Unstable three-dimensional modes are identified through the growth rate criteria for all
cases and are shown in figure 19. The three-dimensional morphology of unstable modes
is visualized using an iso-surface of streamwise vorticity. A spanwise variation of the
streamwise vorticity is evidenced in all cases. The spanwise wavelength obtained for
the mode with the highest growth rate is provided in table 2. Averaging the distance
between the peaks of the streamwise vorticity plotted across the vortex core provides
the mean spanwise wavelength. The average spanwise wavelength observed for all
three-dimensional cases is tabulated in table 2. Both wavelengths are non-dimensionalized
by the distance between the cores of vortex pairs (b is the distance between maximum
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Figure 19. Three-dimensional DMD analysis results: (a) Ritz circle, (b) growth rate versus frequency, and
(c) leading secondary instability modes based on growth rate criterion for type II cases.

and minimum vorticity magnitudes). The spanwise wavelength for the coherent flow
features identified by DMD analysis (λDMD) lies close to the mean spanwise wavelength
determined from streamwise vorticity variation over the oscillation (λmean).

The secondary instabilities are formed during the zero mean phase in cases belonging
to the type II category, which is similar to the short-wavelength elliptic instability
demonstrated by Laporte & Corjon (2000). Since multiple vortex pairs are observed
near the bottom wall, unlike classical short wavelength vortex instability, theoretical
stability analysis is performed for most magnified vortex pairs. Variation of the spanwise
vorticity in a vortex pair ejecting from the bottom wall (case C1) is shown in figure 20(a).
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Case b (m) λmean/b λDMD/b

Snapshot
nos

(DMD) a1 (m) a2 (m) Γ1 (s−1) Γ2 (s−1) bLO (m)

C1 0.0128 1.56 1.69 79 0.025 0.0040 0.00049 −0.00195 0.0111
C2 0.0125 3.34 3.26 79 0.0018 0.0045 0.00062 −0.0037 0.0068
D1 0.0100 2.12 1.91 75 0.0019 0.0040 0.00113 −0.0038 0.0088
D2 0.0095 2.25 2.11 75 0.0015 0.0055 0.00051 −0.0070 0.0075

Table 2. Spanwise wavelength comparison and parameters for Lamb–Oseen approximation.

An identical depiction of an approximated Lamb–Oseen pair obtained from (5.6) is given
in figure 20(b). The vorticity distribution for such a vortex pair with circulations Γ1 and
Γ2 may be approximated using the Lamb–Oseen equation (Leweke et al. 2016)

ωz = Γ1

πa2
1

exp

(
− r2

a2
1

)
+ Γ2

πa2
2

exp

(
− r2

a2
2

)
, (5.6)

where r represents the distance from the vortex core position. The core radius (a1 and a2)
for a vortex centred at X c is obtained from

(xc1, yc1) =
(

1
Γ1

∫
D1

xωz dS,
1
Γ1

∫
D1

yωz dS
)

, (5.7)

a2
1 = 1

Γ

∫
D1

|X − X c|2ωz dS, (5.8)

where D1 represents the domain containing each vortex, ωz defines the spanwise vorticity,
and dS represents the infinitesimal area.

To ascertain the validity of the Lamb–Oseen approximation, the plot of the spanwise
vorticity obtained from (5.6) is compared with the simulation results (through the vorticity
cores). Table 2 provides the essential parameters obtained from simulation used to
estimate the Lamb–Oseen approximation for locally unstable cases (type II) as depicted
in figure 20(c). Here, bLO denotes the distance between the first positive vortex core and
the second negative vortex in approximated vorticity distribution. In cases C1, C2 and D2,
a vertical pair of vortices is compared with a vertical Lamb–Oseen pair, while in case
D1, a better approximation is obtained for a horizontal pair and is compared to a similar
Lamb–Oseen approximation (figure 20c). As presented in figure 20, the assumption of a
Lamb–Oseen vortex approximation remains true in all selected flow instances.

Le Dizes & Laporte (2002) proposed an explicit relation using approximate linear
expressions for the internal strain ratio (sr) and inertial wave vector inclination for
predicting the growth rate of an elliptic instability in a counter-rotating vortex pair. Leweke
et al. (2016), in their review, presented a revised linear fit to determine the frequencies (ω)
and damping rates (ζ ) of the first two Kelvin modes. The growth rate for the first two
modes of elliptic instability in a Lamb–Oseen vortex pair is given by

σ
∗,(n)
1 =

√(
3
4

− Ω̄1

4

)4

s2
r
(
Ω̄1
) (Γ2

Γ1

)2

− (
ω(n) − Ω̄1

)2 ( b
a1

)4

−
(

b
a1

)2
(

ζ (n)

ReΓ1

)
.

(5.9)

962 A30-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.293


Decelerating diverging channel flows

Γ1 Γ2

Ω

b

0.425

–100

–50

0

50

100

0.10

0.11

0.435
x

y

yy

–50 0

0.07

0.08

0.08

0.07

50 100

ωz

ωz

–30 0 30 60
ωz

–50 0 50 100
ωz

Case C1

t∗ = 1.69 t∗ = 0.935

t∗ = 0.875t∗ = 1.056

Simulation
Lamb–Oseen Case C2

Case D1 Case D2

(c)

(a) (b)

Figure 20. Depiction of Lamb–Oseen model: (a) simulation, (b) Lamb–Oseen model, and (c) Lamb–Oseen
model comparison for vortex pair in locally unstable cases.

The superscript n represents the mode number, and the subscript denotes the vortex
number. Here, the growth rate of the mode is non-dimensionalized by the time scale of
translational motion (2πb2/Γ1). Linear expressions for real (ω) and imaginary (ζ ) parts of
the complex frequency in (5.9) are

Ω̄1 =
(a1

b

)2
(

Γ1 + Γ2

Γ1

)
, (5.10a)

sr(Ω̄) = 1.5 + 0.1323
(
0.32 − Ω̄

)−9/5
, (5.10b)

ω(1) = −0.135 (ka1 − 2.26) , (5.10c)

ω(2) = −0.084 (ka1 − 3.95) , (5.10d)
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Figure 21. Growth rate curves for first and second elliptic modes for secondary vortex in locally unstable
cases: (a) case C1, (b) case D1, (c) case C2, and (d) case D2.

ζ (1) = 74.02 + 64.15 (ka1 − 2.26) , (5.10e)

ζ (2) = 229.6 + 104.3 (ka1 − 3.95) . (5.10f )

Using (5.9), the growth rate of elliptical instability for a counter-rotating vortex pair ejected
from the bottom boundary of the wall was determined. The growth rate curves obtained
for different spanwise wavenumbers for secondary vortices are presented in figure 21. A
similar analysis was conducted on the vortex structures in type I cases. The secondary
vortices, which develop in two-dimensional advecting and diffusing cases, indicate stable
growth rates and have been confirmed by our calculations but are not shown. The growth
rate curves are calculated for the secondary vortex, which undergoes three-dimensional
disintegration (using Lamb–Oseen approximation as shown in figure 20c). The growth
rate curves indicate an unstable first mode alongside a stable second mode (figure 21a).
An identical growth rate curve is obtained for case D1 (figure 21b), revealing the
formation of first-mode elliptic instability in high-deceleration cases (C1 and D1). Unlike
high-deceleration cases, both the first and second modes show an unstable nature in
moderate-deceleration cases (C2 and D2) (figures 21c,d).

The temporal growth of vorticity/spanwise oscillation can be associated with the
secondary instability (elliptic instability) of the shear layer vortices formed by the primary
instability mechanism. The small spanwise velocity component can grow into a larger
magnitude if the flow conditions are susceptible to elliptical instability. The fluctuations
amplify due to the elliptic instability to a significant value (10−2) for all type II cases, as
is evident in figure 15, whereas it is negligible for type I cases. We also found that the
amplitude of spanwise fluctuation is higher for case D2, showing a maximum growth rate.
Identical to the growth rate curves, case D2 indicates a maximum amplitude of order 0.01.
Compared to very high Reynolds cases (D1 and D2), high Reynolds cases (C1 and C2)
possess lower amplitude, and the growth rate for case C1 shows the lowest value.
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Figure 22. Temporal evolution of (a) Reynolds number based on displacement thickness, and (b) Reynolds
number based on spanwise circulation, for spatially unstable cases (filled circle indicates ts, open square
indicates tv).

6. Type III: spatially unstable flow evolution

Three-dimensional disintegration of vortex flow features results in complex boundary layer
growth in spatially unstable cases (figure 22a). In both cases, Reδ∗ evolution initiates
with a low value during the acceleration phase. The flow separation for cases C3 and
D3 lies at Reδ∗ = 980 and 1133, respectively, which is the highest compared to the former
categories. Similarly, vortex formation initiates in case C3 at Reδ∗ = 1092, whereas in case
D3 it is at Reδ∗ = 1300. Unlike in other cases, flow generates vortex roll-up during the
initial deceleration stage, reflected by an increase in displacement thickness. As the vortex
clears, the profile returns to its typical profile, lowering the displacement thickness. The
peaks of the displacement thickness variation indicate further vortex development. The
three-dimensional vortex breakdown in both cases produces high-frequency oscillations
during the flow advancement. Three-dimensional disintegration initiates more quickly for
case D3 (around t∗ = 0.7) due to the higher streamwise velocity, compared to case C3.
Alternatively, case C3 displays three-dimensional turbulent behaviour towards the end of
the deceleration phase (around t∗ = 0.9).

Oscillations in the temporal variation of the Reynolds number based on spanwise
circulation indicate a transition from a two-dimensional to a three-dimensional flow
regime (figure 22b). Cases C3 and D3 display an increment in circulation during the
acceleration and constant velocity phases, identical to cases A3 and B3. Compared to
the previous categories, during the deceleration phase, the circulation-based Reynolds
number reaches a higher magnitude for these cases (C3 and D3), indicating higher
vortex formation. Minute spanwise loop formation due to three-dimensional disintegration
induces oscillations in circulation development during the deceleration phase. The earlier
onset of fluctuations characterizes the rapid disintegration of flow structures in case D3
compared to case C3. The circulation decays during the zero mean inflow phase with a
higher decay rate compared to type I cases.

6.1. Unsteady separation and flow breakdown
Vortex flow structures identified by the non-dimensional spanwise vorticity in case C3
are portrayed in figure 23. Shear layer roll-ups marked by BS1–BS5 are observed
at nearly equally spaced locations over the diverging section. Vortex flow structures
are highlighted according to their formation sequence during flow evolution. Due to
unsteady flow separation, vortices develop over the initial diverging section (PS1)
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Figure 23. Temporal evolution of three-dimensional flow features identified by non-dimensional spanwise
vorticity for case C3.

during deceleration. Vortices evolving over the diverging section advect downstream,
creating additional positive vortices (bs1) from the wall surface (t∗ = 0.55). Persistent
streamwise velocity deceleration leads to a continuous shedding of vortices from the initial
diverging section (PS1 and PS2). A higher advective velocity of the upstream vortex leads
to the pairing of the vortex roll-ups (BS1 and BS3, t∗ = 0.63). Due to mutual induction,
positive vortices (ps1a–ps1c) eject from the bottom wall vorticity layer and revolve around
the primary vortex (PS1) while advecting downstream (t∗ = 0.69). In such advecting
vortex pairs, secondary vortices generate spanwise oscillations (ps1c) similar to locally
unstable cases (type II). The formation of three-dimensional oscillations is attributed to
the local interaction of advecting pairs. Simultaneous merging of vortex flow features (BS2
and BS4) and the three-dimensional disintegration of secondary vortices (ps1c, ps2a and
ps2b) are evident in later deceleration flow instances (t∗ = 0.74 and 0.76).

A complex structure with multiple small-scale vortices is formed due to the growth
of the three-dimensional oscillations into tube-like structures (MG4), which displace
downstream due to the streamwise velocity (t∗ = 0.81). Three-dimensional oscillations
develop over the unsteady separation vortices when the flow passes half of the
deceleration phase. A vortex pair discharging from the initial diverging section displays
three-dimensional oscillation after the ejection (t∗ = 0.91). Advecting vortex roll-ups
interact with other flow features, generating a turbulent flow structure (t∗ = 0.91). The
decay of streamwise velocity further results in flow detachment, leading to a turbulent
flow evolution during the zero mean inflow phase. Analogous to the former category, the
flow features move backwards as the flow progresses in the zero mean inflow region. Tiny
loop structures are formed through the disintegration of vortex flow structures at later flow
instances (t∗ = 1.18).

Identical to the bottom wall, the top wall boundary layer displays vortex roll-ups and
three-dimensional disintegration, as presented in figure 23. An extended stay of the bottom
wall vortex in the initial diverging section induces the flow to separate from the top

962 A30-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

29
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.293


Decelerating diverging channel flows

1 2 3

PS1
BS4 BS2 BS1 BS3

TS1

PS1
BS4

BS5
BS2

BS5
MG1

ps1
bs1

PS2

–4 40ωz
∗

4 5 54321t∗ = 0.43 t∗ = 0.49

TS1

BS2
BS4

MG1

PS2

PS1
bs1a

bs1b
bs1c

ps1b

ps1a
ps1c

54321 t∗ = 0.52

1 2 3

PS3

PS2
BS2

BS4

TS3TS2 TS1ts1

bs2

MG2
MG3

ts2 TS1

bs2

ps2

bs5c
bs5d

PS2

PS3

4 5 54321t∗ = 0.57 t∗ = 0.60

TS3
TS1

TS2

ts2

ts1

ts2
TS2

TS1

MG3

ts1

PS3

PS2
PS4

54321 t∗ = 0.64

1 2 3

ts3
TS3 TS2 TS3ts3

4 5 54321t∗ = 0.70 t∗ = 0.75
54321 t∗ = 0.82

Figure 24. Temporal evolution of three-dimensional flow features identified by non-dimensional spanwise
vorticity for case D3.

wall leading to vortex roll-up. The top wall boundary layer broadens over the bottom
separation region once the flow separates over the bottom wall (t∗ = 0.55). In type III
cases, flow separation occurs earlier in the deceleration phase, forcing the fluid over the
top wall. Formation of a primary positive top wall vortex (TS1) subsequently results in
the production of a negative secondary vortex (ts1, t∗ = 0.69). The shedding of vortices
due to unsteady separation promotes the development of flow structures (TS pairs 2 and 3)
across the top wall (t∗ = 0.74). The top wall vortices retain their two-dimensional traits,
while the bottom wall vortex pair undergoes three-dimensional disintegration at t∗ = 0.76.
Due to induced rotation, primary and secondary top wall vortices eject from the top wall
boundary layer (t∗ = 0.81). Analogous to the bottom wall flow features, top wall vortices
clearly show the pairing behaviour at t∗ = 0.91 (TS3). Towards the end of the deceleration
phase, the top wall formations also generate three-dimensional oscillations. In the initial
zero mean inflow phase, the interaction between the top and bottom wall structures is
minimal (t∗ = 1.02), while at a later flow instance (t∗ = 1.18), the mixing of flow features
over the top and bottom walls results in a turbulent flow evolution.

Similar to case C3, vortex evolution in case D3 demonstrates vortex generation
and three-dimensional breakdown of flow characteristics during the deceleration phase
(figure 24). The inflectional instability in the boundary layer develops into vortex
roll-ups (BS1–BS5) during the deceleration phase (t∗ = 0.43 and 0.49). Compared to
case C3, a higher mean inflow velocity results in a higher advective velocity for the
flow features along with the vortex shedding (PS pairs) due to unsteady separation
(t∗ = 0.52). Three-dimensional oscillations induced over the secondary vortices amplify
and disintegrate at subsequent flow instances as vortex pairs are ejected from the initial
diverging section. In case D3, the vortex flow patterns disintegrate at an early pulse stage,
resulting in an advecting turbulent structure that stays closer to the bottom wall (t∗ =
0.6, 0.64). Unlike case C3, the top wall vortices (TS pairs 1 and 2) advect downstream
along with the bottom wall structures due to the earlier inception of top wall structures.
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Figure 25. Three-dimensional disintegration of the separation bubble.

Flow formations over the top wall retain their two-dimensional nature at this flow instance
(t∗ = 0.64). As the flow moves forward through the deceleration phase, the advecting
top wall vortices (TS1, TS2) evidence three-dimensional disintegration (t∗ = 0.7). The
turbulent flow features over the top and bottom walls advect downstream as flow forwards,
while the interaction of the structures results in a turbulent flow as evidenced at t∗ = 0.75
and 0.82.

A separation bubble forms near the initial diverging region due to unsteady separation,
constituting a spanwise vortex roll and induced positive vortex in the boundary layer.
A close-up image of the vortex shedding and three-dimensional disintegration of the
separation bubble vortices is illustrated in figure 25. Similar to the shedding process
observed by Wissink & Rodi (2006), consecutive formation of the vortex rolls is evidenced
during the deceleration phase (figure 24). As the flow decelerates further, the streamwise
velocity weakens, amplifying the perturbations developing due to vortex interactions. As
the flow decelerates (t∗ = 0.61), the secondary vortices generate a spanwise oscillation
during the shedding process, and develop into spanwise loops over the primary negative
vortex (PS2). Decay in streamwise velocity induces an oscillation in the separation
bubble due to the amplification of perturbations (PS3). As the flow progress (t∗ = 0.63),
the vortex structure (PS3) sheds downstream, creating a short interval and a turbulent
separation bubble (PS4). Further deceleration leads to the disintegration of the separation
bubble and moves to a turbulent regime (t∗ = 0.65). The formation of a turbulent
separation bubble leads to an uneven shedding of the turbulent flow features similar to
the flow evolution observed by Wissink & Rodi (2006) (t∗ = 0.68).

6.2. Shear layer shedding characteristics
In figure 26, the spanwise vorticity at a downstream location is probed to identify the
temporal characteristics of the vortex shedding due to unsteady separation for cases C3
and D3. In case C3, vortex generation initiates around t∗ = 0.3, which is at an earlier flow
instance than in case D3. Shortly after the vortex ejection, the formation of a positive
vortex is evident by a sharp positive peak. Further oscillations are indicative of the
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Figure 26. Spectra analysis of vorticity probe for spatially unstable cases. (a) Temporal variation of spanwise
vorticity (case C3, x = 2.633, y = 0.914; case D3, x = 2.32, y = 0.964). (b) Frequency spectra of the spanwise
vorticity variation.

subsequent formation and shedding of vortex structures. High-frequency perturbations
in the zero mean inflow phase are triggered by three-dimensional fragmentation of the
flow features in case C3. The vortex shedding in case D3 is more frequent and reveals
a three-dimensional breakdown at an earlier stage in the flow. The underlying frequency
of the vortex shedding is identified by the frequency spectra obtained from the Fourier
transforms of the vorticity evolution. The highest peak in the frequency spectra obtained
by the Fourier analysis indicates the shedding frequency and is marked in figure 26(b) for
cases C3 and D3. A second dominant frequency lies close to the subsequent harmonics of
the preceding dominant frequency in both cases.

The temporal characteristics of the periodic shedding of two-dimensional flow structures
in type III cases are revealed by the DMD analysis of two-dimensional snapshots of
spanwise vorticity. Unlike the former category cases, rapid evolution and the streamwise
advection of flow features due to the low deceleration rate hinders the three-dimensional
DMD analysis of streamwise vorticity. A total of 75 snapshots lying in the initial
deceleration period between ti and tf are used for the DMD analysis for both cases,
with time step 	τ = 2 × 10−2. Frequency was invariant when the number of snapshot
sizes was increased. Figure 27 summarizes the DMD analysis of the spanwise vorticity
in spatially unstable cases. Typically, the Ritz circles plotted in figures 27(a) and
27(b) indicate the stability of DMD modes. The red symbols indicate the growing
modes of cases C3 and D3 that lie outside the unit circle. To further emphasize the
destabilizing nature, figures 27(c) and 27(d) present bar diagrams of frequency ( fDMD)
plotted against the growth rate (σ ) determined using DMD analysis. In each case, 1σ

denotes the most unstable mode based on the growth rate criteria. Growth rates and
frequency information for each mode are provided in each figure. Figures 27(e) and
27( f ) display the most prominent (highest growth rate) mode for cases C3 and D3,
respectively. The peak frequencies of both modes are higher in the high Reynolds
number case D3. Invariably, the first mode represents the growth of the vortex from
the separation bubble over the diverging channel. A second dominant mode holds a
frequency nearly equal to the second harmonic, indicating the second dominant peak
of the vorticity frequency spectra (figures 27g,h). An alternate pattern in the second
mode indicates the spanwise vortex roll-ups over the diverging region. In case D3, early
vortex development leads to continuous shedding mode, as shown in figure 27(h). DMD
results also point to the vortex shedding from the separation bubble in this period.
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Figure 27. DMD analysis of spanwise vorticity evolution: (a) Ritz circle (case C3), (b) Ritz circle (case D3).
Frequency versus growth rate: (c) case C3, (d) case D3. (e) First mode, case C3, ( f ) first mode, case D3,
(g) second mode, case C3, and (h) second mode, case D3).

Both analyses indicate two-dimensional vortex shedding characteristics, which later
disintegrate three-dimensionally during the zero mean inflow phase.

A consolidated comparison of temporal characteristics obtained from frequency spectra
with the results from DMD analysis is included in table 3. An average displacement
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Probe analysis DMD analysis

Case
ti

(s)
tf
(s)

Average
displacement

thickness (δ∗
avg)

Average
velocity

Uavg (m s−1)
Identified
frequency

Strouhal
number

Identified
frequency

Strouhal
number

C3 4.2 5.7 0.010540 0.050637 1.154 0.24 1.121 0.23
D3 3.6 5.1 0.008361 0.092127 1.875 0.17 1.762 0.16

Table 3. Temporal characteristics of vortex shedding due to unsteady separation.

thickness is calculated for the velocity profiles over the separation point and is denoted
as δ∗

avg. Similarly, an average velocity is calculated by taking the mean of the average
velocity of velocity profiles over the separation point (between ti and tf ). The Strouhal
number (St = f δ∗

avg/Uavg) is calculated for both probe analysis and DMD analysis by
using the average displacement thickness along with the average velocity. In the present
study, the unstable mode frequency scales with the viscosity length scales generally used
in boundary layer transition studies (Klebanoff, Cleveland & Tidstrom 1992; Bakchinov
et al. 1995), and identified Strouhal frequencies lie near 0.2. In light of the fact that only
2 out of 12 cases show periodic vortex shedding, the results are insufficient to support the
generalization of the Strouhal number relation.

7. Conclusion

We have investigated numerically the onset of turbulence in APG boundary layer
conditions in a diverging channel by imposing the analytical solution of trapezoidal
mean flow condition at the inlet of the computational domain to mimic the experimental
conditions of Das et al. (2016). The effects of flow Reynolds numbers and deceleration
Reynolds numbers are investigated systematically by varying the flow velocity and
deceleration rate. The flow transition initiates with the thickening of the boundary layer
followed by two-dimensional primary inflectional instability, which generally occurs in
the deceleration phase and subsequently leads to flow separation and shear layer roll-up
in the diverging section. Top wall boundary layers also exhibit inflectional instability,
resulting in vortex roll-ups identical to the bottom wall in later flow instances. At low
and medium Reynolds numbers, shear layer vortices remain two-dimensional, while
secondary instabilities initiate the formation of three-dimensional structures at high
Reynolds numbers. Based on the critical flow time flow associated with the initiation of
secondary instability and temporally averaged streamwise vorticity, we have classified the
flow evolution into three categories.

The first category (type I) occurs in low and moderate Reynolds number cases, which
exhibit two-dimensional flow evolution of vortex flow structures that advect and diffuse
during the zero mean inflow phase. The boundary layer growth occurs rapidly at high
deceleration rates, whereas the increase is gradual at low deceleration rates. However, the
time of flow separation and the vortex formation depend on the local Reynolds number
based on the displacement thickness (Re∗

δ ≈ 600 and 700, respectively). The emergence
of the primary vortices leads to a progressive increase in circulation in the initial stage;
after reaching a maximum during deceleration, the total circulation in the diverging
section declines as the wall vortices diminish and spanwise vorticity decreases. The vortex
structures maintain their two-dimensional nature during the zero inflow phase, whereas
the individual vorticity magnitude of primary vortices decreases by the vortex decay.
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In the second category (type II), a locally turbulent flow structure is evolved during
the zero mean inflow phase (t∗3D > 1) by the amplification of the spanwise oscillation
induced over the secondary vortex ejecting from the bottom wall. Similar to the former
category, the boundary layer grows temporally, and higher inflow velocity in these cases
leads to higher Reynolds numbers based on displacement thickness for flow separation
(Re∗

δ ≈ 940) and vortex formation (Re∗
δ ≈ 1070). In addition to identifying the structure

of the secondary instability using the λ2 criteria, we also observed alternate streamwise
vorticity developing over oscillations with an equivalent spanwise wavelength, which is
identical to the features of the elliptic instability developing in a counter-rotating pair.
We obtained additional information on the topology of unstable coherent flow structures
with comparable wavelengths by taking the mode with the highest growth rate from the
three-dimensional DMD analysis of streamwise vorticity. The instability characteristics of
the secondary vortex are investigated further by calculating the growth rate theoretically
using the parameters obtained from a Lamb–Oseen vorticity distribution identical to the
vorticity distribution of the vortex pair ejected from the bottom wall as calculated by
Leweke et al. (2016). In cases with a locally unstable secondary vortex, the first Kelvin
mode indicates an unstable nature, whereas the same analysis indicates a stable vortex
pair for former category cases (type I).

The third category (type III) is characterized by low deceleration and high inflow
velocity, which result in multiple shear layer roll-ups over the diverging section, and
vortex shedding due to unsteady separation from the initial diverging section during the
deceleration phase (t∗3D < 1). Identical to elliptic instability formation in the previous
category, the three-dimensional visualizations of the spanwise vorticity indicate an
oscillating secondary vortex in the vortex pair ejected from the initial diverging section
during the deceleration phase. Low deceleration induces a higher advective velocity for
flow structures, causing the spanwise vorticity roll-ups to pair over the diverging section,
similar to the pairing of co-rotating vortices as described in Rogers & Moser (1992). A
separation bubble, comprising spanwise vorticity rolls with opposite sense of rotations
developed due to unsteady separation, disintegrates at the end of the deceleration phase
and compares well with the observations of Wissink & Rodi (2006). From DMD analysis,
the most unstable mode identified by the highest growth rate exhibits an alternating pattern
of spanwise vorticity, which indicates vortex shedding due to unsteady separation. Also,
DMD analysis of spanwise vorticity yields frequency spectra that are in good agreement
with probe analysis of vorticity evolution.
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Appendix A. Inlet velocity profile – analytical solutions

For a unidirectional incompressible transient fluid flow without any body forces, the
momentum equation in the streamwise direction reduces to

∂u
∂t

= − 1
ρ

(
∂P
∂x

)
+ ν

(
∂2u
∂y2

)
, (A1)
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with the boundary conditions defined as

u(h, t) = u(−h, t) = 0 (no-slip), (A2)

u( y, 0) = 0,
∂(u(0, t))

∂y
= 0, (A3a,b)

∫ h

0
u( y, t) dy = up(t) h. (A4)

Analytical solution of fully developed laminar pulsating flow for variant volumetric flow
rate is obtained by converting (taking Laplace transform) governing partial differential
equations (A1)–(A4) with variable u(x, t) into an ordinary differential equation. The
ordinary differential equation is solved for ũ(x, s), and the function is inverted to yield
u(x, t) using the Bromwich integral formula. For single pulse cases, the analytical solutions
are

for 0 ≤ t ≤ t0,

u
Up

= 1
t0

(
A1t − KA2

40

)
− 2K

t0

∞∑
nh=1

(
exp

(
−v2

nht
K

))
× Ψ,

for t0 ≤ t ≤ t1,

u
Up

= A1 − 2K
t0

∞∑
nh=1

(
exp

(
−v2

nht
K

)
− exp

(
−v2

nh(t − t0)
K

))
× Ψ,

for t1 ≤ t ≤ t2,

u
Up

= A1

(
t2 − t
t2 − t1

)
+ KA2

40(t2 − t1)

− 2K
∞∑

nh=1

⎛
⎜⎜⎜⎜⎝

exp

(
−v2

nht
K

)
− exp

(
−v2

nh(t − t0)
K

)

t0
−

exp

(
−v2

nh(t − t1)
K

)

t2 − t1

⎞
⎟⎟⎟⎟⎠× Ψ,

for t > t2,

u
Up

= −2K
∞∑

nh=1

⎛
⎜⎜⎜⎜⎝

exp

(
−v2

nht
K

)
− exp

(
−v2

nh(t − t0)
K

)

t0

+
exp

(
−v2

nh(t − t2)
K

)
− exp

(
−v2

nh(t − t1)
K

)

t2 − t1

⎞
⎟⎟⎟⎟⎠× Ψ,

where A1 = 3
2
(1 − c2

h), A2 = 5c4
h − 6c2

h + 1, K = h2

ν
,

Ψ =
[

cos(chvnh) − cos(vnh)

v3
nh sin(vnh)

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)
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Here, h is the channel half-height, y is the distance from the centreline towards the wall
of the channel, ch = y/h, and vnh, nh = 1, 2, 3, . . . , ∞, are roots of tan(v) = v. The first
50 roots of tan(v) = v are used to obtain the sum of the above converging infinity series.
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