ON CERTAIN DUAL INTEGRAL EQUATIONS

by E. T. COPSON (Received 20 May, 1960)

1. In his book on Fourier Integrals, Titchmarsh [1] gave the solution of the dual integral equations

$$\int_0^\infty \xi^{2a} \psi(\xi) J_{\nu}(\xi \rho) d\xi = f(\rho) \quad (0 < \rho < 1), \tag{1}$$

$$\int_{0}^{\infty} \psi(\xi) J_{\nu}(\xi) d\xi = 0 \quad (\rho > 1), \tag{2}$$

for the case $\alpha > 0$, by some difficult analysis involving the theory of Mellin transforms. Sneddon [2] has recently shown that, in the cases $\nu = 0$, $\alpha = \pm \frac{1}{2}$, the problem can be reduced to an Abel integral equation by making the substitution

$$\psi(\xi) = \xi \int_0^1 \phi(t) \cos(\xi t) dt \quad (\alpha = -\frac{1}{2})$$

or

is

$$\psi(\xi) = \int_0^1 \chi(t) \sin(\xi t) dt, \quad \chi(0) = 0 \quad (\alpha = \frac{1}{2}).$$

It is the purpose of this note to show that the general case can be dealt with just as simply by putting

$$\psi(\xi) = \xi^{1-\alpha} \int_{0}^{1} \phi(t) J_{\nu+\alpha}(\xi t) dt.$$
 (3)

The analysis is formal: no attempt is made to supply details of rigour.

2. We need the following two lemmas.

LEMMA A. If $\lambda > \mu > -1$,

$$\int_0^\infty J_{\lambda}(at)J_{\mu}(bt)t^{1+\mu-\lambda} dt = \begin{cases} 0 & (0 < a < b), \\ \frac{b^{\mu}(a^2 - b^2)^{\lambda-\mu-1}}{2^{\lambda-\mu-1}a^{\lambda}\Gamma(\lambda-\mu)} & (0 < b < a). \end{cases}$$

This result is well known [3].

LEMMA B. Let f(x), f'(x) be continuous in $0 \le x \le a$. Let $0 < \kappa < 1$. Then the solution of

$$\int_{0}^{x} g(t)(x^{2} - t^{2})^{-\kappa} dt = f(x) \quad (0 < x < a)$$

 $g(x) = \frac{2\sin \pi\kappa}{\pi} \frac{d}{dx} \int_{0}^{x} tf(t)(x-t)^{\kappa-1} dt.$

This is a simple transformation of the solution of Abel's integral equation [4].

3. In order to determine the function $\phi(t)$ in equation (3), we have to consider separately the cases when α is positive and when α is negative. The case when α is zero obviously does not arise, since then equations (1) and (2) reduce to a single integral equation in which the right-hand side is zero when $\rho > 1$.

If $\alpha > 0$, inversion of the order of integration gives

$$\int_0^\infty \psi(\xi) J_{\nu}(\xi\rho) d\xi = \int_0^1 \phi(t) \int_0^\infty \xi^{1-\alpha} J_{\nu+\alpha}(\xi t) J_{\nu}(\xi\rho) d\xi dt = 0,$$

when $\rho > 1$, by Lemma A, provided that $\nu > -1$. Thus (2) is satisfied.

To deal with equation (1), we modify (3) by integration by parts. For we have

$$\psi(\xi) = \xi^{1-\alpha} \int_{0}^{1} \phi(t) J_{\nu+\alpha}(\xi t) dt
= -\xi^{-\alpha} \int_{0}^{1} \phi(t) t^{\nu+\alpha-1} \frac{d}{dt} \left\{ t^{1-\nu-\alpha} J_{\nu+\alpha-1}(\xi t) \right\} dt
= -\xi^{-\alpha} \left[\phi(t) J_{\nu+\alpha-1}(\xi t) \right]_{0}^{1} + \xi^{-\alpha} \int_{0}^{1} \Phi(t) J_{\nu+\alpha-1}(\xi t) dt,
\Phi(t) = t^{1-\nu-\alpha} \frac{d}{dt} \left\{ \phi(t) t^{\nu+\alpha-1} \right\}.$$

$$\lim_{t \to +0} t^{\nu+\alpha-1} \phi(t) = 0, \tag{5}$$

where

Hence if

we obtain

$$\psi(\xi) = \xi^{-\alpha} \int_0^1 \Phi(t) J_{\nu+\alpha-1}(\xi t) dt - \xi^{-\alpha} \phi(1) J_{\nu+\alpha-1}(\xi).$$

Substitution in (1) then gives

$$f(\rho) = \int_{0}^{1} \Phi(t) \int_{0}^{\infty} \xi^{\alpha} J_{\nu}(\xi \rho) J_{\nu+\alpha-1}(\xi t) \ d\xi \ dt - \phi(1) \int_{0}^{\infty} \xi^{\alpha} J_{\nu}(\xi \rho) J_{\nu+\alpha-1}(t) \ dt,$$

where $0 < \rho < 1$. By Lemma A, this reduces to

$$f(\rho) = \frac{2^{\alpha}}{\Gamma(1-\alpha)} \rho^{-\nu} \int_{0}^{t} t^{\nu+\alpha-1} \Phi(t) (\rho^{2}-t^{2})^{-\alpha} dt,$$

provided that $v+1 > v+\alpha > 0$, i.e. provided that $v > -\alpha$, $0 < \alpha < 1$. But this is an integral equation of the type given in Lemma B; its solution is

$$\Phi(\rho)\rho^{\nu+\alpha-1} = \frac{2^{1-\alpha}}{\Gamma(\alpha)} \frac{d}{d\rho} \int_{0}^{\rho} t^{\nu+1} f(t) (\rho^{2} - t^{2})^{\alpha-1} dt,$$

it being assumed that $t^{\nu}f(t)$ and its first derivative are continuous in $0 \le t \le 1$. If we substitute for $\Phi(\rho)$ from (4), integrate and use condition (5), we find that

$$\rho^{\nu+\alpha-1}\phi(\rho) = \frac{2^{1-\alpha}}{\Gamma(\alpha)} \int_0^\rho t^{\nu+1} f(t) (\rho^2 - t^2)^{\alpha-1} dt, \tag{6}$$

a result which may also be written as

$$\rho^{\nu+\alpha}\phi(\rho) = \frac{2^{-\alpha}}{\Gamma(1+\alpha)} \frac{d}{d\rho} \int_{0}^{\rho} t^{\nu+1} f(t) (\rho^{2} - t^{2})^{\alpha} dt.$$
 (7)

The conditions on the parameters are $0 < \alpha < 1$, $\nu > -\alpha$.

When $\alpha = -\beta$, where $\beta > 0$, we start by integrating the integral in (3) by parts. This gives

$$\begin{split} \psi(\xi) &= \xi^{1+\beta} \int_{0}^{1} \phi(t) J_{\nu-\beta}(\xi t) \, dt \\ &= \xi^{\beta} \int_{0}^{1} \phi(t) t^{\beta-\nu-1} \, \frac{d}{dt} \left\{ t^{\nu-\beta+1} J_{\nu-\beta+1}(\xi t) \right\} \, dt \\ &= \xi^{\beta} \left[\phi(t) J_{\nu-\beta+1}(\xi t) \right]_{0}^{1} - \xi^{\beta} \int_{0}^{1} \Psi(t) J_{\nu-\beta+1}(\xi t) \, dt, \\ \Psi(t) &= t^{\nu-\beta+1} \, \frac{d}{dt} \left\{ \phi(t) t^{\beta-\nu-1} \right\}. \end{split}$$

where

Hence

$$\psi(\xi) = \phi(1)\xi^{\beta}J_{\nu-\beta+1}(\xi) - \xi^{\beta}\int_{0}^{1} \Psi(t)J_{\nu-\beta+1}(\xi t) dt$$

$$\lim_{t \to +0} t^{\nu-\beta+1}\phi(t) = 0.$$

provided that

It then follows from Lemma A that condition (2) is satisfied when $0 < \beta < 1$, $\nu > -1$.

If we now substitute from (3) in (1) and invert the order of integration, we obtain

$$f(\rho) = \int_0^1 \phi(t) \int_0^\infty \xi^{1-\beta} J_{\nu}(\xi \rho) J_{\nu-\beta}(\xi t) dt d\xi$$
$$= \frac{2^{1-\beta}}{\Gamma(\beta)} \rho^{-\nu} \int_0^\rho t^{\nu-\beta} \phi(t) (\rho^2 - t^2)^{\beta-1} dt,$$

by Lemma A. Using Lemma B, we get

$$\rho^{\nu-\beta}\phi(\rho) = \frac{2^{\beta}}{\Gamma(1-\beta)} \frac{d}{d\rho} \int_{0}^{\rho} t^{\nu+1} f(t) (\rho^{2} - t^{2})^{-\beta} dt, \tag{8}$$

which is, in fact, equation (7) with α replaced by $-\beta$: but the conditions now are $-1 < \alpha < 0$, $\nu > -1$. The limiting condition on ϕ is evidently satisfied.

4. Having obtained formulae for $\phi(\rho)$, we can deduce the desired solution of (1) and (2). The simplest form of the solution is given by using (7), viz.

$$\psi(\xi) = \frac{(2\xi)^{1-\alpha}}{2\Gamma(1+\alpha)} \int_{0}^{1} \rho^{-\nu-\alpha} J_{\nu+\alpha}(\xi\rho) \frac{d}{d\rho} \int_{0}^{\rho} t^{\nu+1} f(t) (\rho^{2} - t^{2})^{\alpha} dt d\rho, \tag{9}$$

valid when $0 < \alpha < 1$, $\nu > -\alpha$ or when $-1 < \alpha < 0$, $\nu > -1$. From this, the results given by Sneddon for $\nu = 0$, $\alpha = \pm \frac{1}{2}$ readily follow.

To get the solution valid for $0 < \alpha < 1$, $\nu > -\alpha$, in the form given by Titchmarsh, we use (6), which gives

$$\psi(\xi) = \frac{(2\xi)^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{1} J_{\nu+\alpha}(\xi\rho) \rho^{1-\nu-\alpha} \int_{0}^{\rho} t^{\nu+1} f(t) (\rho^{2} - t^{2})^{\alpha-1} dt d\rho.$$
 (10)

Lastly, if in addition $v+2\alpha+2>0$, we may integrate (9) by parts to get

$$\psi(\xi) = \frac{(2\xi)^{1-\alpha}}{2\Gamma(1+\alpha)} \left\{ J_{\nu+\alpha}(\xi) \int_0^1 t^{\nu+1} f(t) (1-t^2)^{\alpha} dt + \xi \int_0^1 \rho^{-\nu-\alpha} J_{\nu+\alpha+1}(\xi\rho) \int_0^\rho t^{\nu+1} f(t) (\rho^2 - t^2)^{\alpha} dt d\rho \right\}. \tag{11}$$

REFERENCES

- 1. E. C. Titchmarsh, Introduction to the theory of Fourier integrals (Clarendon Press, Oxford, 1937), pp. 334-339.
- 2. I. N. Sneddon, The elementary solution of dual integral equations, *Proc. Glasgow Math. Assoc.*, 4 (1960), 108-110.
- 3. G. N. Watson, A treatise on the theory of Bessel functions (University Press, Cambridge, 1944), p. 401, equations (1) and (3).
- 4. E. T. Whittaker and G. N. Watson, A course of modern analysis (University Press, Cambridge, 1920), p. 229.

St. Salvator's College University of St. Andrews