
J. Functional Programming 7 (6): 667–668, November 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

667

Book review

Foundations for Programming Languages by John C. Mitchell, MIT Press,

1996.

This book presents a framework for the analysis of syntactic, operational and semantic

properties of programming languages. The framework is based on a mathematical system

called typed lambda calculus. The main features of lambda calculus are a notation for

functions and other computable values, together with an equational logic and rules for

evaluating expressions. The book is organized around a sequence of lambda calculi with

progressively more complicated type systems. These are used to analyze and discuss relevant

programming language concepts. The emphasis is on sequential languages, although many of

the techniques and concepts also apply to concurrent programming languages.

The simplest system in the book is an equational system sometimes called universal algebra.

This logic without function variables may be used to axiomatize and analyze many of the

data types commonly used in programming. The next system is a lambda calculus with

function types and, optionally, cartesian products and disjoint unions. When enriched with

recursive definitions, this language provides a useful framework for studying operational and

semantic properties of functional programs. When combined with algebraic data types, this

system is adequate to define many conventional programming languages. In particular, with

types for memory locations and stores, we may study traditional axiomatic, operational and

denotational semantics of imperative programs. More advanced technical machinery, such as

the method of logical relations, category theory, and the semantics of recursively defined types

are covered in the middle chapters. The last three chapters of the book study polymorphic

types, along with declaration forms for abstract data types and program modules, systems of

subtyping, and type inference.

The book is written for upper-year undergraduates or beginning graduate students special-

izing in theoretical computer science, software systems, or mathematics. It is also suitable for

advanced study or technical reference.

This is a well-written and technically sound presentation of a broad range of material,

much of it of interest to functional programming enthusiasts. Various existing works such as

(Loeckx and Sieber, 1984; Tennent, 1991; Gunter, 1992; Winskel, 1993) cover much of the

same ground, as will the multivolume series (Abramsky et al., 1992), but I know of no single

volume that is as encyclopedic in coverage. And although the book is about 850 pages long,

it is being sold at a quite attractive price (£35, $60).

The preface suggests the book can be used as the basis for undergraduate courses and

a suggested ‘introductory’ course is outlined. But this uses material selected from the first

six chapters only, less than half of the book, and the remaining material is definitely at an

advanced level. I expect that this book will prove to be more useful for advanced study by

researchers and graduate students than as an undergraduate textbook.

Inevitably, there are important topics that are not treated: communicating processes,

continuations, powerdomains, stable functions. But most of the topics that are treated are

discussed very thoroughly. The index and bibliography are excellent, and there appear to be

very few typos.

In summary, this is a valuable and important book that will be useful to many researchers

and graduate students; however, I have reservations on its suitability as an undergraduate

https://doi.org/10.1017/S0956796897002918 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002918

668 Book review

text. Perhaps the publisher should consider re-packaging a selection from the first six chapters

to provide a more suitable volume for this purpose.

References

Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E. (eds.) (1922) Handbook of Logic in

Computer Science. Vols. 1–6. Oxford University Press.

Gunter, C. A. (1992) Semantics of Programming Languages: Structures and Techniques. MIT

Press.

Loeckx, J. and Sieber, K. (1984) The Foundations of Program Verification. John Wiley &

Sons/Teubner.

Tennent, R. D. (1991) Semantics of Programming Languages. International Series in Computer

Science. Prentice-Hall.

Winskel, G. (1993) The Formal Semantics of Programming Languages: An Introduction. MIT

Press.

R. D. Tennent

https://doi.org/10.1017/S0956796897002918 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002918

