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ON A LINEAR DIFFERENTIAL SYSTEM
OF NEUTRAL TYPE

P. CH. TSAMATOS

(Received 17 May 1982; revised 27 November 1984)

Abstract

This paper is concerned with the neutral type differential system with derivating arguments. By
decomposing the space of initial functions into classes, it is derived that, for each class, the space of
corresponding solutions is of finite dimension. The case of common fixed points of the arguments is
also studied.

1980 Mathematics subject classification (Amer. Math. Soc): 34 A 10, 34 A 30, 39 B 99.

1. Introduction

In linear ordinary differential systems the solutions can be expressed via the
evolution operator, which is a matrix-valued function. For functional differential
equations the idea of finding operators which describe the solutions can be found
in several references. For more details we mention the book of Hale [3, Chapters
7 and 8]. Recently Karakostas [5] and Staikos and Tsamatos [7] proved that an
evolution operator, analogous to the evolution operator of linear differential
systems, can be defined for some particular case of solutions of linear differential
systems with retarded arguments. This expression of solutions is closely related to
the dimension of the space of such solutions.

It is well known that the space of all solutions of a differential system with
deviating arguments is infinite dimensional. This constitutes a very significant
difference between the ordinary and functional differential systems. This dif-
ference creates a basic difficulty in comparing the properties of the solutions of
differential systems with deviating arguments with those of ordinary systems.
Therefore, a decomposition of the space of solutions of a differential system with
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[2] Linear differential system 227

deviating arguments into finite dimensional subspaces provides a nice approach
to this problem. For a more detailed treatment in that direction, we refer the
reader to Norkin [6] and to Staikos and Tsamatos [7].

Here the purpose is to decompose the space of initial functions into classes in
such a way that, for each class, the space of corresponding solutions is of finite
dimension. From this point of view some results of this paper improve analogous
results in [7] and [4]. More precisely, in this paper we consider the differential
system

k k + m

(L) x'(t)=LAl(t)x[ol(t)]+ E AMx'loM], tej,
« = 1 i-k+l

where J is an open interval of the real line U. The functions At (i = 1 , . . . , / + m)
are locally integrable on J and take their values in the space of n X n matrices
over K, where K stands for the real line R or for the complex plane C. Also, a,:
J -* J (i = 1,..., k + m) are continuous functions.

In what follows, for any T 6 / , the symbol E(T) will be used for the smallest
interval of the real line which contains T, and which includes the sets (-oo, T) n
Rang at (i = 1, . . . , k + r). Also, the symbol AC(A, K ") stands for the set of all
absolutely continuous IK "-valued functions with common domain A c U.

Now, we consider the following initial value problem (I.V.P.)

for almost all t e J n [T, OO),
x = <p on E(T),

where T G / and <p e A C ( £ ( T ) , K ").
For the existence and uniqueness of solutions to various initial value problems

for differential equations of neutral type we refer the reader to [1], [2], [4] and [8].

DEFINITION 1. A K "-valued function x defined in / n [T, OO) is said to be a
solution of the I.V.P. (L) - (T, <p) if x is absolutely continuous on J, and if there
exists an extension Jc of x with x e A C ( £ ( T ) U (J n [T, OO)), K") such that
x\t) = E?_i.4,(0xk(0] + £?-*m+i^,(O*'[0,(O] for almost all / G / n [T, OO),
and such that jc = y on £ ( T ) .

2. Evolution operators for the I.V.P. ( L ) - ( T, <p)

Let

A C ( £ ( T ) , K " ) = A C ( £ ( T ) , K " ) -{«p G A C ( £ ( T ) , K " ) : <p(r) = 0}.
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228 P. Ch. Tsamatos [3]

We consider now a function <p e A C ( £ ( T ) , IK ") such that the coordinates of the
vector 9 ( T ) are equal to 1 or 0.

DEFINITION 2. An n X H-matrix valued function N = N(-; T,q>) defined on
£ ( T ) U ( ; n [T, oo)) (where the entries of N are IK "-valued functions) is an
evolution operator for the I.V.P. (L) — (T, q>) if and only if

(i) (d/dt)N(t) = Ef.x^OtfK-(01 + V£k+iAiWdt)N[Oi(t)] for almost all
/ e / n [T, OO);

(ii) N = 4» on £ ( T ) ,

where <t> = d i a g ^ , . . . , $„).

Next, we state Theorems 1 and 2 without proofs since they are similar to those
of Theorems 1 and 2 in [8].

THEOREM 1. Let / > 0 be a positive number. Moreover, we suppose that
(1) there exists a constant &, 0 < # < 1, such that for all t e J,

-. k k + m

T I
1 = 1

r^e«, // //ie function <p e A C ( £ ( T ) , K") /ia5 a bounded derivative almost every-
where on E(T), there exists exactly one evolution operator N = N(-; T,(p) for the
I.V.P. (L) - (T, 9) such that

(| | iV()| |e- /< ' 'T))< oo.

For the case where the equation (L) is of retarded type, i.e., for every t £ J,

at(t)<t (i = l,...,k + m),

we have the following two results. The first result is a corollary of Theorem 1.

COROLLARY 1. Suppose that equation (L) is of retarded type and that I is a
positive number. Moreover, we assume that

(2) there exist nonnegative constants 9lt &2
 w'tn ( ^ i / 0 + ^2 < 1> and such that

k k + m

EM/(0ll<*i. E M/(0ll<*2 forallteJ.
k=l i=k+l

Then, if the function q> G A C ( £ ( T ) , K") has bounded derivative almost everywhere
on E(T), there exists exactly one evolution operator for the I.V.P. (L) — (T, <p) such
that

tej
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THEOREM 2. Suppose that the equation (L) is of retarded type and that there
exist nonnegative constants #1 ; #2 so that

k k + m

EM,-(')ll«*i and £ 11̂ .(01| < &2 < 1 foralltej.
i = l i=k+l

Then for the I.V.P.(L) — (T,<P) there exists exactly one evolution operator.

An immediate consequence of the existence of the evolution for the above
I.V.P. (L) — (T,<P) is that the unique solution of this problem (under the
conditions of the theorems) can be expressed by the formula

This conclusion is obvious from the definition of the evolution.

THEOREM 3. There exists a partition <€ of the space AC(£ ' (T) , IK ") such that for
every class C e f , there exists an evolution operator Nc so that for every <p e C the
solution of the I.V.P. (L) — (T, q>) can be expressed by the formula

x(t) = Nc(t)<p(r), f £ / n [ T , o o ) .

PROOF. We introduce in the space A C ( £ ( T ) , K " ) an equivalence relation -
by the following definition: <pl ~ <p2 if and only if there exists a nonsingular
diagonal n X n-matrix R so that <px = Rq>2.

Clearly, for every <p e A C ( £ ( T ) , K "), there exists a function <p <= A C ( £ ( T ) , K ")
so that <p ~ q> and the vector 9(7) # 0 has coordinates equal to 1 or 0. More
precisely, <p = R(j>, where R = d i a g ^ j , . . . , £„), and where

Now, if iV(-; T, cp) is an evolution operator for the I.V.P. (L) — (T, 9), then the
function

x(t) = N(t; T,q>)Ry(T) = N(t; T,$)<P(T), t e / n[r, 00),

is the solution of the I.V.P. (L) — (T, <p). Obviously the evolution operator
N(-; 7,9) depends only on the representative 9 of the class [<j>]. Thus the above
relation for the solution x can be written

x(t) = Nc(t)<p(r).

where C = [q>].

REMARK 1. If A (̂•; T, <p) = (TJO(- ; T, $)) is an evolution operator for the I.V.P.
(L) — (T, <p), then, since Â  is continuous and 7V(T) = $ ( T ) , it is clear that
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230 P. Ch. Tsamatos |5]

In the following, we denote by JT(T ̂  the Unear space of the solutions of the
initial value problems (L) - (T, Gp), where <p e [<p] and where C is a diagonal
nonsingular constant n X /i-matrix. Because of the above Theorem 3, for every
x e jf(T ^ we have

x(t) = N(t)x(r), Te;n[T,oo),

where N is the evolution of the I.V.P. (L) — (T, 9). Thus we have the following
proposition.

PROPOSITION 1. The dimension of the space 3V^ ̂  is equal to or less than n.

COROLLARY 2. The space ^(T,e) , where e(t) = (1, . . .,1), ( £ £ ( T ) , is of
dimension n.

REMARK 2. The assumption
k + m

£ WAMW^c^l forallf eJn[T,oo)
i-k + l

is necessary for the uniqueness of the solutions of the I.V.P. (L) — (T, 9), with
<p e A C ( £ ( T ) , K " ) . Indeed, the I.V.P.

x(0) = 1

has the solutions xx(t) = t + 1 and * 2 (0 = f2 + 1> a nd the above assumption
fails.

3 . The case of common fixed points of the arguments

For the equation considered in Remark 2 the point / = 0 is a common fixed
point of the arguments. The case of common fixed points of the arguments is of
particular interest, since in this case the continuity of the functions At (i =
l,2,...,k + m) ensures that the solutions are everywhere differentiable (cf.
Hamedani [4]). As Driver [2] has shown, this fact does not occcur in the general
case (L) — (T, •) if T is not a common fixed point of the arguments, even when
the At (i = 1,2,..., k + m) are continuous.

In this section we suppose that the functions At, i = 1, 2 , . . . , k + m, are
continuous on / , and we set

S = {/ e J: o,.(/) = / for all / = 1,2,..., k + m }.
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Moreover, we assume that aj,i = l,2,...,k + m, satisfy a a "weak monotonic-
ity condition" with respect to the set S of the common fixed points of the
arguments, i.e. for any s e S

at(t) > s for every f> . s (i = 1,2, . . . , k + m).

It is clear that for T G S we have E(T) = { T } , and hence the I.V.P. (L) - (T,cp)
considered are of the form (L) - (T, £), ^ e K". ByJfT we denote the set of all
solutions of the initial value problems (L) — (T, | ) , where £ e K ", and we put

A solution x e ̂  is called an Jifg-solution. The J^-solutions can be expressed
by an analogous formula as the solutions of the space Jif(T v), where T e J and

DEFINITION 3. An n X n-matrix-valued function N {whose entries are K-valued
functions) is an Jf^evolution of the system (L) if DomiV = {(t, s) e J X S:
t > s) and if, for any s e 5,

0) N(s,s) = InXn,

(ii)

N(t,s)ZAi(t)N(oi(t),s)+ £ A
/ = 1 i = k

for every t e / n [J, OO).

It is trivial that the existence and uniqueness of the J^-evolution of the system
(L) is an immediate consequence of Corollary 1 or Theorem 2. Moreover, any
J^-solution of the system (L) can be expressed by the formula

where $ = X(T).
It is noteworthy that, when T e S, the evolution operator ./V depends on T but

not on the initial function <p. More precisely, if T e S, then

ifieAC(£(T),K")

Thus, by setting ^ T ? ) = ^ , we have the following corollary.

COROLLARY 3. The space Jt?T is of dimension n.

Now we give some interesting properties of the J^-evolution.
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PROPOSITION 2. For any pair of fixed points sx, s2 in S with s1 < s2, and for
every t e J O [s2, oo), we have

2) = N(t,s1)N(s1,s2).

PROOF. This proposition is an immediate consequence of the uniqueness of the
solutions of the system (L).

REMARK 2. By induction, we may verify that if su s2,...,sv are fixed points in
S with sl < s2 < • • • < sv, then

Nit^j) = N(t,sy)N(sy,s,_1) ••• JV(52>-*i) for every r e / n[sp,co).

For any s e S, let P, be the set of the so called "singular points" of the
^-evolution N of (L) with respect to s, i.e.

? ,= {Te/n[s ,oo):detJV(T,i) = 0}

As in [7], we can prove the following proposition.

PROPOSITION 3. / / sx, s2 in S are such that sl < s2, then PSi g PSi, and,
moreover,

PSl^[s2,cc) = PS2, ifs2tPSi,

Jn[s2,cc)gPSi, ifs2epsi.

As an application of the above we give the next corollary, which improves
Theorem 1 in [4] for the linear case.

COROLLARY 4. Let the n X n-matrix-valued functions Ait i = 1, 2 , . . . , k + m,
be continuous on J, and suppose that for every t & J,

k + m

M/(')ll«*i (i = l,2,...,fc), and E M,(/)ll<*2.

where the constants &r, d2 satisfy &x > 0 and 0 < d2 < 1. Moreover, suppose that
there exists a point s e / such that for every i = l,2,...,k + m,

(i) a,.(O > tand ot(t) < s for all t e / f i (-oo,.s],
(ii) a,(/) < / and a,(/) ^ s for all t & J n [s, oo).

Then, for every £ e K", f/ie I.V.P. (L) — (s,£) has a unique solution x, with
Domx = / , which can be expressed by the formula

where N is an n X n-matrix-valued function differentiable on J.
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[8] Linear differential system 233

PROOF. Obviously, the point s is a fixed point of the arguments at (i =
1,2,...,k + m). Moreover, the arguments a, (/ = 1,2,..., k + m) are of re-
tarded type on / n [s, oo). Therefore, Theorem 1 says that the solution x of the
I.V.P. (L) — (s, £) can be expressed on J n [s, oo) by the formula

* ( / ) = N(t,s)t, tejn[s,oo).

Now, for the I.V.P. (L) - (s, £) on (-00,5] O / , where the arguments a, (1 =
l,...,k + m) are of advanced type, the transformtion t <-> 2s — t leads to an
I.V.P. of retarded type, and so the proof is complete.

REMARK 3. Clearly, the space 3^C7 in the above Corollary 4 (i.e., the space of all
solutions which are defined at the point T and which are global solutions on J) is
of dimension n.
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