ON CERTAIN DUAL INTEGRAL EQUATIONS

by E. T. COPSON

(Received 20 May, 1960)

1. In his book on Fourier Integrals, Titchmarsh [1] gave the solution of the dual integral equations

$$
\begin{gather*}
\int_{0}^{\infty} \xi^{2 a} \psi(\xi) J_{v}(\xi \rho) d \xi=f(\rho) \quad(0<\rho<1) \tag{1}\\
\int_{0}^{\infty} \psi(\xi) J_{v}(\xi) d \xi=0 \quad(\rho>1) \tag{2}
\end{gather*}
$$

for the case $\alpha>0$, by some difficult analysis involving the theory of Mellin transforms. Sneddon [2] has recently shown that, in the cases $v=0, \alpha= \pm \frac{1}{2}$, the problem can be reduced to an Abel integral equation by making the substitution

$$
\psi(\xi)=\xi \int_{0}^{1} \phi(t) \cos (\xi t) d t \quad\left(\alpha=-\frac{1}{2}\right)
$$

or

$$
\psi(\xi)=\int_{0}^{1} \chi(t) \sin (\xi t) d t, \quad \chi(0)=0 \quad\left(\alpha=\frac{1}{2}\right)
$$

It is the purpose of this note to show that the general case can be dealt with just as simply by putting

$$
\begin{equation*}
\psi(\xi)=\xi^{1-\alpha} \int_{0}^{1} \phi(t) J_{v+\alpha}(\xi t) d t \tag{3}
\end{equation*}
$$

The analysis is formal: no attempt is made to supply details of rigour.
2. We need the following two lemmas.

Lemma A. If $\lambda>\mu>-1$,

$$
\int_{0}^{\infty} J_{\lambda}(a t) J_{\mu}(b t) t^{1+\mu-\lambda} d t=\left\{\begin{array}{cl}
0 & (0<a<b) \\
\frac{b^{\mu}\left(a^{2}-b^{2}\right)^{\lambda-\mu-1}}{2^{\lambda-\mu-1} a^{\lambda} \Gamma(\lambda-\mu)} & (0<b<a) .
\end{array}\right.
$$

This result is well known [3].
Lemma B. Let $f(x), f^{\prime}(x)$ be continuous in $0 \leqq x \leqq a$. Let $0<\kappa<1$. Then the solution of
is

$$
\begin{aligned}
& \int_{0}^{x} g(t)\left(x^{2}-t^{2}\right)^{-\kappa} d t=f(x) \quad(0<x<a) \\
& g(x)=\frac{2 \sin \pi \kappa}{\pi} \frac{d}{d x} \int_{0}^{x} t f(t)(x-t)^{x-1} d t
\end{aligned}
$$

This is a simple transformation of the solution of Abel's integral equation [4].

E. T. COPSON

3. In order to determine the function $\phi(t)$ in equation (3), we have to consider separately the cases when α is positive and when α is negative. The case when α is zero obviously does not arise, since then equations (1) and (2) reduce to a single integral equation in which the righthand side is zero when $\rho>1$.

If $\alpha>0$, inversion of the order of integration gives

$$
\int_{0}^{\infty} \psi(\xi) J_{v}(\xi \rho) d \xi=\int_{0}^{1} \phi(t) \int_{0}^{\infty} \xi^{1-\alpha} J_{v+a}(\xi t) J_{v}(\xi \rho) d \xi d t=0
$$

when $\rho>1$, by Lemma A, provided that $v>-1$. Thus (2) is satisfied.
To deal with equation (1), we modify (3) by integration by parts. For we have
where

$$
\begin{aligned}
\psi(\xi) & =\xi^{1-\alpha} \int_{0}^{1} \phi(t) J_{v+\alpha}(\xi t) d t \\
& =-\xi^{-\alpha} \int_{0}^{1} \phi(t) t^{v+\alpha-1} \frac{d}{d t}\left\{t^{1-v-\alpha} J_{v+\alpha-1}(\xi t)\right\} d t \\
& =-\xi^{-\alpha}\left[\phi(t) J_{v+\alpha-1}(\xi t)\right]_{0}^{1}+\xi^{-\alpha} \int_{0}^{1} \Phi(t) J_{v+\alpha-1}(\xi t) d t
\end{aligned}
$$

$$
\Phi(t)=t^{1-v-a} \frac{d}{d t}\left\{\phi(t) t^{v+\alpha-1}\right\}
$$

Hence if

$$
\begin{equation*}
\lim _{t \rightarrow+0} t^{\nu+\alpha-1} \phi(t)=0 \tag{5}
\end{equation*}
$$

we obtain

$$
\psi(\xi)=\xi^{-\alpha} \int_{0}^{1} \Phi(t) J_{v+\alpha-1}(\xi t) d t-\xi^{-\alpha} \phi(1) J_{v+\alpha-1}(\xi)
$$

Substitution in (1) then gives

$$
f(\rho)=\int_{0}^{1} \Phi(t) \int_{0}^{\infty} \xi^{\alpha} J_{v}(\xi \rho) J_{v+\alpha-1}(\xi t) d \xi d t-\phi(1) \int_{0}^{\infty} \xi^{\xi} J_{v}(\xi \rho) J_{v+\alpha-1}(t) d t
$$

where $0<\rho<1$. By Lemma A, this reduces to

$$
f(\rho)=\frac{2^{\alpha}}{\Gamma(1-\alpha)} \rho^{-v} \int_{0}^{\rho} t^{\nu+\alpha-1} \Phi(t)\left(\rho^{2}-t^{2}\right)^{-\alpha} d t
$$

provided that $v+1>v+\alpha>0$, i.e. provided that $v>-\alpha, 0<\alpha<1$. But this is an integral equation of the type given in Lemma B; its solution is

$$
\Phi(\rho) \rho^{\nu+\alpha-1}=\frac{2^{1-\alpha}}{\Gamma(\alpha)} \frac{d}{d \rho} \int_{0}^{\rho} t^{\nu+1} f(t)\left(\rho^{2}-t^{2}\right)^{\alpha-1} d t
$$

it being assumed that $t^{\nu} f(t)$ and its first derivative are continuous in $0 \leqq t \leqq 1$. If we substitute for $\Phi(\rho)$ from (4), integrate and use condition (5), we find that

$$
\begin{equation*}
\rho^{v+\alpha-1} \phi(\rho)=\frac{2^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{\rho} t^{\nu+1} f(t)\left(\rho^{2}-t^{2}\right)^{\alpha-1} d t \tag{6}
\end{equation*}
$$

a result which may also be written as

$$
\begin{equation*}
\rho^{\nu+\alpha} \phi(\rho)=\frac{2^{-\alpha}}{\Gamma(1+\alpha)} \frac{d}{d \rho} \int_{0}^{\rho} t^{\nu+1} f(t)\left(\rho^{2}-t^{2}\right)^{\alpha} d t \tag{7}
\end{equation*}
$$

The conditions on the parameters are $0<\alpha<1, v>-\alpha$.
When $\alpha=-\beta$, where $\beta>0$, we start by integrating the integral in (3) by parts. This gives

$$
\begin{aligned}
\psi(\xi)= & \xi^{1+\beta} \int_{0}^{1} \phi(t) J_{v-\beta}(\xi t) d t \\
& =\xi^{\beta} \int_{0}^{1} \phi(t) t^{\beta-v-1} \frac{d}{d t}\left\{t^{\nu-\beta+1} J_{v-\beta+1}(\xi t)\right\} d t \\
= & \xi^{\beta}\left[\phi(t) J_{v-\beta+1}(\xi t)\right]_{0}^{1}-\xi^{\beta} \int_{0}^{1} \Psi(t) J_{v-\beta+1}(\xi t) d t \\
& \Psi(t)=t^{v-\beta+1} \frac{d}{d t}\left\{\phi(t) t^{\beta-v-1}\right\}
\end{aligned}
$$

where

$$
\psi(\xi)=\phi(1) \xi^{\beta} J_{v-\beta+1}(\xi)-\xi^{\beta} \int_{0}^{1} \Psi(t) J_{v-\beta+1}(\xi t) d t
$$

provided that

$$
\lim _{t \rightarrow+0} t^{\nu-\beta+1} \phi(t)=0
$$

It then follows from Lemma A that condition (2) is satisfied when $0<\beta<1, v>-1$.
If we now substitute from (3) in (1) and invert the order of integration, we obtain

$$
\begin{aligned}
f(\rho) & =\int_{0}^{1} \phi(t) \int_{0}^{\infty} \xi^{1-\beta} J_{v}(\xi \rho) J_{v-\beta}(\xi t) d t d \xi \\
& =\frac{2^{1-\beta}}{\Gamma(\beta)} \rho^{-v} \int_{0}^{\rho} t^{v-\beta} \phi(t)\left(\rho^{2}-t^{2}\right)^{\beta-1} d t,
\end{aligned}
$$

by Lemma A. Using Lemma B, we get

$$
\begin{equation*}
\rho^{\nu-\beta} \phi(\rho)=\frac{2^{\beta}}{\Gamma(1-\beta)} \frac{d}{d \rho} \int_{0}^{\rho}{ }^{\nu+1} f(t)\left(\rho^{2}-t^{2}\right)^{-\beta} d t \tag{8}
\end{equation*}
$$

which is, in fact, equation (7) with α replaced by $-\beta$: but the conditions now are $-1<\alpha<0$, $v>-1$. The limiting condition on ϕ is evidently satisfied.
4. Having obtained formulae for $\phi(\rho)$, we can deduce the desired solution of (1) and (2). The simplest form of the solution is given by using (7), viz.

$$
\begin{equation*}
\psi(\xi)=\frac{(2 \xi)^{1-\alpha}}{2 \Gamma(1+\alpha)} \int_{0}^{1} \rho^{-v-\alpha} J_{v+\alpha}(\xi \rho) \frac{d}{d \rho} \int_{0}^{\rho} t^{\nu+1} f(t)\left(\rho^{2}-t^{2}\right)^{\alpha} d t d \rho \tag{9}
\end{equation*}
$$

valid when $0<\alpha<1, v\rangle-\alpha$ or when $-1<\alpha<0, v\rangle-1$. From this, the results given by Sneddon for $v=0, \alpha= \pm \frac{1}{2}$ readily follow.

To get the solution valid for $0<\alpha<1, v>-\alpha$, in the form given by Titchmarsh, we use (6), which gives

$$
\begin{equation*}
\psi(\xi)=\frac{(2 \xi)^{1-\alpha}}{\Gamma(\alpha)} \int_{0}^{1} J_{v+\alpha}(\xi \rho) \rho^{1-v-\alpha} \int_{0}^{\rho} t^{v+1} f(t)\left(\rho^{2}-t^{2}\right)^{\alpha-1} d t d \rho \tag{10}
\end{equation*}
$$

Lastly, if in addition $v+2 \alpha+2>0$, we may integrate (9) by parts to get
$\psi(\xi)=\frac{(2 \xi)^{1-\alpha}}{2 \Gamma(1+\alpha)}\left\{J_{v+a}(\xi) \int_{0}^{1} t^{v+1} f(t)\left(1-t^{2}\right)^{\alpha} d t\right.$

$$
\begin{equation*}
\left.+\xi \int_{0}^{1} \rho^{-v-\alpha} J_{v+a+1}(\xi \rho) \int_{0}^{\rho} t^{v+1} f(t)\left(\rho^{2}-t^{2}\right)^{\alpha} d t d \rho\right\} \tag{11}
\end{equation*}
$$

REFERENCES

1. E. C. Titchmarsh, Introduction to the theory of Fourier integrals (Clarendon Press, Oxford, 1937), pp. 334-339.
2. I. N. Sneddon, The elementary solution of dual integral equations, Proc. Glasgow Math. Assoc., 4 (1960), 108-110.
3. G. N. Watson, A treatise on the theory of Bessel functions (University Press, Cambridge, 1944), p. 401, equations (1) and (3).
4. E. T. Whittaker and G. N. Watson, A course of modern analysis (University Press, Cambridge, 1920), p. 229.

St. Salvator's College
University of St. Andrews

