EMBEDDING UNCOUNTABLY MANY MUTUALLY EXCLUSIVE CONTINUA INTO EUCLIDEAN SPACE

ΒY

B. J. BAKER AND MICHAEL LAIDACKER

ABSTRACT. Uncountable collections of continua of dimension m embeddable in E^n are investigated, where the difference between m and n is not restricted to one. Collections of isometric copies of continua equivalent to Menger universal continua and collections of continua analogous to G. S. Young's T_n -sets are the main considerations.

1. **Introduction.** R. L. Moore proved that the plane does not contain uncountably many disjoint triods in [5]. A *triod* is the union of three non-degenerate continua such that the intersection of two of them is exactly one point which is also the intersection of all three of them. G. S. Young, [7], extended this theorem to E^n by proving that there does not exist in E^n an uncountable collection of disjoint T_{n-1} -sets. A T_n -set is the union of an *n*-cell and an arc whose intersection is a relative interior point of the *n*-cell and an end point of the arc. This paper extends the above investigations to uncountable collections of continua of dimension *m* embeddable in E^n , where the difference between *m* and *n* is not restricted to one. We consider two cases since our results differ in these cases.

The Case Where n > 2m. We first consider the *m*-dimensional Menger continua M_m^n in E^n , which are constructed inductively. Let V_0 denote the collection whose only element is the unit cube $I^n = [0, 1]^n$. Then for each positive integer *i*, let H_i denote the collection of all *n*-cubes obtained by subdividing I^n into 3^{ni} congruent *n*-cubes, and let V_i denote the collection to which \underline{v} belongs if and only if \underline{v} is a subset of some element of \underline{w} of V_{i-1} and intersects the *m*-skeleton of \underline{w} . If *G* is a collection of sets, the union of the elements of *G* will be denoted by G^* . With this notation, $M_m^n = \bigcap_{i=1}^{\infty} V_i^*$.

That M_m^n is a universal space for the class of all compact subspaces of E^n which have dimension $k \leq m$ was proved by Stan'ko, [6]. The Menger continua M_m^{2m+1} are universal spaces for the class of all separable metric spaces with dimension $k \leq m$, [3].

THEOREM 1. There exists an uncountable collection H of disjoint isometric universal compacta of dimension n embedded in E^{2n+1} .

Received by the editors November 17, 1987 and, in revised form, April 13, 1988.

AMS Subject Classification (1980): Primary: 57N35; Secondary: 57N12, 57N13, 57N15.

[©] Canadian Mathematical Society 1988.

PROOF. Let $V_0 = \{I^{2n+1}\}$. For each positive integer *i*, subdivide I^{2n+1} into $6^{i(2n+1)}$ congruent (2n + 1)-cubes. Denote by H_i the collection of all these (2n + 1)-cubes and by V_i the collection of all elements \underline{h} of H_i such that \underline{h} is a subset of some element \underline{v} of V_{i-1} and intersects the *n*-skeleton of \underline{v} . Define $W_n^{2n+1} = \bigcup_{i=1}^{\infty} V_i^*$. That W_n^{2n+1} is a universal compactum for the class of all separable metric spaces with covering dimension $k \leq n$ is a corollary of the following theorem by Bestvina [1]: If X is a k-dimensional (k - 1)-connected, locally (k - 1)-connected compact metric space that satisfies DD^kP , then $X \approx M_k^{2k+1}$. Increasing the number of (2n + 1)-cubes in a subdivision from $3^{i(2n+1)}$ in the construction of M_n^{2n+1} to $6^{i(2n+1)}$ in the construction of W_n^{2n+1} does not affect the properties listed in Bestvina's theorem.

Now we define a subset M of the unit interval I. Let $G_0 = \{I\}$. Then for each positive integer i, let F_i denote the collection of intervals obtained by subdividing I into 6^i congruent intervals, and let G_i denote the collection of all elements of F_i whose left end point is either the left end point or the midpoint of an element of G_{i-1} . Define $M = \bigcap_{i=1}^{\infty} G_i^*$. Now for each element α of M, let $V_i(\alpha)$ and $W_n^{2n+1}(\alpha)$ denote the sets obtained by translating V_i and W_n^{2n+1} a distance of $\alpha\sqrt{2n+1}$ along the principal diagonal of I^{2n+1} between the origin and unit point. Obviously $W_n^{2n+1}(\alpha) = \bigcap_{i=1}^{\infty} V_i^*(\alpha)$. Denote by H the collection of all sets $W_n^{2n+1}(\alpha)$ for all elements α of M. Clearly H is an uncountable collection of isometric compacta for separable metric spaces with covering dimension $k \leq n$. It only remains to be shown that the elements of H are disjoint.

For each positive integer *i*, with $F_0 = \{I\}$ and F_i as previously defined, denote by K_i the collection of all intervals of F_i which contain an end point of an element of F_{i-1} . Letting $N = \{j | j \text{ is a positive integer and } j \leq 2n+1\}$, we denote by *A* the collection of all subsets of *N* which have exactly *n* elements. Then for each element α of *M*, element \underline{a} of *A*, positive integer $j \leq 2n+1$, and positive integer *i*, let $s_{\underline{a}ij}(\alpha)$ denote (1) a translation of *I* a distance of α to the right if $j \in \underline{a}$ or (2) a translation of K_i^* a distance of α to the right if $j \in N \setminus \underline{a}$. Define $b_{\underline{a}i}(\alpha) = \bigotimes_{j=1}^{2n+1} s_{\underline{a}ij}(\alpha)$ and $B_i(\alpha) = \{b | b = b_{\underline{a}i}(\alpha)\}$ for some \underline{a} in *A*}. It follows that $V_1^*(\alpha) = B_1^*(\alpha)$ while $V_i^*(\alpha)$ is a proper subset of $B_i^*(\alpha)$ for i > 1.

Now suppose α and β are two elements of M such that $W_n^{2n+1}(\alpha)$ and $W_n^{2n+1}(\beta)$ have a point $P(x_1, x_2, \ldots, x_{2n+1})$ in common, and suppose $\alpha < \beta$. Denote by m the smallest positive integer i such that α and β do not belong to the same interval of G_i , and by C the interval of G_{m-1} which contains both α and β . Since $B_m^*(\alpha)$ and $B_m^*(\beta)$ both contain P, there are elements \underline{v} and \underline{w} of A such that $b_{\underline{v}\underline{m}}(\alpha)$ and $b_{\underline{w}\underline{m}}(\beta)$ intersect. There is an element k of N which does not belong to \underline{v} or \underline{w} since $\underline{v} \cup \underline{w}$ contains at most 2n elements while N contains 2n + 1 elements. Consequently, x_k is in both $s_{\underline{v}\underline{m}k}(\alpha)$ and $s_{\underline{w}\underline{m}k}(\beta)$, where $s_{\underline{v}\underline{m}k}(\alpha)$ is a translation of K_m^* a distance α to the right while $s_{wmk}(\beta)$ is a translation of K_m^* a distance of β to the right.

For some positive integer q, the interval C is $[6q/6^m, (6q+6)/6^m]$. Since $\alpha < \beta, \alpha$ is in the first two-thirds of the first element of F_m which lies in C while β is in the first two-thirds of the fourth element of F_m which lies in C. Then $\alpha \in [6q/6^m, 6q/6^m +$

 $2/3(6^m)$] = $[18q/3(6^m), (18q+2)/3(6^m)]$, and $\beta \in [(6q+3)/6^m, (6q+3)/6^m+2/3(6^m)] = [(18q+9)/3(6^m), (18q+11)/3(6^m)]$. Each component of K_m^* is $[(6k-1)/6^m, (6k+1)/6^m]$ for some positive integer k. A translation of a component of K_m^* a distance of α to the right is a subset of

$$[(6k - 1)/6^{m} + 18q/3(6^{m}), (6k + 1)/6^{m} + (18q + 2/3(6^{m})] = [(18(k + q - 1) + 15)/3(6^{m}), (18(k + q) + 5)/3(6^{m})].$$

A translation of a component $[(6p-1)/6^m, (6p+1)/6^m]$ of K_m^* a distance of β to the right is a subset of

$$[(6p-1)/6^{m} + (18q+9)/3(6^{m}), (6p+1)/6^{m} + (18q+11)/3(6^{m})] = [(18(p+q)+6)/3(6^{m}), (18(p+q)+14)/3(6^{m})].$$

Clearly these intervals are disjoint. Hence $B_m^*(\alpha)$ and $B_m^*(\beta)$ do not intersect, and the elements of H are disjoint.

COROLLARY 1. If G is an uncountable collection of continua of dimension $k \leq n$, then there exists an uncountable collection H of disjoint continua embedded in E^{2n+1} such that each element of H is homeomorphic to exactly one element of G.

If X and Y are two closed subsets of E^n , then if there is a homeomorphism f of E^n onto itself such that f(X) is Y, then Y is an *equivalent embedding* of X. If f(X) is a subset of Y, then X is said to be *position-wise embedded* in Y. In [2], Bothe describes a one-dimensional compactum in E^3 which cannot be position-wise embedded in M_1^3 .

COROLLARY 2. In E^{2n+1} , if M is a continuum of dimension $k \leq n$ which can be position-wise embedded in W_n^{2n+1} , then there exists an uncountable collection H of disjoint continua in E^{2n+1} each of which is an equivalent embedding of M.

QUESTION. If *M* is a continuum of dimension *n* in E^{2n+1} which cannot be positionwise embedded in W_n^{2n+1} , does there exist in E^{2n+1} an uncountable collection of disjoint continua each of which is an equivalent embedding of *M*?

The Case Where $n \leq 2m$. Now let *n* be a positive integer greater than three and *m* an integer such that $n/2 \leq m \leq n-2$. Let r = n - m. For each $i \leq r$, denote by p_i the point (x_1, x_2, \ldots, x_n) where $x_i = r$ and $x_j = 1/2$ for $j \neq i$. Denote by p_0 the point $(1/2, 1/2, \ldots, 1/2)$. The convex hull of the points $p_0, p_1, \ldots, p_{r-1}$ and p_r will be denoted by $\langle p_0, p_1, \ldots, p_r \rangle$. Define <u>t</u> to be $\langle p_0, p_1, \ldots, p_r \rangle$. Then <u>t</u> is a closed *r*-simplex. Each of the straight line intervals p_0p_i intersects exactly one (n-1)-dimensional face of I^n . Let F_i denote the face of I^n which is a subset of the hyperplane defined by $x_i = 1$. Designate by *G* the collection of all F_i for $i \leq r$. The intersection of the elements of *G* is an *m*-dimensional face of I^n . Let <u>h</u> denote that face. Then <u>h</u> \cap <u>t</u> is a unique point which is relatively interior to each of <u>h</u> and <u>t</u>. Define $S_{m,r} = \underline{h} \cup \underline{t}$. We observe that (1) the point p_0 lies in the interior of I^n , which is an open set, (2)

[June

for $i \leq r$, p_i lies in the exterior of I^n , (3) if $Q_0 = \langle p_1, p_2, \dots, p_r \rangle$, then $Q_0 \cap I^n = \emptyset$, (4) if $Q_i = \langle p_0, p_1, \dots, p_{i-1}, p_{i+1}, \dots, p_r \rangle$, then $Q_i \cap F_i = \emptyset$ and (5) if B denotes the boundary of I^n , then \underline{t} does not intersect $B \setminus (\bigcup_{i=1}^r F_i)$.

THEOREM 2. Let n be an integer greater than three, m be an integer such that $n/2 \leq m \leq n-2$, r = n - m, and G be an uncountable collection of continua in E^n such that g is an element of G implies g is an equivalent embedding of $S_{m,r}$. Then there is an uncountable subcollection G' of G such that every two elements of G' intersect.

PROOF. For each element g of G, let f_g denote a homeomorphism of E^n onto itself such that $f_g(S_{m,r}) = g$. If X is a subset of E^n , let X(g) denote the set $f_g(X)$. By this notation, $g = \underline{h}(g) \cup \underline{t}(g)$. If R denotes the interior of I^n , then R(g) is a connected open set containing $p_0(g)$ whose boundary contains $F_i(g)$ for $i \leq r$.

Let W denote a countable basis of connected open sets for E^n . For each element g of G, let $d_{0,g}$ denote an element of W which contains $p_0(g)$ and lies in R(g), and let $H_g = \{d_{0,g}\}$. For each $i \leq r$, denote by $V_{i,g}$ a finite subcollection of W such that (1) $V_{i,g}$ properly covers $F_i(g)$ and (2) no element of $V_{i,g}$ intersects $Q_i(g) \cup Q_0(g)$. Denote by $V_{0,g}$ a finite subcollection of W such that (1) $V_{0,g}$ properly covers $Q_0(g)$ and (2) every element of $V_{0,g}$ lies in $E^n \setminus \overline{R}(g)$. Let H'_g denote a finite subcollection of W such that (1) H'_g properly convers $\underline{t}(g)$ and (2) no element of H'_g contains a point of $B(g) \setminus [\bigcup_{i=1}^r F_i(g)]$. For each $i \leq r$, let $U_{i,g}$ denote a finite subcollection of W such that (1) $U_{i,g}$ properly covers the arc $p_0(g)p_i(g)$, and (2) no element of $U_{i,g}$ intersects $F_i(g)$ for $j \neq i$.

Since G is uncountable, there exists an uncountable subcollection G' of G and finite subcollections $H, H', V_0, V_1, V_2, \ldots, V_r, U_1, U_2, \ldots, U_r$ of W such that if g is an element of G', then $H = H_g, H' = H'_g, V_0 = V_{0,g}$, and for each $i \leq r, V_i = V_{i,g}$ and $U_i = U_{i,g}$.

Now let g and q denote two elements of G'. The element d_0 of H contains $p_0(g)$ and $p_0(q)$ and lies in R(g). The collection V_0 covers both $Q_0(g)$ and $Q_0(q)$, and V_0^* lies in $E^n \setminus R(g)$. Thus B(g) separates $p_0(q)$ from $Q_0(q)$ in E^n , and consequently $B(g) \cap \underline{t}(q)$ separates $p_0(q)$ from $Q_0(q)$ in $\underline{t}(q)$. Since both $\underline{t}(g)$ and $\underline{t}(q)$ are covered by H', it follows that $B(g) \cap \underline{t}(q)$ is a subset of $\bigcup_{i=1}^r F_i(g)$. For each $i \leq r$, the arc $p_0(q)p_i(q)$ intersects B(g), and being covered by U_i , it therefore intersects $F_i(g)$. Define $A_i = F_i(g) \cap \underline{t}(q)$. Since $F_i(g)$ is covered by V_i , it follows that $A_i \cap [Q_i(q) \cup Q_0(q)] = \emptyset$. Hence $B(g) \cap \underline{t}(q)$ is $\bigcup_{i=1}^r A_i$.

In the topological simplex $\underline{t}(q)$, for each $i \leq r$, let $D_{i,1}, D_{i,2}, D_{i,3}, D_{i,4}, \ldots$ denote a sequence of open sets closing down on the compact set A_i such that $D_{i,1}$ does not intersect $Q_i(q) \cup Q_0(q)$. By a theorem from Kuratowski [4, p. 312], since, for each positive integer $j, \{D_{1,j}, D_{2,j}, \ldots D_{r,j}\}$ is a collection of open sets whose union separates $p_0(q)$ from $Q_0(q)$ in $\underline{t}(q)$ and $D_{i,j} \cap Q_i(q) = \emptyset$ for each $i \leq r$ it follows that there is a point b_j common to all of the sets $D_{i,j}$ for $i \leq r$. Then the sequence of points b_1, b_2, b_3, \ldots has a limit point of b. Hence b is a point of each A_i , and since

210

 $A_i \subseteq F_i(g)$, b is an element of $F_i(g)$ for each $i \leq r$. However, $\bigcap_{i=1}^r F_i(g) = h(g)$; therefore b is an element of both g and q. Thus G' is an uncountable subcollection of G such that every two elements of G' intersect.

Obviously, if, in the statement of Theorem 2, the condition that g be an equivalent embedding of $S_{m,r}$ is omitted, the resulting statement is not true since there are continua in E^{n-1} which are homeomorphic to $S_{m,r}$ for m < n-1 and r = n-m. The following is an example of an uncountable collection G of disjoint continua in E^4 such that if g is an element of G, then g contains a continuum homeomorphic to $S_{2,2}$ but g is not embeddable in E^3 .

In E^4 , for each \underline{a} in the open interval (1,2), let $C_1(\underline{a})$ denote the set of all points (x_1, x_2, x_3, x_4) satisfying the following: $1/\underline{a} \leq x_1 \leq 2\underline{a}, 1/\underline{a} \leq x_2 \leq 2\underline{a}, x_3 = \underline{a}$, and $\underline{a} \leq x_4 \leq 2\underline{a}$. Let $C_2(\underline{a})$ denote the set of all points (x_1, x_2, x_3, x_4) satisfying the following: $1/\underline{a} \leq x_1 \leq 2\underline{a}, 1/\underline{a} \leq x_2 \leq 2\underline{a}, 1/\underline{a} \leq x_3 \leq \underline{a}$, and $x_4 = \underline{a}$. Let $B_1(\underline{a})$ and $B_2(\underline{a})$ denote the two-skeletons of $C_1(\underline{a})$ and $C_2(\underline{a})$ respectively. Then $B_1(\underline{a}) \cap B_2(\underline{a})$ equals $C_1(\underline{a}) \cap C_2(\underline{a})$ and is the convex hull of the four points $(1/\underline{a}, 1/\underline{a}, \underline{a}, \underline{a}), (2/\underline{a}, 1/\underline{a}, \underline{a}, \underline{a}), (1/\underline{a}, 2\underline{a}, \underline{a}, \underline{a}),$ and $(2\underline{a}, 2\underline{a}, \underline{a}, \underline{a})$. Define $h(\underline{a})$ to be $B_1(\underline{a}) \cup B_2(\underline{a})$.

Let $P_0(\underline{a}) = (\underline{a}, \underline{a}, \underline{a}, \underline{a}, \underline{a}), p_1(\underline{a}) = (\underline{a}, \underline{a}, \underline{a}, 2\underline{a}), p_2(\underline{a}) = (\underline{a}, \underline{a}, 1/\underline{a}, \underline{a}), p_3(\underline{a}) = (\underline{a}, \underline{a}, (\underline{a}+1)/2, (\underline{a}+2)/2), \text{ and } p_4(\underline{a}) = (\underline{a}, 2, \underline{a}, \underline{a}).$ Denote $\langle p_0(\underline{a}), p_1(\underline{a}), p_3(\underline{a}) \rangle$ by $t_1(\underline{a}), \langle p_0(\underline{a}), p_2(\underline{a}), p_3(\underline{a}) \rangle$ by $t_2(\underline{a}), \langle p_0(\underline{a}), p_1(\underline{a}), p_4(\underline{a}) \rangle$ by $t_3(\underline{a}), \text{ and } \langle p_0(\underline{a}), p_2(\underline{a}), p_4(\underline{a}) \rangle$ by $t_4(\underline{a}).$ Then let $t(\underline{a}) = \bigcup_{i=1}^4 t_i(\underline{a})$ and $g(\underline{a}) = t(\underline{a}) \cup h(\underline{a}).$ It can be shown that $g(\underline{a})$ cannot be embedded in E^3 and that $g(\underline{a})$ contains a continuum homeomorphic to $S_{2,2}$. Define g to be the collection of all continua $G(\underline{a})$ for all numbers \underline{a} in (1,2).

If \underline{a} and \underline{b} are numbers such that $1 < \underline{a} < \underline{b} < 2$, then $B_1(\underline{a})$ and $B_2(\underline{a})$ are subsets of the hyperplanes defined by $x_3 = \underline{a}$ and $x_4 = \underline{a}$ respectively, while $B_1(\underline{b})$ and $B_2(\underline{b})$ are subsets of the hyperplanes defined by $x_3 = \underline{b}$ and $x_4 = \underline{b}$ respectively. Consequently $B_1(\underline{a}) \cap B_1(\underline{b}) = \emptyset$, and $B_2(\underline{a}) \cap B_2(\underline{b}) = \emptyset$. Furthermore, since $B_2(\underline{a})$ lies on or between the two hyperplanes defined by $x_3 = 1/a$ and $x_3 = \underline{a}$, then $B_2(\underline{a}) \cap B_1(\underline{b}) = \emptyset$. If $B_1(\underline{a})$ and $B_2(\underline{b})$ intersect, then any points of intersection must lie in the 2-plane π defined by $x_3 = \underline{a}$ and $x_4 = \underline{b}$. The intersections of $B_1(\underline{a})$ and $B_2(\underline{b})$ with the plane π are two disjoint rectangles, as illustrated in Figure 1. Hence $h(\underline{a})$ and $h(\underline{b})$ do not intersect. In addition, $t(\underline{a}) \cap t(\underline{b}) = \emptyset$ since $t(\underline{a})$ and $t(\underline{b})$ are subsets of the hyperplanes defined by $x_1 = \underline{a}$ and $x_1 = \underline{b}$ respectively.

The triangular simplexes $t_1(\underline{a})$ and $t_2(\underline{a})$ are subsets of the 2-plane π' defined by $x_1 = \underline{a}$ and $x_2 = \underline{a}$. Let $\underline{c} \in (1, 2)$ such that $\underline{c} \neq \underline{a}$. Then $\pi' \cap B_1(\underline{c})$ contains only $D_1 = (\underline{a}, \underline{a}, \underline{c}, \underline{c})$ and $D_2 = (\underline{a}, \underline{a}, \underline{c}, 2\underline{c})$. We note that D_1 is a point on the straight line interval q_1q_2 , where $q_1 = (\underline{a}, \underline{a}, 1, 1)$ and $q_2 = (\underline{a}, \underline{a}, 2, 2)$, and D_2 is a point on the straight line interval q_3q_4 , where $q_3 = (\underline{a}, \underline{a}, 1, 2)$ and $q_4 = (\underline{a}, \underline{a}, 2, 4)$. Likewise $\pi' \cap B_2(\underline{c})$ contains only D_1 and $D_3 = (\underline{a}, \underline{a}, 1/\underline{c}, \underline{c})$. Here we need only note that D_3 is a point on the curve M defined by $x_4 = 1/x_3$. Due to the fact that $[t_1(\underline{a}) \cup t_2(\underline{a})] \cap [q_1q_2 \cup q_3q_4 \cup M] = \{p_0(\underline{a}), p_1(\underline{a}), p_2(\underline{a})\}$ and the fact that these points are distinct from D_1, D_2 and D_3 , it follows that $[t_1(\underline{a}) \cup t_2(\underline{a})] \cap h(\underline{c}) = \emptyset$. This is illustrated in Figure 2.

Lastly, the triangular simplex $t_3(\underline{a})$ is a subset of the 2-plane π'' defined by $x_1 = \underline{a}$ and $x_3 = \underline{a}$, and the triangular disk $t_4(\underline{a})$ is a subset of the 2-plane π''' defined by $x_1 = \underline{a}$ and $x_4 = \underline{a}$. Thus $t_3(\underline{a}) \cap B_1(\underline{c})$ and $t_4(\underline{a}) \cap B_2(\underline{c})$ are both empty. If $\underline{a} < \underline{c}$, then $\pi'' \cap B_2(\underline{c})$ contains only the points $(\underline{a}, 1/\underline{c}, \underline{a}, \underline{c})$ and $(\underline{a}, 2\underline{c}, \underline{a}, \underline{c})$ and is empty if $\underline{a} > \underline{c}$. Moreover, if $\underline{a} > \underline{c}$, $\pi''' \cap B_1(\underline{c})$ contains only the points $(\underline{a}, 1/\underline{c}, \underline{c}, \underline{a})$ and $(\underline{a}, 2\underline{c}, \underline{c}, \underline{a})$ and is empty if $\underline{a} < \underline{c}$. However, because $\underline{a} \le x_2 \le 2$ for both $t_3(\underline{a})$ and $t_4(\underline{a})$ and $1/\underline{c} < 1 < \underline{a} < 2 < \underline{c}$, it follows that $[t_3(\underline{a}) \cup t_4(\underline{a})] \cap [B_1(\underline{c}) \cup B_2(\underline{c})] = \emptyset$. We conclude that $t(\underline{a}) \cap h(\underline{c}) = \emptyset$, and the elements of G are disjoint.

We observe that in the construction of M_m^n , $n/2 \le m \le n-2$, if I^n is subdivided

FIGURE 2.

into k^{ni} congruent *n*-cubes at the *i*th step instead of 3^{ni} congruent *n*-cubes, the resulting set remains homeomorphic to M_m^n and contains an equivalent embedding of $S_{m,n-m}$.

QUESTIONS. Is there a set X in E^n which is homeomorphic to M_m^n , for $n/2 \le m \le n-2$, and which does not contain an equivalent embedding of $S_{m,n-m}$, and if there is, does E^n contain uncountable many disjoint such sets?

into k^{ni} congruent *n*-cubes at the *i*th step instead of 3^{ni} congruent *n*-cubes, the resulting set remains homeomorphic to M_m^n and contains an equivalent embedding of $S_{m,n-m}$.

QUESTIONS. Is there a set X in E^n which is homeomorphic to M_m^n , for $n/2 \leq m \leq n$ n-2, and which does not contain an equivalent embedding of $S_{m,n-m}$, and if there is, does E^n contain uncountable many disjoint such sets?

The authors wish to thank the referee for his suggestions for the revision of this paper.

REFERENCES

1. Mladen Bestvina, Characterizing k-dimensional universal Menger compacta, Bull. Amer. Math. Soc., 11(1984), 369-370.

2. H. G. Bothe, Ein eindimensionales Kompactum im E^3 , das sich nicht lagetreau in die Mengersche Universalkurve einbetten läßt, Fund. Math., 54 (1964), 251-258.

3. — , Universalmengen bezüglich der Lage im E^n , Fund. Math., 56 (1964), 203–212.

4. K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.

5. R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci., 14 (1928), 85-88.

6. M. A. Stan'ko, Approximations of imbeddings of compacta in codimensions greater than two, Soviet Math. Dokl., 12 (1971), 906-909.

7. G. S. Young, Jr., A generalization of Moore's Theorem on simple triods, Bull. Amer. Math. Soc., 50 (1944), 714.

Lamar University Beaumont. Texas 77710

214