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Abstract
The time-global unique classical positive solutions to the reaction–diffusion equations for prey–predator models
with dormancy of predators are constructed. The feature appears on the nonlinear terms of Holling type II functional
response. The crucial step is to establish time-local positive classical solutions by using a new approximation asso-
ciated with time-evolution operators. Although the system does not equip usual comparison principle for solutions
to partial differential equation, a priori bounds are derived by enclosing and renormalising arguments of solu-
tions to the corresponding ordinary differential equations. Furthermore, time-global existence, invariant regions
and asymptotic behaviours of solutions follow from such a priori bounds.

1. Introduction

Some systems of reaction–diffusion equations have attracted much interest as a prototype model for
oscillation and pattern formation in the book by Murray [1] and the references therein. The main
purpose of this paper is to present mathematical tools for studying the positivity of solutions of reaction–
diffusion systems. So, we deal with the following reaction–diffusion equations in the whole space R

n

for n ∈N. ⎧⎪⎪⎨⎪⎪⎩
∂tu = δ�u + r (1 − u/k) u − γ uv/(u + h),

∂tv = d�v +μuv/(u + h) + αw − θv − ιv − βv2,

∂tw = νuv/(u + h) + θv − αw − ι̃w.

(LV)

This is a system of Lotka–Volterra type equations with diffusions. More precisely, this is a prey–predator
model with dormancy of predators in [2, 3]. Here, u := u(x, t), v := v(x, t) and w := w(x, t) stand for
the density of prey, the density of active predator and the density of dormant predator, respectively,
as the unknown scalar positive (or, nonnegative) functions at x ∈R

n and t> 0. To avoid effects from
boundaries, the Cauchy problem is considered, in what follows. We have denoted the nonnegative
constants by

δ the diffusion coefficient of prey
h the constant of foraging efficiency and handling time
d the diffusion coefficient of active predator
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α the rate of awakening
r the growth rate of prey
β the mortality rate by competitions of active predators
k the capacity of prey
ι̃ the mortality rate of dormant predator
γ the mortality rate of prey
ι the mortality rate of active predator
θ the rate of sleeping

Also, μ := μ(u) and ν := ν(u) are smooth positive functions of u denoting growth rates of active
and dormant predators, respectively. In some mathematical research, μ(u) is given as a sigmoid
function as

μ(u) := γ {1 + tanh ξ (u − η)}/2 ∈ (0, γ )

with some constants ξ and η, besides, ν(u) := γ −μ(u); see e.g. [2]. In addition, we have used the
notations of differentiation

∂t := ∂

∂t
, � :=

n∑
i=1

∂2
i with ∂i := ∂

∂xi

for i = 1, . . . , n.

By change of variables and constants, we may replace by δ = 1, k = 1, r = 1 and β = 1. For the
simplicity of notations, we put m := θ + ι, ρ := α + ι̃, in addition, assume that μ and ν are positive
constants independent of u. So, we consider the initial value problem:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu =�u + (1 − u)u − γ uv/(u + h) in R
n×(0, ∞),

∂tv = d�v +μuv/(u + h) + αw − (m + v)v in R
n×(0, ∞),

∂tw = νuv/(u + h) + θv − ρw in R
n×(0, ∞),

(u, v, w)
∣∣

t=0
= (u0, v0, w0) in R

n.

(P)

The bifurcation between stability and instability of stationary solutions to (LV) was concerned with
some specific parameters, associated with numerical investigation [3]. Furthermore, a numerical study
of Turing instability on (LV) was done [2]. Besides, in this paper, we focus on the mathematical theory
for the existence of time-global nonnegative unique classical solutions to (P) with nonnegative initial
data, invariant regions and asymptotic behaviours. To do so, we estimate a priori bounds for solutions
to (P) by enclosing and renormalising arguments of solutions to the corresponding ordinary differential
equations.

This paper is organised as follows. In Section 2, we will present the main results of this paper and
related works. In Section 3, we define function spaces and recall some properties of the heat semi-
group and time-evolution operators. Section 4 will be devoted to the proof of the time-local existence
of nonnegative unique classical solutions with nonnegative initial data. We will discuss the time-global
solvability in Section 5, deriving a priori estimates of solutions and their derivatives, due to renormal-
isation arguments. In Section 6, some invariant regions and asymptotic behaviours of solutions to (p)
will be argued.

Throughout this paper, we denote positive constants by C the value of which may differ from one
occasion to another.
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2. Main results

We will state the main results in this paper. For the definition and properties of the set of all bounded
and uniformly continuous functions BUC, see Section 3, as well as BUC1.

Theorem 1. Let n ∈N, d, h> 0, and let m, θ , ρ, α, γ , μ, ν ≥ 0. If u0, v0 ∈ BUC(Rn) and w0 ∈ BUC1(Rn)
are nonnegative, then there exists a nonnegative time-global unique classical solutions to (P).

Remark 1. (i) We can find at most five stationary constant states, including the trivial solution (0, 0, 0).
The trivial solution is always unstable, if u0 > 0. Besides, the stabilities of non-trivial constant states
depend on parameters; see Theorem 2 and Remark 4 in below. (ii) Even if μ and ν are positive smooth
functions of u, the same time-global solvability can be proved. Here, we may relax the condition γ =
μ+ ν, at least mathematically. (iii) In the case of d = 0, we may obtain the same assertion, whenever
v0 ∈ BUC1. (iv) When u0, v0 ∈ L∞, we may also get the similar assertion, although there is a lack of
continuity of solutions in t at t = 0.

We will explain the strategy of the proof of Theorem 1, briefly. Using the heat semigroups, (P) is
written as the forms of integral equations:

u(t) = et�u0 +
∫ t

0

e(t−s)�

[
(1 − u) u − γ uv

u + h

]
(s) ds, (1)

v(t) = edt�v0 +
∫ t

0

ed(t−s)�

[
μuv

u + h
+ αw − (m + v)v

]
(s) ds, (2)

w(t) = e−ρtw0 +
∫ t

0

e−ρ(t−s)

[
νuv

u + h
+ θv

]
(s) ds. (3)

Once we obtain the existence of solutions to (1)–(3), the uniqueness and the regularity of solutions follow
from these forms. However, it is not easy to get the existence of solutions, at least directly. Because, the
nonnegativity of solutions or its approximation seems to be not ensured, in general. In fact, the following
standard iteration scheme is often employed:

ū�+1(t) := et�u0 +
∫ t

0

e(t−s)�

[
(1 − ū�) ū� − γ ū�v̄�

ū� + h

]
(s) ds.

See, for example, the book by Smoller [7]. With this approximation, it is not clear how to show ū� >
−h for �≥ 2, unfortunately. Thus, we have to look for the another approximation or integral forms for
proving the existence of nonnegative solutions.

There are many mathematical articles to prove the existence of partial differential equation (PDE)
with the Holling type II nonlinear terms. As far as the authors know, the exiting techniques are as follows.

• Under the a priori assumption of the positivity of solutions or approximation, the existence of
solutions is easily proved. However, it is not clear how to get the positivity.

• Apply the fixed point theorem of the mapping in the set of positive functions K+ := {u, v, w> 0}.
However, we have to verify its domain and range in K+.

• Consider the modified system taking the absolute value to u or ū� in the denominator. To do so, we
obtain weak solutions. However, it is not clear how to show that the weak solutions satisfy (P) in the
classical sense, that is, u ∈ C((0, T); C2).

• By standard arguments, the corresponding ordinary differential equation (ODE) admit time-local
solutions. So, the solution to (P) is estimated from below by that to ODE. However, the comparison
principle can be applicable, after showing the existence of classical solutions.
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Each approach in above has a flaw. Hence, we employ the same sprits in [6]. To overcome difficul-
ties, we will construct the solutions as the limits of the following successive approximations of abstract
forms:

∂tu�+1 =�u�+1 −
(

u� + γ v�
u� + h

)
u�+1 + u�, u�+1|t=0 = u0,

∂tv�+1 = d�v�+1 − (m + v�) v�+1 + μu�v�
u� + h

+ αw�, v�+1|t=0 = v0,

∂tw�+1 = −ρw�+1 + νu�v�
u� + h

+ θv�, w�+1|t=0 = w0

for � ∈N. Our idea is to involve the coefficients of negative terms into the generators. We can rewrite
them as

u�+1(t) = U�(t, 0)u0 +
∫ t

0

U�(t, s)
[
u�

]
(s) ds, (4)

v�+1(t) = V�(t, 0)v0 +
∫ t

0

V�(t, s)

[
μu�v�
u� + h

+ αw�

]
(s) ds, (5)

w�+1(t) = e−ρtw0 +
∫ t

0

e−ρ(t−s)

[
νu�v�
u� + h

+ θv�

]
(s) ds (6)

for � ∈N. Here, we have used the time-evolution operators {U�(t, s)} and {V�(t, s)} associated with

A� := �− u� − γ v�/(u� + h) and B� := d�− m − v�

for regarding u�, v� and w� as given nonnegative functions, respectively, starting at

u1(t) := et�u0, v1(t) := et(d�−m)v0 and w1(t) := e−ρtw0. (7)

The precise definition and estimates of time-evolution operators are given in Section 3. These approx-
imations enable us to show the nonnegativities of u�, v� and w� for all � ∈N, as well as its limit u, v
and w. We will derive the estimates ‖u�, v�, w�‖∞ by (4)–(6), inductively, in the fixed point arguments.
Besides, for estimates ‖∂iu�, ∂iv�, ∂iw�‖∞, we apply the heat semigroup representation of solutions. Once
we derive uniform bounds of u�, v�, w�, ∂iu�, ∂iv� and ∂iw�, we can easily see that the limit (u, v, w)
becomes a classical solution to (P).

On the other hand, it is rather standard to extend the obtained solutions time-globally, deriving a
priori estimates of solutions. The key idea is to apply the maximum principle to the classical solutions.
We can also investigate asymptotic behaviours of solutions, more precisely. Via analysis of solutions to
the system of corresponding ODE, we obtain invariant regions.

Before stating results, we provide two stationary solutions. It is easy to verify that (1, v, w) is a
stationary solution to (P), where

v := μ/(1 + h) + α(ν + θ + θh)/(ρ + ρh) − m,

w := (ν + θ + θh)v/(ρ + ρh).

Furthermore, (u, v, w) is also a stationary solution to (P), where

u := (1 − h)/2 + √
(1 + h)2 − 4γ v/2,

v := μu/(u + h) + ανu/(ρu + ρh) + αθ/ρ − m,

w := νu v /(ρu + ρh) + θv /ρ.

Theorem 2. Assume that (u, v, w) is a solution to (P). (i) If v ≤ 0, and if u0 	≡ 0, then (u, v, w) → (1, 0, 0)
as t → ∞. Besides, if u0 ≡ 0, then (u, v, w) → (0, 0, 0) as t → ∞. (ii) If v> 0, then for any 0< ε << 1,
there exists a Tε ≥ 0 such that

(u, v, w) ∈ Rε := [0, 1 + ε) × [0, v + ε) × [0, w + ε)
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for x ∈R
n and t ≥ Tε. Moreover,

(u0, v0, w0) ∈ R∗ := [0, 1] × [0, v] × [0, w] ⇒ (u, v, w) ∈ R∗

for x ∈R
n and t> 0. (iii) Let v> 0, u> 0, v> 0, and let w> 0. If u, v, w ≥ c� for x ∈R

n at t = t� ≥ 0
with some c� > 0, then for 0< ε << 1, there exists a T ′

ε
≥ t� such that

(u, v, w) ∈ R′
ε

:= (u − ε, 1 + ε) × (v − ε, v + ε) × (w − ε, w + ε)

for x ∈R
n and t ≥ T ′

ε
. Moreover,
(u0, v0, w0) ∈ R� := [u, 1] × [v, v] × [w, w] ⇒ (u, v, w) ∈ R�

for x ∈R
n and t> 0.

The sets R∗ and R� are invariant regions. The reader may find another (narrower) invariant regions
for each individual parameter. Theorem 2 implies that an absorbing set always exists in R∗ or R�. Our
conjecture is that we can also obtain the similar results in several domains with suitable boundary
conditions.

3. Semigroups and time-evolution operators

In this section, we recall the definitions of function spaces and properties of the heat semigroup, as well
as time-evolution operators.

Let n ∈N, 1 ≤ p<∞, and let Lp := Lp(Rn) be the space of all pth integrable functions in R
n with

the norm ‖f ‖p :=
(∫

Rn

|f (x)|pdx

)1/p

. We often omit the notation of the domain (Rn), if no confusion

occurs. We do not distinguish scalar-valued functions and vector, as well as function spaces. Let L∞ be
the space of all bounded functions with the norm ‖f ‖ := ‖f ‖∞ := ess.supx∈Rn |f (x)|; BUC as the space
of all bounded uniformly continuous functions. Note that Lp, L∞ and BUC are Banach spaces. For k ∈
N, let Wk,∞ be a set of all bounded functions whose k-th derivatives are also bounded. Furthermore,
define

BUCk := {
f ∈ Wk,∞; ∂ j

i f ∈ BUC for 1 ≤ i ≤ n, 0 ≤ j ≤ k
}
.

In the whole space Rn, for ϑ0 ∈ L∞(Rn), the heat equation{
∂tϑ =�ϑ in R

n×(0, ∞),

ϑ |t=0 = ϑ0 in R
n

(H)

admits a time-global unique smooth solution

ϑ := ϑ(t) := ϑ(x, t) := (et�ϑ0)(x) := (Ht ∗ ϑ0)(x)

:=
∫
Rn

(4π t)−n/2 exp (−|x − y|2/4t)ϑ0(y)dy

in Cw((0, ∞); L∞(Rn)), that is, ϑ ∈ C([τ , ∞); L∞(Rn)) for any small τ > 0. Here, Ht := Ht(x) :=
(4π t)−n/2 exp (−|x|2/4t) is the heat kernel. Since ‖Ht‖1 = 1 for t> 0, by Young’s inequality we have
‖ϑ(t)‖ ≤ ‖Ht‖1‖ϑ0‖ = ‖ϑ0‖ for t> 0. In particular, if ϑ0(x) ≥ 0 for x ∈R

n, then ϑ(x, t) ≥ 0 holds true
for x ∈R

n and t> 0, so-called the maximum principle. Furthermore, if additionally ϑ0 ∈ BUC(Rn) and
ϑ0 	≡ 0, then ϑ(x, t)> 0 for x ∈R

n and t> 0, so-called the strong maximum principle. For ϑ0 ∈ L∞(Rn),
there is a lack of the continuity of solutions to (H) in time at t = 0, in general. Note that et�ϑ0 → ϑ0 in
L∞ as t → 0, if and only if ϑ0 ∈ BUC(Rn). The reader may find its proof in [5]. Indeed, if ϑ0 ∈ BUC(Rn),
then ϑ ∈ C([0, ∞); BUC(Rn)).

We can easily see that for j ∈N, splitting the heat semigroup into j-th parts, there exists a positive
constant C� := π−1/2 < 1 such that

‖∂ j
i e

t�ϑ0‖ = ‖
(
∂ie

t
j�

)
· · ·

(
∂ie

t
j�

)
ϑ0‖ ≤ Cj

� jj/2 t−j/2‖ϑ0‖
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for t> 0 and 1 ≤ i ≤ n. So, ϑ(t) ∈ BUCj(Rn) for any j ∈N and t> 0, which implies that ϑ(t) ∈ C∞(Rn)
for t> 0. Moreover, ϑ ∈ C∞(Rn × (0, ∞)) by using (H).

In what follows, we recall some properties and estimates for time-evolution operators. Let us consider
the following autonomous Cauchy problem with non-constant coefficients.{

∂tϕ = d�ϕ −ψ(x, t)ϕ in R
n×(0, ∞), (PA)

ϕ|t=0 = ϕ0 in R
n.

Here, d> 0 is a constant, andψ(x, t) is a given bounded function. We establish the time-local solvability
of (PA) with upper bounds of ϕ.

Lemma 1 ([6]). Let n ∈N, d, T > 0 and ψ ∈ L∞([0, T]; W1,∞(Rn)). If ϕ0 ∈ BUC(Rn), then there exist

a T∗ ∈ (0, T] and a time-local unique classical solution to (PA), having ‖ϕ(t)‖ ≤ 4

3
‖ϕ0‖ for t ∈ [0, T∗].

Moreover, if ϕ0 ≥ 0, then ϕ ≥ 0.

Although the proof is written in [6], we give it here. The idea is to use the standard iteration. Let
ϕ1(t) := edt�ϕ0, and let

ϕ�+1(t) := edt�ϕ0 −
∫ t

0

ed(t−s)� [ψϕ�] (s) ds

for each � ∈N, successively. It is easy to see that for � ∈N, ‖ϕ�(t)‖ ≤ 4

3
‖ϕ0‖ for t ∈ [0, T∗] with some

T∗ > 0 independent of �. We can easily show that {ϕ�}∞
�=1 is a Cauchy sequence in C([0, T∗]; BUC(Rn)).

So, the limit ϕ := lim�→∞ ϕ� exists and satisfies (PA), having the estimate ‖ϕ(t)‖ ≤ 4

3
‖ϕ0‖ for t ∈ [0, T∗].

It is rather straightforward to obtain the uniqueness and regularity of ϕ. Moreover, the nonnegativity of
ϕ easily follows from the maximum principle.

Note that if ‖ϕ0‖ ≤ L and sup0≤t≤T‖ψ(t)‖ ≤ L with some L> 0, then we may derive the estimate T∗ ≥
C/L with C> 0. The solution to (PA) can be rewritten as ϕ(t) = U(t, 0)ϕ0, using time-evolution operators
{U(t, s)}t≥s≥0 associated with A := A(x, t) := d�−ψ(x, t), see the book by Tanabe [8]. The boundedness
of solutions ϕ implies that ‖U(t, 0)‖L∞→L∞ ≤ 4/3 for t ∈ [0, T∗], and then ‖U(t, s)‖L∞→L∞ ≤ 4/3 for 0 ≤
s ≤ t ≤ T∗. Here, we have used the notation of an operator-norm ‖O‖X→Y := supx∈X‖Ox‖Y/‖x‖X .

4. Time-local solvability

We give a proof of the time-local solvability on (P) in this section. Recall ‖ · ‖ := ‖ · ‖∞, and put M :=
max{‖u0‖, ‖v0‖, ‖w0‖, ‖∂iw0‖}.
Proposition 1. Let n ∈N, d> 0, and let those other parameters be nonnegative. Assume that u0, v0 ∈
BUC(Rn) and w0 ∈ BUC1(Rn) are nonnegative, then there exist a T0 > 0 and a time-local unique classical
solutions to (P), having 0 ≤ u, v, w ≤ 2M for x ∈R

n and t ∈ [0, T0]. Furthermore, T0 ≥ C∗/(M4 + 1) holds
with some constant C∗ > 0 independent of M.

Proof . For the sake of simplicity, we assume that all parameter is positive. Making the approximation
sequences, we begin with (7). For � ∈N, we successively define u�+1, v�+1 and w�+1 by (4)–(6). So, u�+1,
v�+1 and w�+1 also satisfy their abstract equations for x ∈R

n and t> 0 with nonnegative functions u0, v0,
w0, u�, v� and w�, formally.

In what follows, we estimate u�, v�, w�, ∂iu�, ∂iv� and ∂iw�. Put

K1,� := sup0≤t≤T‖u�(t)‖, K2,� := sup0≤t≤T‖v�(t)‖,

K3,� := sup0≤t≤T‖w�(t)‖, K4,� := sup0≤t≤T t1/2‖∂iu�(t)‖,

K5,� := sup0≤t≤T(dt)1/2‖∂iv�(t)‖, K6,� := sup0≤t≤T‖∂iw�(t)‖
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for T > 0, � ∈N and 1 ≤ i ≤ n. To derive uniform estimates, we argue the induction of �, taking T small.
�= 1 For 0 ≤ u0(x), v0(x), w0(x) ≤ M, by the maximum principle and the fact that et(d�−m) = e−mtedt�,

we can easily see that

0 ≤ u1(x, t) ≤ ‖u0‖, 0 ≤ v1(x, t) ≤ ‖v0‖, 0 ≤ w1(x, t) ≤ ‖w0‖
for x ∈R

n and t> 0 by m, ρ ≥ 0. In addition, it is easy to obtain that

t1/2‖∂iu1(t)‖ ≤ ‖u0‖, (dt)1/2‖∂iv1(t)‖ ≤ ‖v0‖, ‖∂iw1(t)‖ ≤ ‖∂iw0‖
for t> 0 and 1 ≤ i ≤ n by the estimate of the heat kernel. Here and hereafter, we replace the constant
C� := π−1/2 < 1 by 1, for the sake of simplicity. Thus, we have

Kj,1 ≤ M for T > 0, 1 ≤ j ≤ 6 and 1 ≤ i ≤ n. (8)

�= 2 Before estimating u2 and v2, we will confirm bounds for time-evolution operators U1 and V1.
By u1 ≥ 0 and (8), it holds that

‖η1(t)‖ ≤ M + γM

h
=: η1 with η1(x, t) := u1(x, t) + γ v1(x, t)

u1(x, t) + h

for t> 0. By Lemma 1, for {U1(t, s)}t≥s≥0 with A1(x, t) := �− η1(x, t), we thus see that 0 ≤ U1(t, s)u0 ≤
4

3
‖u0‖ for x ∈R

n and 0 ≤ s ≤ t ≤ T ′
2 with some T ′

2 > 0 depending only on η1. By (4) with �= 1, we have

0 ≤ u2(t) ≤ ‖U1(t, 0)u0‖ +
∫ t

0

‖U1(t, s)ζ1(s)‖ds ≤ 2M

with ζ1(x, t) := u1(x, t) and 0 ≤ ζ1(x, s) ≤ ζ 1 := M, provided 0 ≤ s ≤ t ≤ T†
2 with T†

2 := min{T ′
2, 1/2}.

Similarly, since

‖ξ1(t)‖ ≤ m + M =: ξ 1 with ξ1(x, t) := m + v1(x, t)

for x ∈R
n and t> 0, we may define the time-evolution operator {V1(t, s)}t≥s≥0 associated with B1(x, t) :=

d�− ξ1(x, t), having a uniform bound. Applying Lemma 1, we see that 0 ≤ V1(t, s)v0 ≤ 4

3
‖v0‖ for 0 ≤

s ≤ t ≤ T�

2 with some T�

2 > 0 depending only on ξ 1. By (5)

0 ≤ v2(t) ≤ ‖V1(t, 0)v0‖ +
∫ t

0

‖V1(t, s)χ1(s)‖ds ≤ 2M

hold with χ1(x, t) := μu1(x, t)v1(x, t)/{u1(x, t) + h} + αw1(x, t) and 0 ≤ χ1(x, s) ≤ χ 1 := (μM/h + α)M,
provided if 0 ≤ s ≤ t ≤ T �

2 with T �

2 := min{T†
2 , T�

2 , h/(2μM + 2αh)}. For the estimate of w2, we obtain

0 ≤ w2(t) ≤ ‖e−ρtw0‖ +
∫ t

0

e−ρ(t−s)‖νu1v1/(u1 + h) + θv1‖ds ≤ 2M

for 0 ≤ s ≤ t ≤ T �

2 with T �

2 := min{T �

2, h/(νM + hθ )}. To derive the estimate for ∂iu2, we use the heat
semigroup expression:

u2(t) = et�u0 +
∫ t

0

e(t−s)� [ζ1 − η1u2] (s) ds

by rewriting (4). Hence, it holds that

t1/2‖∂iu2(t)‖ ≤ ‖u0‖ + t1/2

∫ t

0

(t − s)−1/2
[
ζ 1 + η1‖u2‖

]
ds ≤ 2M
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for t ∈ (0, T♥
2 ] with T♥

2 := min
{
T �

2, h/(2h + 4hM + 4γM)
}
. As the similar way, for ∂iv2, we appeal to

the heat semigroup expression again:

(dt)1/2‖∂iv2(t)‖ ≤ (dt)1/2‖∂ie
dt�v0‖

+ (dt)1/2

∫ t

0

‖∂ie
d(t−s)� [χ1 − ξ1v2] (s)‖ds

≤ ‖v0‖ + t1/2

∫ t

0

(t − s)−1/2
[
χ 1 + ξ 12M

]
ds

≤ 2M

for t ∈ (
0, T♦

2

]
with T♦

2 := min
{
T♥

2 , h/(2μM + 2αh + 4hm + 4hM)
}
. Furthermore,

∂iw2(t) = e−ρt∂iw0 +
∫ t

0

e−ρ(t−s)

[
νh(∂iu1)v1 + νu1(∂iv1)(u1 + h)

(u1 + h)2
+ θ∂iv1

]
ds

holds true, and this implies that

‖∂iw2(t)‖ ≤ M +
∫ t

0

{
νh

√
dM + νM(M + h)

h2
+ θ

}
M(ds)−1/2ds

≤ 2M

for t ∈ [0, T2] with

T2 := min

{
T♦

2 , dh4/
[
4νh

√
dM + 4νM2 + 4νhM + 4h2θ

]2
}

.

Therefore, it is shown that u2, v2, w2 ≥ 0 and

Kj,2 ≤ 2M for t ∈ (0, T2], 1 ≤ j ≤ 6 and 1 ≤ i ≤ n. (9)

�= 3 We stand for the time-evolution operator {U2(t, s)}t≥s≥0 associated with A2(x, t) := �− η2(x, t)
and

η2(x, t) := u2(x, t) + γ v2(x, t)/{u2(x, t) + h}.
By Lemma 1, U2(t, s)u0 ≥ 0 holds and ‖U2(t, s)‖L∞→L∞ ≤ 4/3 for 0 ≤ s ≤ t ≤ T ′

3 with some T ′
3 > 0, since

0 ≤ η2(x, t) ≤ η := 2M + 2γM/h by (9). So, we get

0 ≤ u3(x, t) ≤ ‖U2(t, 0)u0‖ +
∫ t

0

‖U2(t, s)ζ2(s)‖ds ≤ 2M

for x ∈R
n and t ∈ [0, T†

3 ] with T†
3 := min{T ′

3, 1/4}. Here, we used that

0 ≤ ζ2(x, t) := u2(x, t) ≤ ζ := 2M.

Similarly, we denote the time-evolution operator by {V2(t, s)}t≥s≥0 associated with B2(x, t) := d�−
ξ2(x, t), where

0 ≤ ξ2(x, t) := m + v2(x, t) ≤ ξ := m + 2M.

We seek that V2(t, s)v0 ≥ 0 and ‖V2(t, s)‖L∞→L∞ ≤ 4/3 for 0 ≤ s ≤ t ≤ T�

3 with some T�

3 > 0 by Lemma 1.
Hence, we can see that

0 ≤ v3(x, t) ≤ ‖V2(t, 0)v0‖ +
∫ t

0

‖V2(t, s)χ2(s)‖ds ≤ 2M

for x ∈R
n and t ∈ [0, T �

3] with T �

3 := min{T†
3 , T�

3 , h/(8μM + 4αh)}. Here, we have used

0 ≤ χ2(x, t) := μu2(x, t)v2(x, t)/{u2(x, t) + h} + αw2(x, t)

≤ χ := 4μM2/h + 2αM
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by (9). It is also easy to show that

0 ≤ w3(x, t) ≤ ‖w0‖ +
∫ t

0

‖νu2v2/(u2 + h) + θv2‖ds ≤ 2M

for x ∈R
n and t ∈ [0, T �

3] with T �

3 := min{T �

3, h/(4νM + 2hθ )}. By the heat semigroup expression, we
obtain that

t1/2‖∂iu3(t)‖ ≤ ‖u0‖ + t1/2

∫ t

0

(t − s)−1/2 [‖ζ2‖ + ‖η2u3‖] ds ≤ 2M

for t ∈ (0, T♥
3 ] with T♥

3 := min{T �

3, h/(4h + 8hM + 8γM)}. As the similar way, we derive

(dt)1/2‖∂iv3(t)‖ ≤ ‖v0‖ + t1/2

∫ t

0

(t − s)−1/2 [‖χ2‖ + ‖ξ2v3‖] ds ≤ 2M

for t ∈ (0, T♦
3 ] with T♦

3 := min{T♥
3 , h/(4hm + 8hM + 8μM + 4αh)}. For ∂iw3, see

‖∂iw3(t)‖ ≤ M +
∫ t

0

∥∥∥∥νh(∂iu2)v2 + νu2(∂iv2)(u2 + h)

h2
+ θ∂iv2

∥∥∥∥ ds

≤ 2M

for t ∈ (0, T0] with

T0 := min

{
T♦

3 , dh4/
[
8νh

√
dM + 16νM2 + 8νhM + 4h2θ

]2
}

.

Note that the estimate T0 ≥ C/(M4 + 1) is yielded with some C> 0.
Therefore, we see that u3, v3, w3 ≥ 0 and

Kj,3 ≤ 2M for t ∈ (0, T0], 1 ≤ i ≤ n and 1 ≤ j ≤ 6.

�= 4, 5, . . . Let �≥ 4. We assume that u�, v�, w� ≥ 0 and

Kj,� ≤ 2M for t ∈ (0, T0], 1 ≤ j ≤ 6 and 1 ≤ i ≤ n (10)

hold true. We will compute estimates for u�+1, v�+1 and w�+1. Note that η� ≤ η, ζ� ≤ ζ , ξ� ≤ ξ and χ� ≤ χ
hold, independently of �≥ 3. So, as the same discussion in the case �= 3 above, we can see that u�+1,
v�+1, w�+1 ≥ 0 and

Kj,�+1 ≤ 2M for t ∈ (0, T0], 1 ≤ j ≤ 6 and 1 ≤ i ≤ n.

The detail is omitted here. Hence, the nonnegativities of approximations and (10) hold true for all � ∈N.
We can see that u�, v� and w� are continuous in t ∈ [0, T0] for � ∈N. And also, it is easy to see that{

u�, v�, w�, t1/2∂iu�, t1/2∂iv�, ∂iw�

}∞
�=1

are Cauchy sequences in C([0, T0]; BUC), choosing T0 small again,
if necessary. Let

(u, v, w, û, v̂, ŵ) := lim
�→∞

(
u�, v�, w�, t1/2∂iu�, t1/2∂iv�, ∂iw�

)
in the topology of C([0, T0]; BUC). Obviously, the coincidences û = t1/2∂iu, v̂ = t1/2∂iv and ŵ = ∂iw hold
by construction. Furthermore, it is also ensured that

0 ≤ u(x, t), v(x, t), w(x, t) ≤ 2M for x ∈R
n and t ∈ [0, T0].

The uniqueness follows from (1)–(3) and Gronwall’s inequality, directly. If fact, let (u, v, w) and
(u∗, v∗, w∗) be solutions to (P) in [0, T0] with the same initial data, then u ≡ u∗, v ≡ v∗ and w ≡ w∗

simultaneously hold. Thanks to the boundedness of the first derivatives, it is easy to control the sec-
ond derivatives in x of u and v for t ∈ (0, T0], as well as the first derivatives in t of solutions. So, we see
that (u, v, w) is a time-local unique classical solution to (P). This completes the proof of Proposition 1.

Remark 2. (i) (u, v, w) is smooth in x and t, if w0 is smooth.(ii) The instability of the trivial solution
(0, 0, 0) is easily obtained with u0 	≡ 0. Moreover, by strong maximum principle for solutions to the heat
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equation, u> 0 for x ∈R
n and t ∈ (0, T0]. This means that supp u(t) =R

n for any small t> 0, even if
supp u0 is compact. That is, the propagation speed of solutions to (P) is infinite, as the same as the heat
equation. In addition, v> 0 and w> 0 for x ∈R

n and t> 0, if either v0 	≡ 0 or w0 	≡ 0.

5. Global well-posedness

In this section, we will derive a priori bounds of solutions and their derivatives. To do so, our first task
is to obtain upper bounds of solutions to (P) with large initial data. For the case when ‖u0‖ ≤ 1, we will
discuss in Remark 3 (ii) below and Section 6.

Proposition 2. Suppose the assumption of Proposition 1. If ‖u0‖> 1, then 0< u< ‖u0‖, 0 ≤ v ≤ ṽ, and
0 ≤ w ≤ w̃ hold for x ∈R

n and t> 0 with some positive constants ṽ and w̃ depending on ‖u0‖, ‖v0‖ and
‖w0‖, as long as the classical solutions exist.

If v0 ≡ 0 and w0 ≡ 0, then v ≡ w ≡ 0 for t> 0. Assume either v0 	≡ 0 or w0 	≡ 0. So, as seen in
Remark 2 (iii), we have u, v, w> 0. For observing the behaviour of u, we consider the following logistic
equation:

κ ′ = (1 − κ)κ , κ(0) = κ0 > 1, (11)

where κ0 = ‖u0‖. By maximum principle, u(x, t) ≤ κ(t) holds for x ∈R
n and t> 0, as long as the classical

solution u exists. Since

κ(t) = κ0/
(
κ0 + e−t − κ0e

−t
)
< κ0

for t> 0, it is clear that u< κ0.
Next, we investigate on upper bounds of v and w. We will use renormalising arguments to ODE. Let

a pair σ = σ (t) and ω=ω(t) be solutions to{
σ ′ = αω− (m� + σ )σ , σ (0) = σ0 := ‖v0‖,

ω′ = θ�σ − ρ ω, ω(0) =ω0 := ‖w0‖.
(12)

Here, m� := m −μκ0/(κ0 + h) and θ� := θ + νκ0/(κ0 + h). Since (eρtω)′ = θ�eρtσ , we have

ω(t) = e−ρtω0 + e−ρtθ�

∫ t

0

eρsσ (s)ds ≤ω0 + (θ�/ρ) sup0≤s≤t σ (s)

for t> 0. Inserting it into the first equation of (12), it holds that

σ ′ ≤ α {
ω0 + (θ�/ρ)sup0≤s≤tσ (s)

} − m�σ − σ 2

for t> 0. Therefore, we can see that σ (t)< ṽ := max{σ0, σ̄ } + 1 for t> 0, where

σ̄ := αθ�/2ρ − m�/2 + √
αω0 + (αθ�/ρ − m�)2/4.

Note that σ̄ satisfies α(ω0 + (θ�/ρ)σ̄ ) − m�σ̄ − σ̄ 2 = 0. Indeed, if there exists some t� > 0 such that
σ (t�) = ṽ ≥ σ̄ + 1 and σ (t)< ṽ for t ∈ [0, t�), then σ ′(t�) ≥ 0. This contradicts σ ′(t�)< 0. We can similarly
deduce ω(t) ≤ w̃ holds for t> 0, where w̃ := max{ω0, θ�̃v/ρ} + 1.

We will use enclosing arguments, that is, applying the comparison principle between solutions to
PDE and those to ODE. Put V := σ − v and W := ω− w. Hence, V(0) ≥ 0 and W(0) ≥ 0. Also, we see

∂tV = d�V + αW − mV +μκ0σ/ (κ0 + h)−μuv/(u + h) − σ 2 + v2

= d�V + αW − (m + σ + v) V

+ μ

(κ0 + h)(u + h)

[
(u + h)κ0V + hv(κ0 − u)

]
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and

∂tW = θV − ρW + νκ0σ/ (κ0 + h)− νuv/(u + h)

= θV − ρW + ν

(κ0 + h)(u + h)

[
(u + h)κ0V + hv (κ0 − u)

]
.

We thus find the fact that V ≥ 0 and W ≥ 0 for t> 0, as the same discussion in the proof of Proposition 1.
This implies that

v(x, t) ≤ σ (t), w(x, t) ≤ω(t) (13)

for x and t. Therefore, we conclude that 0 ≤ v ≤ ṽ and 0 ≤ w ≤ w̃.

Remark 3. (i) By definitions of v and w, it is clear that ṽ ≥ v and w̃ ≥ w, if |u0‖ ≥ 1. Besides, ṽ ≤ v and
w̃ ≤ w, if |u0‖ ≤ 1, ‖v0‖ ≤ v and ‖w0‖ ≤ w; see Section 6. (ii) Even if ‖u0‖ ≤ 1, then uniform bounds
on v and w are obtained; v ≤ ṽ and w ≤ w̃ hold, replacing m� by m1 := m −μ/(1 + h) and θ� by θ1 :=
θ + ν/(1 + h). (iii) Although we take the maximum values of solutions to ODE (12) by the comparison
method (finding t as σ ′(t) = 0 or ω′(t) = 0), such critical points do not always give the maximum values
of solutions to PDE, in general. Hence, we have to use enclosing and renormalising arguments in above.

In what follows, we give the a priori estimate for ‖∂iw(t)‖, which may grow in t. As seen in
Proposition 2, and by using definitions of v and w in Theorem 2, we prove that 0 ≤ u, v, w ≤ N as long
as the classical solutions exist, if N is chosen as

N := max
{
1, ‖u0‖, v, ṽ, ‖v0‖, w, w̃, ‖w0‖

}
. (14)

Proposition 3. Let T , N > 0. If 0 ≤ u, v, w ≤ N for x ∈R
n and t ∈ [0, T], then there exists a C> 0

independent of N and T such that

‖∂iw(t)‖ ≤ ‖∂iw0‖ + C
(
N4 + N

) (
t1/2 + t3/2

)
, t ∈ [0, T], 1 ≤ i ≤ n.

We first derive the estimate for ∂iu. By (1), we have

‖∂iu(t)‖ ≤ ‖u0‖t−1/2 +
∫ t

0

(t − s)−1/2

∥∥∥∥(1 − u)u − γ uv

u + h

∥∥∥∥ ds

≤ C
(
N2 + N

) (
t−1/2 + t1/2

)
for t ∈ [0, T] and 1 ≤ i ≤ n with some C. Similarly, by (2), we seek

‖∂iv(t)‖ ≤ ‖v0‖(dt)−1/2+
∫ t

0

(dt − ds)−1/2

∥∥∥∥ μuv

u + h
+αw − (m + v)v

∥∥∥∥ds

≤ C
(
N2 + N

) (
t−1/2 + t1/2

)
with some C. Finally, by (3) and estimates above, it turns out that

‖∂iw(t)‖ ≤ ‖∂iw0‖ +
∫ t

0

∥∥∥∥νh(∂iu)v + νu(∂iv)(u + h)

(u + h)2
+ θ∂iv

∥∥∥∥ ds

≤ ‖∂iw0‖ + C
(
N4 + N

) ∫ t

0

(
s−1/2 + s1/2

)
ds

≤ ‖∂iw0‖ + C
(
N4 + N

) (
t1/2 + t3/2

)
for t ∈ [0, T] and 1 ≤ i ≤ n with some positive constant C depending on parameters, however, indepen-
dent of N and T .

Note that the proof of Theorem 1 is now complete. In fact, Theorem 1 follows from Propositions 1,
2, 3 and T0 ≥ C∗/(M4 + 1) in Proposition 1, since we can extend the obtained unique classical solutions
time-globally, repeating the construction.
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6. Invariant regions

This section will be devoted to observing invariant regions. The proof of Theorem 2 (i) is easy, since
(1, 0, 0) is only one stable constant state. So, we skip it here.

We are now in position to give a proof of Theorem 2 (ii). The key step is to deduce a priori bounds of
solutions, due to the maximum principle and comparison with solutions to the system of corresponding
ordinary differential equations of κ , σ and ω given by (11) and (12). Let us recall the assumptions:

v := μ/(1 + h) + α(ν + θ + θh)/(ρ + ρh) − m> 0,

w := (ν + θ + θh)v/(ρ + ρh)> 0

and R∗ := [0, 1] × [0, v] × [0, w].

Proof . We first show that R∗ is an invariant region. Let (u0, v0, w0) ∈ R∗. By construction of time-local
solutions in Proposition 1, the nonnegativity of solutions is clarified. Note that (0, 0, 0) and (1, 0, 0) are
classical solutions in R∗. If u0 ≡ 0, then u ≡ 0, in addition, v ∈ [0, v] and w ∈ [0, w], since v� := αθ/ρ −
m ≤ v and w� := θ (αθ − mρ)/ρ2 ≤ w. Also, it is easy to see that v ≡ 0 and w ≡ 0 hold for t> 0, provided
if v0 ≡ 0 and w0 ≡ 0.

Let u0 	≡ 0 and either v0 	≡ 0 or w0 	≡ 0. As seen in Remark 2 (iii), it is clear that the classical solutions
u, v, w never touch 0, as long as they exist. Moreover, with u0 ≤ 1, we observe that u(τ )< 1 for small τ >
0 by the strong maximum principle. Similarly, it turns out that v(τ )< v by v0 ≤ v, as well as w(τ )<w.
So, regarding τ as the initial time, we can assume (u0, v0, w0) ∈ R◦

∗ := (0, 1) × (0, v) × (0, w) = R∗ \ ∂R∗,
without loss of generality.

Put t̂ ∈ (0, T0] is the first time when u touches 1 at x̂ ∈R
n. We may assume |x̂|<∞ by Oleinik’s

argument on the maximum principle; see e.g. [4]. Since u(x̂, t̂) = 1 is the local maximum, at (x̂, t̂) we
see that ∂tu ≥ 0, �u ≤ 0, (1 − u)u = 0 and −γ uv/(u + h)< 0 by v> 0. This contradicts to that u is a
solution to (P). Hence, u never touches 1.

The same argument works on v and w. Indeed, let 0< u< 1, 0<w<w, and if there exists (x̌, ť) ∈
R

n × (0, T0] such that ť is the first time when v touches v at x̌. So, at (x̌, ť), we see that ∂tv ≥ 0, d�v ≤ 0
and

μuv

u + h
+ αw − (m + v)v<

μv

1 + h
+ αw − (m + v) v = 0.

So, v never touches v. As the same as above, we can confirm that w never touches w as long as classical
solutions exist. This means that the solutions always remain in R◦

∗.
Next, we show the asymptotic behaviour of solutions, briefly. Even if ‖u0‖> 1, by u(x, t) ≤ κ(t), then

there exists a T∗
ε
> 0 such that ‖u(t)‖< 1 + ε for t> T∗

ε
. From this and the comparison v(x, t) ≤ σ (t),

there exists T�
ε
> T∗

ε
such that ‖v(t)‖< v + ε for t> T�

ε
. Finally, we can also show that there exists Tε > T�

ε

such that ‖w(t)‖<w + ε for t> Tε, by the similar way. This completes the proof of Theorem 2 (ii).

The proof of Theorem 2 (iii) is essentially similar to above. So, we omit it here.

Remark 4. The stability of non-trivial constant states to the system of corresponding ODE can be easily
obtained. For example, if

μ= ν = γ

2
, m = θ = 0, α = ρ = 1

4
, γ = h + 1

2

are chosen, then the bifurcation occurs, that is, the stability of a constant state (u, v, w) = (1/2, 1/2, 1/2)
is changed in h at 0. Indeed, the constant state (1/2, 1/2, 1/2) is stable for any h> 0, while this is
unstable for any −1/2< h< 0. The authors believe that such stability is still valid for solutions to (P).
For studying the Turing instability, we need to deal with more complicated situation, for example, when
μ and ν are sigmoid functions of u.
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