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Abstract

The frequency and determinants of abnormal test performance by normal individuals are critically important to
clinical inference. Here we compare two approaches to predicting rates of abnormal test performance among healthy
individuals with the rates actually shown by 327 neurologically normal adults aged 18-92 years. We counted how
many participants produced abnormal scores, defined by three different cutoffs with test batteries of varied length,
and the number of abnormal scores they produced. Observed rates generally were closer to predictions based on a
series of Monte Carlo simulations than on the binomial model. They increased with the number of tests
administered, decreased as more stringent cutoffs were used to identify abnormality, varied with the degree of
correlation among test scores, and depended on individual differences in age, education, race, sex, and estimated
premorbid IQ. Adjusting scores for demographic variables and premorbid IQ did not reduce rates of abnormal
performance. However, it eliminated the contribution of these variables to rates of abnormal test performance.
These findings raise fundamental questions about the nature and interpretation of abnormal test performance by

normal, healthy adults. (JINS, 2008, 14, 436-445.)
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INTRODUCTION

Abnormal cognitive test performance is variably defined.
Scores falling more than 2 standard deviations (SDs) below
the population mean are almost universally viewed as abnor-
mal, but cutoffs as lenient as >1 SD are used by some. In a
normal distribution, these cutoffs include from 2.3% to
15.9% of healthy persons. When a test battery includes mul-
tiple measures, the number of healthy persons who produce
abnormal test scores increases, as do the number of abnor-
mal scores they produce. Because the extent and bases of
this increase are unclear, how to interpret the results of
multiple tests remains unclear.
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In 1189 neurologically normal adults who completed 25
or more tests from an expanded Halstead-Reitan Neuropsy-
chological Battery (HRB), Heaton et al. (2004) used T-scores
below 40 (i.e., >1 SD below the mean) to define “impaired”
performance. Based on this, 87% of the participants pro-
duced at least one and 34% produced five or more “impaired”
scores. When the T-score cutoff was lowered to <30 (i.e.,
>2 SDs below the mean), 28% still produced at least one
“impaired” score. Because they adjusted the T-scores for
age, sex, race, and education, these factors probably did not
affect the likelihood of demonstrating “impairment.” Rather,
this likelihood probably depended primarily on how many
tests were administered and the cutoff used to define
“impaired” performance. Other factors might have contrib-
uted, but these presumably did not include disease or injury
because the participants were neurologically normal. While
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patients are expected to produce abnormal test scores, the
causes and meaning of such performance by healthy adults
remain unclear.

When raw score cutoffs are used to define “impaired”
performance, many factors might contribute. For example,
age and education clearly affect performance (Crum et al.,
1993) on the Mini-Mental State Exam (Folstein et al., 1975).
When a person’s raw score is compared with those of healthy
age peers, as is common for IQ and other tests, this mini-
mizes age effects, but it leaves other factors in addition to
disease or injury as potential causes of abnormal perfor-
mance. Thus, it remains unclear how adjusting test scores
for demographic factors alters the frequency and determi-
nants of “impaired” performance by normal adults.

When one test is administered, the percentage of normal
healthy adults who obtain an abnormal score depends on
the cutoff used to define abnormality. If one defines a score
that falls >2 SDs below the mean as abnormal, then approx-
imately 2.3% of individuals who comprise a Gaussian dis-
tribution will obtain abnormal scores. Likewise, 6.7% or
15.9% of normal healthy individuals will produce an abnor-
mal score if the more lenient cutoffs of >1.5 or >1 SDs
below the mean, respectively, are applied. It is a mathemat-
ical truism that taking multiple tests inflates the odds of
obtaining at least one abnormal score. Thus, the questions
of how to identify “abnormality” based on a single test and
how to interpret the results of multiple tests performed on
the same individual must account for this mathematical
truism.

Ingraham and Aiken (1996) noted that, when multiple
uncorrelated tests are used, the binomial probability distri-
bution can be used to predict how many normal persons
will produce one or more abnormal scores. They tested this
against data reported for HIV-1 seronegative men and HIV-1
seropositive men with and without signs or symptoms of
infection (Janssen et al., 1989). The binomial model pre-
dicted that 49%, 14%, and 2% of healthy participants would
produce 2 or more abnormal scores (out of 10 measures) by
chance using cutoffs of =1, 1.5, and 2 SDs below the mean,
respectively, to define abnormal performance. As hypoth-
esized, the seronegative and asymptomatic HIV-positive
groups showed rates of abnormal performance that were
consistent with predictions, whereas symptomatic HIV-
positive patients showed higher than predicted rates of abnor-
mal performance using cutoffs of 1.5 SDs (31%) and 2 SDs
(12%) below the mean. This approach assumes that healthy
subjects produce abnormal scores by chance. Ingraham and
Aiken (1996) were unable to test whether demographic or
other characteristics correlated with the observed rates of
abnormal performance by apparently healthy participants.

A limitation of the binomial model is that it assumes
independence among measures that comprise a test battery,
and this is virtually never the case. Ingraham and Aiken
(1996) noted that any correlation among the measures tends
to decrease rates of abnormal performance, but the effects
of such correlation might be more complicated. Crawford
et al. (2007) argued that the binomial model tends to over-
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estimate how many individuals will produce one or more
abnormal test scores, and underestimate how many will pro-
duce two or more abnormal scores. This can be best under-
stood using an example. Suppose one administers 10 tests
with a mean correlation of 0.5 to healthy adults, and some-
one earns an average score on test X. Because the measures
are correlated, the odds that this person will perform abnor-
mally on the other tests decrease slightly. Because most
individuals perform normally on text X, the binomial model
tends to overestimate how many will earn one or more abnor-
mal scores. Conversely, suppose someone else produces an
abnormal score on test X. Because the tests are correlated,
that person’s chances of performing abnormally on the other
tests increase slightly. In this way, the binomial model might
underestimate how many people obtain two or more abnor-
mal scores when the tests are correlated.

In response to this limitation, Crawford et al. (2007) pro-
posed using a Monte Carlo (MC) simulation method to
estimate how many normal individuals will produce abnor-
mal test scores. They described a generic MC simulation
that requires only R, the k X k matrix of correlations among
the k measures comprising a test battery. The method begins
by obtaining the Choleski (also spelled Cholesky) decom-
position of R, which can be seen as the square root of R
(step 1). It then generates one million random vectors of k
independent standard normal variates (step 2). Finally, it
post-multiplies each vector by the Choleski decomposition
matrix to produce one observation per vector from the desired
multivariate normal distribution (step 3), resulting in a
million “observations.” Crawford et al. used these MC sim-
ulation results to estimate how many “individuals” (i.e.,
observations) would obtain one or more abnormal Wechsler
Adult Intelligence Scale, 3rd Edition (WAIS-III) Index scores
given the correlations among them reported in the test
manual. The investigators designated scores below the 5th
percentile (>1.67 SDs below the mean) as abnormal. Lack-
ing raw data, Crawford et al. could not empirically test the
accuracy of their MC predictions against actual observed
rates of abnormal WAIS-III Index performance. However,
while the binomial distribution predicts that 18.5% of nor-
mal adults would produce one or more abnormal scores
(assuming correlations of zero among the WAIS-III Indi-
ces), the MC simulation found that 13.2% of normal adults
would produce one or more abnormal Index scores (using
correlations among measures reported in the WAIS-III
manual). Furthermore, the MC simulation found that 4.6%
of the one million individuals produced two or more ab-
normal scores, compared with 1.4% predicted by the
binomial model. These findings suggest that the MC simu-
lation method predicts different rates of abnormal perfor-
mance than the binomial model. However, this has never
been tested empirically. In addition, the effects of adjusting
test performance for demographic characteristics and pre-
morbid IQ on observed rates of abnormal performance have
never been examined, despite the increasing practice of
adjusting neuropsychological test performance for demo-
graphic variables.
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The aims of this study were threefold: First, we sought to
compare rates of abnormal test performance predicted by
the binomial model with those predicted by the Monte Carlo
simulation method for batteries of varied length, using three
different cutoffs to define abnormality. We also compared
predicted rates of abnormal performance with those actu-
ally shown by 327 reasonably healthy adults. Second, we
repeated these analyses after adjusting cognitive test per-
formance for age, sex, race, years of education, and esti-
mated premorbid IQ. Third, we examined the effects of
demographic variables and estimated premorbid IQ on pre-
dicted rates of abnormal test performance using both
unadjusted and adjusted T-scores.

METHOD

Participants

Data used for this analysis were drawn from a community
sample of 394 adults recruited from the Baltimore, Mary-
land, and Hartford, Connecticut, areas to participate in the
Aging, Brain Imaging, and Cognition (ABC) study. Partici-
pants were recruited by means of random digit dialing, writ-
ten invitation to Medicare beneficiaries aged 65 and older,
and telephone calls to listings selected in pseudorandom
manner from residential directories. The ABC study was
conducted in two phases. Participants (n = 215) who entered
the study during phase 1 (1995-1998) were recruited from
Baltimore. Those who entered during phase 2 (1999-2005)
were recruited from Baltimore (n = 86) and Hartford (n =
93). Also, 110 phase 1 participants returned in phase 2, but
they contributed scores only on tests that were added dur-
ing phase 2. Thus, no participant was counted twice in the
sample. All participants gave written informed consent, and
the study was approved by the Johns Hopkins Medicine and
Hartford Hospital Institutional Review Boards. Each par-
ticipant underwent a physical and neurological examina-
tion, psychiatric interview, laboratory blood tests, brain
magnetic resonance imaging scan, and cognitive testing over
1-2 days. We excluded 26 participants with Parkinson or
Alzheimer disease, multiple sclerosis, or epilepsy, prior his-
tory of stroke or traumatic brain injury (with >1 hour loss
of consciousness), a life-threatening illness such as pancre-
atic cancer, or a combination of diseases or conditions that
together could be life-threatening, such as poorly con-
trolled hypertension with coronary artery disease and a prior
myocardial infarction. We also excluded 41 participants who
had a history of major depression, bipolar disorder, schizo-
phrenia, or substance dependence (a remote history of depres-
sion or substance use disorder was allowed). No person
who contributed data to this analysis showed signs of brain
dysfunction based on these screening procedures. Finally,
we excluded one person who did not complete any cogni-
tive tests. After excluding these participants (17% of the
sample), the remaining 327 adults included 185 (57%)
women and 142 (43%) men who ranged from 18 to 92 years
of age (M = 54.8; SD = 18.8). They completed from 3 to 20
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years of schooling (M = 14.2; SD = 3.0), and they included
262 (80%) whites, 59 (18%) blacks, and 6 (2%) persons of
“other” racial /ethnic background. Overall, 245 participants
(74.9%) were from Baltimore and 82 (25.1%) were from
Hartford.

Neuropsychological Tests and Measures

Most participants completed 24 cognitive tests from which
43 measures were derived. Obviously, tests added during
phase 2 were not administered to the entire sample. Data
obtained from every participant who completed a measure
and met inclusion criteria were used for these analyses. The
tests, measures, and mean (£SD) raw scores are shown in
Table 1. While all 43 measures were used for the largest
battery, check marks (¢*) show which measures were used
for the 10- and 25-measure batteries. Because Hartford sub-
jects entered the study during phase 2, they were adminis-
tered a seven-subtest (Ward, 1990) version of the WAIS-III
(Wechsler, 1997), rather than the seven-subtest Wechsler
Adult Intelligence Scale, Revised (WAIS-R; Wechsler, 1981)
given to participants from Baltimore. They also completed
the second edition of Conners’ Continuous Performance
Test (CPT-II; Conners, 2000) rather than the original ver-
sion administered to Baltimore participants (CPT; Conners,
1995). Most of the other tests are widely known and readily
available, but a few are not. One less widely used instru-
ment is a 30-item naming test whose items were drawn
from the original, 85-item, experimental version of the Bos-
ton Naming Test (BNT; Kaplan et al., 1976). We also devel-
oped a recency discrimination task (RDT; Manning et al.,
2007) based on this, as follows: Ten minutes after complet-
ing this BNT, all 30 items were presented again 2 at a time,
and participants were asked which one of each pair they
saw most recently. Scores for the RDT can range from 0 to
15 correct. Another less well-known instrument is the Design
Fluency Test (DFT) that was first developed by Jones-
Gotman and Milner (1977). We recorded the number of
novel designs produced in 4 minutes, as described else-
where (Kingery et al., 2006). We also administered a Verbal
Fluency Test (VFT) to assess oral word list generation in
response to letter (S & P) and semantic category (animals,
supermarket items) cues during consecutive 1-min trials.
Another test that is unique to our battery is the Prospective
Memory Test (PMT). On this single-item instrument, par-
ticipants were instructed to ask the examiner to return a
borrowed item at the end of testing and were provided suc-
cessively more explicit cues about the object and its loca-
tion if they failed to ask for it back. This PMT was modeled
on a similar item from the Rivermead Behavioural Memory
Test (Wilson et al., 1985), and scores can range from 0
(best) to 4 (worst), depending on how many cues an exam-
inee requires (Bakker et al., 2002). Two other tests that are
rarely used in clinical practice include the Career Abilities
Placement Survey (CAPS) Spatial Relations Test (Knapp
et al., 1992) and the Perceptual Comparison Test (PCT;
Salthouse, 1991). In the CAPS Spatial Relations Test, respon-
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Table 1. Cognitive tests, measures included in batteries of 10, 20, and 43 measures, number of participants who completed each test,
and raw score means * standard deviations

Test name Measure Bo Bys N Mean + SD Reference
Mini-Mental State Exam (MMSE) Total correct I I 327 28.1 1.7 (Folstein et al., 1975)
Wechsler Adult Intelligence Scale Information 327 19.8 +£5.5 (Wechsler, 1981, 1997)
(WAIS-R/WAIS-III)? Digit Span 327 14.7+3.9
Arithmetic 327 114+£39
Similarities 327 19.2+48
Picture Completion 327 143 +32
Block Design 327 258 £104
Digit Symbol/Coding 327 47.5+13.0
Wechsler Abbreviated Scale of Matrix Reasoning 245 224+73 (Wechsler, 1999)
Intelligence (WASI)®
Shipley Institute of Living Scale Abstraction 231 129 £49 (Zachary, 1986)
(SILS)®
Grooved Pegboard Test (GPT) Dominant hand (sec) 17 302 80.4 £ 28.1 (Klove, 1963)
Non-dominant hand (sec) I 301 90.5 +34.7
Perceptual Comparison Test (PCT) Total correct 17 326 64.5 + 16.4  (Salthouse, 1991)
Trail Making Test (TMT) Part A (sec) 17 7 327 349+ 17.0 (Reitan, 1958)
Part B (sec) 17 17 324 95.0 £ 69.4
Conners’ Continuous Performance Hit reaction time (msec) 306  439.8 £68.0 (Conners, 1995, 2000)
Test (CPT/CPT-II)¢ Hit RT standard error 305 69+25
d-prime 305 34+09
Brief Test of Attention (BTA) Total correct 7 7 321 154 +£3.7 (Schretlen, 1997)
Wisconsin Card Sorting Test Correct category sorts I 323 53+13 (Nelson, 1976)
(mWCST) Perseverative errors I 323 25+39
Iowa Gambling Task (IGT)® Advantageous draws 229 56.0 = 14.6  (Bechara, 2007)
Cognitive Estimation Test (CET) Executive functioning 321 46+24 (Axelrod & Millis, 1994)
Verbal Fluency (VFT) Letter I 327 28.2+9.2 (Schretlen et al., 2003)
Category I I 326 448 =114
Boston Naming Test (BNT-30) Correct without cues I I 325 282 +2.6 (Kaplan et al., 1976)
Benton Facial Recognition (BFRT)  Total correct (short form) 17 326 224+23 (Benton et al., 1994)
Career Abilities Placement Survey Spatial Relations 229 7.6+33 (Knapp et al., 1992)
(CAPS)®
Rey Complex Figure (RCFT) Copy trial I 327 31.3+43 (Rey, 1941)
Clock Drawing (CDT)® Command + copy (sum) 17 17 220 95+0.8 (Lu et al., 2005)
Design Fluency Test (DFT) Total novel designs v 319 14272 (Kingery et al., 2006)
Wechsler Memory Scale Logical Memory 1 I 327 263 £6.9 (Wechsler, 1987)
(WMS-R) Logical Memory II v 327 224 +7.5
Visual Reproduction I 327 327+ 6.1
Visual Reproduction II 327 22.7+10.6
Hopkins Verbal Learning Test Total learning (trials 1-3) 7 v 327 24.6 +4.8 (Brandt & Benedict, 2001)
(HVLT-R) Delayed free recall 17 17 327 8.7+2.6
Delayed recognition 4 4 326 104 £ 1.6
Brief Visuospatial Memory Test Total learning (trials 1-3) 17 327 222 +7.5 (Benedict, 1997)
(BVMT-R) Delayed free recall 17 327 8.7+2.7
Delayed recognition 7 327 5.6 £0.7
Prospective Memory Test (PMT) Cues required 17 298 0.6 £0.7 (Bakker et al., 2002)
Recency Discrimination (RDT) Total correct 327 112+ 1.8 (Manning et al., 2007)

Note. Columns By and B,s show the tests and measures included in batteries composed of 10 and 25 measures, respectively. All 43 measures shown in the

table were included in the complete battery.

2The WAIS-R was completed by 245 participants recruited from Baltimore, MD; the WAIS-III was completed by 82 participants recruited from Hartford,
CT. Values shown in the table are for the WAIS-R. Corresponding raw score means (+SD) for the WAIS-III are as follows: Information, 19.8 + 4.6; Digit
Span, 17.7 = 4.0; Arithmetic, 15.0 £ 3.3; Similarities, 24.9 + 4.5; Picture Completion, 19.4 & 3.8; Block Design, 40.4 = 12.6; and Digit Symbol, 75.5 +£15.8.
bFewer participants completed his test because it was added to the protocol during phase 2 of the study.
¢The CPT was completed by 233 participants recruited from Baltimore, MD; the CPT-II was completed by 73 participants recruited from Hartford, CT.
Values shown in the table are for the CPT. Corresponding raw score means (+SD) for the CPT-1I are as follows: Hit RT, 392.8 =+ 54.2 ms; Hit RT standard

error, 5.2 £ 1.7; and d-prime, 2.5 + 1.4.
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dents are shown three-dimensional geometric figures that
are “unfolded” and asked which of five solid figures match
the “unfolded” stimuli. We recorded the total number of
correct choices made in 5 min. The PCT measures speed of
simple information processing based on four timed tasks,
each of 30-s duration. Two tasks require the respondent to
compare pairs of three- or six-letter strings and mark whether
each pair is the same or different. The other two tasks require
the respondent to decide whether pairs of three- or six-line
designs are the same or different. We used the sum of cor-
rect comparisons over all four tasks for analysis. Finally,
we used a modified 48-card version of the Wisconsin Card
Sorting Test (mWCST; Nelson, 1976) from which we
recorded the number of category sorts completed (out of six
possible) and the number of perseverative errors.

Data Analysis

We first identified raw scores that fell closest to the 15.87,
6.68, and 2.28 percentiles of the distribution for each mea-
sure to approximate T-scores of 40, 35, and 30, respec-
tively. The signs of all scores expressed in seconds or errors
were reversed so that high T-scores always reflect better
performance than low T-scores. We then counted the par-
ticipants who fell in each of four T-score intervals: The first
included T-scores of 40 or greater. These participants were
classified as “normal.” The other three T-score intervals
(<30, 30-34.99, and 35-39.99) were classified as “abnor-
mal.” We also computed nine Cognitive Impairment Index
(CII) scores for each participant. These represent the num-
ber of tests on which each person obtained “abnormal’ scores
defined by three cutoffs (<40, <35, and <30) for batteries
of 10, 25, and 43 measures (i.e., 3 cutoffs X 3 batteries = 9
CII scores). We correlated the CII scores with age, sex,
race, years of education, and estimated premorbid IQ based
on the National Adult Reading Test (NART-R; Blair &
Spreen, 1989). We also regressed CII scores on these vari-
ables using a stepwise procedure.

We next repeated these analyses after adjusting the
T-scores for demographic variables and estimated premor-
bid IQ. General descriptions of the methods used for these
adjustments have been reported elsewhere (Heaton et al.,
2004; Ivnik et al., 1992). We first converted raw scores to
scaled scores (M = 10; SD = 3) based on the observed
distribution of each measure. We then regressed the scaled
scores on age, sex, self-reported race (black vs. non-black),
years of education, estimated premorbid 1Q, and squared
terms for age, education, and estimated 1Q. We then con-
verted the standardized residuals to T-scores. These adjusted
T-scores were used to compute rates of abnormal perfor-
mance based on the same cutoffs used for unadjusted
T-scores.

Finally, we calculated predicted rates of abnormal per-
formance using the binomial formula supplied by Ingraham
and Aiken (1996) for three test batteries using T-score cut-
offs of <40, <35, and <30. We also conducted a series of
one million Monte Carlo simulations following Crawford
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et al. (2007). We derived R matrices from batteries of 10,
25, and 43 measures selected from the ABC study assess-
ment. Monte Carlo simulations were conducted using both
unadjusted and adjusted T-score cutoffs (<40, <35, and
<<30) to define abnormal performance.

RESULTS

In a Gaussian distribution, 15.9% of T-scores fall below 40.
Consistent with this, 8.4 to 19.2% of our participants scored
in this range across all 43 measures. For example, 11.0%
scored in this range on the Facial Recognition Test, and
18.3% scored in this range on the delayed recall trial of the
Hopkins Verbal Learning Test. Theoretically, 6.7% of
T-scores fall below 35 in a normal distribution, and 4.3 to
8.6% of the scores produced by our study participants fell
in this range across all 43 measures. Finally, 2.1% of T-scores
should fall below 30, and 0.9 to 3.1% of our participants
scored in this range. These findings demonstrate that con-
verting raw scores to T-scores based on area transforma-
tions of the observed distributions ensured that the expected
numbers of participants produced scores falling below the
three specified T-score cutoffs.

We then conducted the multiple regression analyses to
obtain demographic- and premorbid 1Q-adjusted T-scores.
Over the 43 measures, 13.2 to 19% of participants pro-
duced adjusted T-scores below 40, while 4.9 to 11.0%
obtained adjusted T-scores below 35, and 0.9 to 5.6% pro-
duced T-scores below 30. Altogether, we conducted 258 x?
analyses (43 measures X 3 cutoff scores for both unadjusted
and adjusted T-scores). The proportions of subjects whose
scores fell below specified cutoffs differed from theoretical
expectation for only three measures, each of which included
fewer than the expected number of abnormal scores.

Model Predictions of Frequency of
Abnormal Performance

We next estimated how many normal healthy adults would
produce 2 or more abnormal scores out of 10, 25, and 43
measures when T-score cutoffs of <40, <35, and <30 were
used to define abnormality. The percentages of participants
predicted to obtain two or more abnormal scores by the
binomial model are shown in Figure 1 (the black bar in
each grouping, labeled BN, ). Monte Carlo predictions vary,
depending on the strength of correlation among measures
included in the test battery. Consequently, we conducted
separate MC simulations for unadjusted and adjusted test
scores because they showed different degrees of correla-
tion: The mean r’s were .35 for unadjusted scores and
.16 for adjusted scores. Monte Carlo predictions for the
unadjusted and adjusted T-scores are depicted by the sec-
ond and fourth bars of each grouping, labeled “MC,,. unad;j”
and “MC,,. adj,” respectively. As shown, the BN model
usually predicted higher rates of abnormal performance than
the MC method, but it predicted marginally lower rates for
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Fig. 1. Predicted and observed percentages of participants who
produced two or more abnormal test scores (y axis) as defined by
three different cutoffs (<40, <35, and <30 T-score points) on test
batteries of varied length. The top panel depicts rates of abnormal
test performance on a 10-measure battery. The middle and bottom
panels show these rates for 25- and 43-measure batteries, respec-
tively. Rates of abnormal performance predicted by the binomial
distribution (BNpre) are shown by the first (black) bar in each
grouping. Rates of abnormal performance predicted by Monte
Carlo simulations are shown for both unadjusted and adjusted
T-scores by the second (MCpre unadj) and fourth (MCpre adj)
bars in each grouping, respectively. Actual observed rates of abnor-
mal performance are shown for unadjusted and adjusted T-scores
by the third (Obs unadj) and fifth (Obs adj) bars in each grouping,
respectively.
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the 10- and 25-measure batteries using a T-score cutoff of
<30 to define abnormality and for the 10-measure battery
using a cutoff of <35 (see top and middle panels of Figure 1).

Predicted Versus Observed Rates of
Abnormal Performance

For this analysis, we computed the percentages of partici-
pants who actually produced 2 or more abnormal scores on
batteries of 10, 25, and 43 measures using the three cutoffs.
These are shown by the third and fifth bars for unadjusted
and adjusted scores, respectively, of each grouping in Fig-
ure 1. As expected, the rates increased with the number of
tests administered and decreased as the T-score cutoff used
to define abnormality was lowered from <40 to <<30. The
observed rates of abnormal performance were lower than
those predicted by the binomial model in most instances.
For example, the binomial model predicts that 48.7% of
normal individuals will produce 2 or more T-scores below
40 out of 10 measures. In fact, 33% of our participants
earned two or more unadjusted and 35.7% earned two or
more adjusted T-scores below 40 [y, = 21.8; p < .0001
for both comparisons]. This is shown in Figure 1, top panel,
first group of bars. In many instances, the rates of actual
abnormal performance did not differ significantly from BN
predictions. For example, the binomial model predicts that
14.1% of normal individuals will obtain 2 or more abnor-
mal scores out of 10 when T-scores below 35 are used to
define abnormality, and 14.7 of our participants obtained
unadjusted T-scores in this range (Figure 1, top panel, sec-
ond group of bars). In only one case, the BN model pre-
dicted that fewer (2.1%) than the actual (4.6%) number of
participants would earn two or more scores [ x3, = 9.84;
p < .002]. This involved the 10-measure battery and an
unadjusted T-score cutoff of <30 (Figure 1, top panel, third
group of bars).

We next compared 18 MC simulation predictions with
the actual percentages of participants who produced two or
more abnormal scores using the three cutoffs for each test
battery based on adjusted and unadjusted test scores. Only
two of these revealed significant differences: First, the MC
method predicted that 44.2% of the sample would produce
at least two abnormal adjusted T-scores out of 10 tests using
a cutoff of <40, whereas only 35.7% of participants did
[ )((21) = 9.40; p < .002]. Second, the MC method predicted
that 61.8% of the sample would obtain at least two abnor-
mal unadjusted T-scores out of 25 tests using the same cut-
off, whereas 54.7% did [x%), = 7.11; p < .008]. In every
other comparison, the MC predicted and observed rates of
abnormal performance differed by 4% or less, and in sev-
eral cases they were identical.

Correlates of CII Scores

We computed nine CII values (one for each combination of
battery length and cutoff used) based on the unadjusted
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Table 2. Spearman (p) correlations between Cognitive Impairment Index (CII) scores based on unadjusted T-scores and age, sex,
race, years of education, and estimated premorbid IQ using cognitive test batteries of varied length and three cutoff scores

Battery T-score

length cutoff Mean (SD) Min-Max? Age Sex? Race® Education?¢ NART-R 1Q
10 measures <40 1.49 (1.93) 0-9 S15%#% —.046 240%** —.2063%%* —.302%**
10 measures <35 0.63 (1.21) 0-7 404%#% —.070 .176% — 247 %% — 27 THE
10 measures <30 0.23 (0.62) 0-5 310%** —.066 L158%* —.254%%* —.300%**
25 measures <40 3.63 (4.43) 0-22 S573%** —.029 21 5%%% —.327%** —.360%**
25 measures <35 1.61 (2.7) 0-18 528%#% —.039 .186%* —.325%%* —.354%%%
25 measures <30 0.54 (1.28) 0-9 409k ** —.066 .176% —.32%%* —.318%**
43 measures <40 6.23 (7.0) 0-34 535%*% .029 2477 E* —.393%%* — 41 T7HE
43 measures <35 2.7 (4.16) 0-24 482 *E .023 219%%% —.357%** —.387¥**
43 measures <30 0.91 (1.94) 0-15 3597k #% —.014 258%#* —.344 %% —.369%**

Note. * = p < 0.01; ** = p < 0.001; *** = p < 0.0001.
2Min = minimum number of abnormal scores produced by any participant; Max = maximum number of abnormal scores produced by any participant.

bCoded as 1 = male; 2 = female.
¢Coded as 1 = non-black; 2 = black.
dHighest grade completed.

scores obtained by each participant. As shown in Table 2,
the number of abnormal scores each person produced
increased with longer batteries and as more lenient cutoffs
were used to define abnormal performance. The CII distri-
butions were markedly skewed. Consequently, we used
Spearman’s rho to test zero-order correlations between CII
values and demographic characteristics and estimated pre-
morbid IQ (Table 2). These correlations likely reflect vari-
ance in the CII values that is shared by several predictors.
To estimate the total variance that can be explained, we
regressed each CII rate on age, sex, race, years of educa-
tion, and estimated premorbid IQ using a stepwise method
of variable entry. These analyses all yielded significant mod-
els (p’s < 0.0001). The resulting R? estimates ranged from
211 to .538, indicating that the predictors accounted for
21.1% to 53.8% of the variance in CII. Eight models included
three predictors; the ninth included four. Age was the first
variable to enter seven of the nine models, and yielded R?
changes of .137 to .308, indicating that age explained 13.7%
to 30.8% of the variance in CII scores in these models. Age
entered as the second best predictor (preceded by NART-R
scores) in the other two models, where it produced R?
changes of .105 to .146. In all seven models where age
entered first, either NART-R scores or years of education
emerged as the second best predictor and explained an addi-
tional 7.7% to 25.6% of the variance in CII scores. Race
entered as the third best predictor in eight models and edu-
cation entered third in the ninth model. Race (and educa-
tion, when it entered third) yielded small R? changes (.008
to .048), accounting for less than 2% of the variance in
most models. Finally, a term for sex entered as the fourth
predictor in one model, accounting for an additional 1.1%
of the variance in CII scores. These findings show that nor-
mal adults do not produce abnormal test results by chance
alone. The strongest predictors of abnormal test perfor-
mance are age and estimated premorbid IQ or education.
Race and sex make modest contributions in some cases.
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Effects of Adjusting Test Performance

We next investigated how adjusting test performance for
demographic variables and estimated premorbid IQ affects
the rates and correlates of abnormal performance. To address
this question, we re-computed CII values using demograph-
ically and premorbid I1Q-adjusted T-scores. Because the CII
distributions were highly skewed, we compared matched
pairs of adjusted and unadjusted CII values using the non-
parametric Wilcoxon signed ranks test. These analyses
revealed that unadjusted and adjusted CII values did not
differ for the 10-measure battery using any of the three
cutoff scores (all Z’s < 1.4; p’s > .17). However, partici-
pants produced higher adjusted than unadjusted CII scores
for the 25- and 43-measure batteries using all three cutoffs
(all Z’s > 2.1; p’s < .05). We also sought to determine
whether using adjusted T-scores to compute CII would
eliminate the dependence of abnormal test performance on
demographic variables and estimated premorbid 1Q. As
hypothesized, Spearman correlation analyses revealed no
significant associations between CII values based on adjusted
T-scores and age, sex, race, education, or estimated premor-
bid 1Q. We also repeated the multiple regression analyses
using the CII values derived from adjusted T-scores. These
analyses did not produce a single significant model, as no
predictor variable met entry criteria. Likewise, forcing all
five predictors en bloc into multiple regression equations
failed to yield a single significant model (all p’s > .24).

DISCUSSION

Four main findings emerged from this study. First, some
neurologically normal individuals show abnormal perfor-
mance on neuropsychological testing. The percentage who
do and the number of abnormal scores they produce depend
on how many tests are included in a battery and the cutoff
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score used to define abnormality. Second, healthy adults do
not obtain abnormal scores purely by chance. The likeli-
hood varies with age, sex, race, education, and estimated
premorbid IQ. Third, adjusting test scores for these charac-
teristics does not reduce the proportion of adults who obtain
abnormal scores or the number of such scores they produce,
but it eliminates the association of abnormal test perfor-
mance with demography and premorbid 1Q. Fourth, Monte
Carlo simulations predict rates of abnormal performance
more accurately than the binomial model.

The finding that some normal healthy individuals show
abnormal neuropsychological test performance is not new.
Using the binomial distribution, Ingraham and Aiken (1996)
predicted that 49% of healthy individuals would score >1
SD below the mean on at least 2 of 10 cognitive measures,
and found that 33% of healthy men reported in another
study actually did. Likewise, 35.7% of our participants
obtained 2 or more abnormal adjusted T-scores out of 10
using this cutoff. Heaton et al. (2004) reported that 72% of
healthy adults scored below 40 on 2 or more of 25 demo-
graphically adjusted T-scores derived from an expanded
HRB. We found that 75.2% of healthy adults scored below
40 on 2 or more adjusted T-scores derived from a very
different set of 25 measures. Axelrod and Wall (2007) found
that 29% of healthy young adults scored in the “impaired”
range on 3 or more of 7 measures derived from the HRB
based on raw score cutoffs recommended by Reitan and
Wolfson (1985). Even when we lowered the T-score cutoff
to below 30 (i.e., >2 SDs below the mean), 11-24% of our
participants produced 2 or more abnormal scores on batter-
ies of 25 or 43 measures. In short, the findings that healthy
adults often produce abnormal cognitive test scores, and
that the likelihood of doing so depends on the cutoff used to
define abnormality and number of tests administered, are
consistent with previous research.

Perhaps a less expected finding is that abnormal test per-
formance by healthy adults is not due purely to chance, at
least not when unadjusted scores are used. Both the binomial
model and MC method conceptualize abnormal test perfor-
mance by healthy adults as due to error. But this does not
mean they are random events. In our sample, the number of
participants who obtained abnormal unadjusted test scores
and their CII values correlated with demographic variables
and estimated premorbid IQ. Optimal models explained 21%
to 54% of the total variance in CII scores. Age accounted
for the most variance, followed by estimated premorbid 1Q
or years of education. Race accounted for relatively little
unique variance, and sex entered only a single model. Given
that estimated premorbid 1Q (Schretlen et al., 2005), cur-
rent 1Q (Diaz-Asper et al., 2004; Horton, 1999; Tremont
et al., 1998), and demographic variables (Heaton et al.,
2004) all correlate with neuropsychological test perfor-
mance by healthy adults, it is not surprising that they also
predict concurrent rates of abnormal performance. Using
demographically homogeneous samples likely minimizes
these effects, whereas the demographic diversity of our sam-
ple amplifies them.
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While demographic characteristics and premorbid 1Q are
strongly associated with abnormal neuropsychological test
performance when unadjusted scores are considered, adjust-
ing test scores for these factors eliminates the association.
After adjusting performance using methods described pre-
viously (Schretlen et al., 2007), neither the number of adults
who produced abnormal scores nor their CII values corre-
lated significantly with age, sex, race, education, or esti-
mated premorbid IQ. In fact, we could not explain significant
variance in CII values based on adjusted test scores with
any combination of predictor variables. This was not because
the adjustments eliminated abnormal test performance. In
fact, participants produced slightly more abnormal adjusted
than unadjusted scores, although these differences shrank
as the stringency of cutoffs used to define abnormality was
increased. Rather, adjusting test scores eliminates only the
effects of demographic characteristics and premorbid IQ on
abnormal performance.

Deviations between predicted and observed rates of abnor-
mal performance are interesting. Ingraham and Aiken (1996)
noted that the binomial model overestimates rates of abnor-
mal test performance when measures are correlated. This
was true of our study, especially when we used unadjusted
scores, lenient cutoffs, and larger test batteries. Demograph-
ically adjusting test scores brought actual rates of abnormal
performance into closer conformity with BN predictions,
likely because it reduced the size of correlations among test
measures. The MC method of Crawford et al. (2007) pre-
dicted actual rates of abnormal performance more accu-
rately than the binomial model, likely because the MC
approach accounts for correlations among the measures,
whereas the binomial model assumes that they are uncor-
related. Rates of abnormal performance predicted by MC
simulations differed from those shown by actual study par-
ticipants by less than 9% in all comparisons and by less
than 3% in most.

It remains unclear whether abnormal scores represent inci-
dental findings of impairment, anomalous but insignificant
poor performance (measurement error), a statistical artifact
of the procedure used to define abnormal performance, or
some combination of these. In healthy individuals, abnor-
mal demographically adjusted test scores likely represent
chance findings, as conceptualized by the binomial and MC
simulation methods. However, using adjusted scores does
not guarantee that abnormal performance by healthy indi-
viduals is clinically meaningless. Adjusted T-scores do not
locate a person in the distribution of raw test scores. They
locate a person in the theoretical distribution of individuals
with identical demographic background and estimated pre-
morbid IQ. It is still possible that abnormal adjusted test
scores reflect cerebral dysfunction due to transient changes
in cerebral blood flow or metabolism, neurotransmitter avail-
ability, or some other aspect of brain functioning. Nor can
we exclude the possibility that individual differences in
wakefulness, effort, rapport with the examiner, personality,
and myriad other factors contribute as well. In other words,
this study does not clarify whether—or under what
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circumstances—abnormal test performance reflects cere-
bral dysfunction. We can neither confirm nor reject the pos-
sibility that some normal, healthy individuals produce
abnormal adjusted test scores due to transient or circum-
scribed cerebral dysfunction. The present findings permit
us to conclude only that such abnormal adjusted test scores
are not due to individual differences in age, sex, race, edu-
cation, or premorbid IQ. Ultimately, our findings under-
score the distinction between “abnormal” test performance
and “impaired” functioning. A test score can be abnormal
for many reasons; impaired functioning is but one. The
reverse is also true: Individuals with unambiguously impaired
brain function can produce normal cognitive test scores.
Determining whether abnormal test performance reflects
impaired brain function requires inferential reasoning by
the clinician. It is not a property of test scores. Indeed, our
findings argue against the presence of a one-to-one relation-
ship between abnormal test performance and cerebral dys-
function. Consequently, while this study demonstrates the
frequency of abnormal performance by healthy adults, it
also underscores the examiner’s responsibility for interpret-
ing abnormal findings.

The main limitation of this study, like all normative stud-
ies, is that some participants might have had unrecognized
health conditions, and these could have accounted for their
abnormal performance. However, 17% of the initial partici-
pants were excluded due to medical or psychiatric illness,
and the health ratings of the remaining participants did not
correlate with their CII values. Moreover, even if every
member of a given sample enjoys perfect health, the distri-
bution of their test scores presumably would still be Gauss-
ian. In this case, similar numbers of subjects would still
score >1.0, 1.5, and 2.0 SDs below the sample means (which
might be shifted up), and the same percentages of individ-
uals should still produce two or more abnormal scores on
test batteries of comparable length. Thus, it seems unlikely
that health problems account for the observed rates of abnor-
mal test performance. Another weakness is that the sample
is smaller than optimal for estimating rates of rare events,
such as abnormal test performance defined by the tails of a
score distribution. However, the actual rates of abnormal
performance were closest to predictions when abnormality
was defined by more stringent cutoffs, suggesting that the
sample size was large enough to provide robust estimates of
abnormal performance in the general population.

Three final implications of this study merit comment.
First, using MC simulations to estimate rates of abnormal
test performance could be clinically useful. Finding that a
patient produces more abnormal scores than expected could
strengthen confidence that cerebral dysfunction is respon-
sible. Conversely, finding fewer abnormal scores than
expected could help the clinician avoid over-interpreting a
few anomalous performances. Second, if abnormal demo-
graphically adjusted test scores are more likely than abnor-
mal raw scores to represent chance events, then the use of
such adjustments might facilitate efforts to distinguish
between benign and pathological patterns of abnormal test
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performance. We currently are exploring this possibility
(Testa & Schretlen, 2006). Finally, the logic and findings
reported here likely apply to other diagnostic procedures in
psychology and medicine. Whenever multiple correlated
measures are obtained, whether these involve psychiatric
symptom ratings or laboratory blood tests, clinicians must
be alert to the possibility that seemingly “abnormal” find-
ings can occur by chance.

ACKNOWLEDGMENTS

This research was supported by NIMH grant MH60504, The Ther-
apeutic Cognitive Neuroscience Fund, and the Benjamin and Adith
Miller Family Endowment on Aging, Alzheimer’s, and Autism
Research. Dr. Schretlen receives royalties from sales of the Brief
Test of Attention. No other coauthor has any conflict of interest
related to the research reported in this article. The authors grate-
fully acknowledge Dr. John R. Crawford for his advice concern-
ing the Monte Carlo simulation, as well as Dr. John Langfitt and
Dr. Scott Millis for their advice regarding statistical analyses con-
templated for this article. The authors also thank Dr. Yaser Mush-
taq for his help with the health ratings.

REFERENCES

Axelrod, B.N. & Millis, S.R. (1994). Preliminary standardization
of the Cognitive Estimation Test. Assessment, 1, 269-274.
Axelrod, B.N. & Wall, J.R. (2007). Expectancy of impaired neuro-
psychological test scores in a non-clinical sample. Inter-

national Journal of Neuroscience, 117, 1591-1602.

Bakker, A., Schretlen, D.J., & Brandt, J. (2002). Testing prospec-
tive memory: Does the value of a borrowed item help people
remember to get it back? The Clinical Neuropsychologist, 16,
64—-66.

Bechara, A. (2007). lowa Gambling Task Professional Manual.
Odessa, FL: Psychological Assessment Resources, Inc.

Benedict, H.R.B. (1997). Brief Visuospatial Memory Test—Revised
Professional Manual. Odessa, FL: Psychological Assessment
Resources, Inc.

Benton, A.L., Sivan, A.B., deS Hamsher, K., Varney, N.R., &
Spreen, O. (1994). Contributions to Neuropsychological Assess-
ment: A Clinical Manual (2nd ed.). New York: Oxford Univer-
sity Press.

Blair, JR. & Spreen, O. (1989). Predicting premorbid 1Q: A revi-
sion of the National Adult Reading Test. Clinical Neuropsy-
chologist, 3, 129-136.

Brandt, J. & Benedict, H.R.B. (2001). Hopkins Verbal Learning
Test—Revised Professional Manual. Odessa, FL: Psychological
Assessment Resources, Inc.

Conners, C.K. (1995). Conners’ Continuous Performance Test.
Toronto, Canada: Multi-Health Systems, Inc.

Conners, C.K. (2000). Conners’ CPT-1I, Continuous Performance
Test 11. North Tonawanda, NY: Multi-Health Systems Inc.
Crawford, J.R., Garthwaite, P.H., & Gault, C.B. (2007). Estimat-
ing the percentage of the population with abnormally low scores
(or abnormally large score differences) on standardized neuro-
psychological test batteries: A generic method with applica-

tions. Neuropsychology, 21, 419—430.

Crum, R.M., Anthony, J.C., Bassett, S.S., & Folstein, M.F. (1993).
Population-based norms for the mini-mental state examination
by age and educational level. JAMA, 269, 2386-2391.


https://doi.org/10.1017/S1355617708080387

Abnormal test performance by healthy adults

Diaz-Asper, C.M., Schretlen, D.J., & Pearlson, G.D. (2004). How
well does 1Q predict neuropsychological test performance in
normal adults? Journal of the International Neuropsychologi-
cal Society, 10, 82-90.

Folstein, ML.E,, Folstein, S.E., & McHugh, P.R. (1975). “Mini-
mental state”. A practical method for grading the cognitive
state of patients for the clinician. Journal of Psychiatric
Research, 12, 189-198.

Heaton, R.K., Miller, S.W., Taylor, M.J., & Grant, I. (2004). Revised
Comprehensive Norms for an Expanded Halstead-Reitan Bat-
tery: Demographically Adjusted Neuropsychological Norms for
African American and Caucasian Adults. Lutz, FL: Psycholog-
ical Assessment Resources, Inc.

Horton, A.M., Jr. (1999). Above-average intelligence and neuro-
psychological test score performance. International Journal of
Neuroscience, 99, 221-231.

Ingraham, L.J. & Aiken, C.B. (1996). An empirical approach to
determining criteria for abnormality in test batteries with mul-
tiple measures. Neuropsychology, 10, 120—124.

Ivnik, R.J., Malec, JF., Smith, G.E., & Tangalos, E.G. (1992).
Mayo’s older americans normative studies: WAIS—R norms for
ages 56 to 97. The Clinical Neuropsychologist, 6, 1-30.

Janssen, R.S., Saykin, A.J., Cannon, L., Campbell, J., Pinsky, P.F.,
Hessol, N.A., O’Malley, PM., Lifson, A.R., Doll, L.S., Ruth-
erford, G.W., & Kaplan, J.E. (1989). Neurological and neuro-
psychological manifestations of HIV-1 infection: Association
with AIDS-related complex but not asymptomatic HIV-1 infec-
tion. Annals of Neurology, 26, 592—600.

Jones-Gotman, M. & Milner, B. (1977). Design fluency: The inven-
tion of nonsense drawings after focal cortical lesions. Neuro-
psychologia, 15, 653—674.

Kaplan, E., Goodglass, H., & Weintraub, S. (1976). Boston Nam-
ing Test. Experimental Edition. Boston: Aphasia Research Cen-
ter, Boston University.

Kingery, L.R., Schretlen, D.J., Sateri, S., Langley, L.K., Marano,
N.C., & Meyer, S.M. (2006). Interrater and test-retest reliabil-
ity of a fixed condition design fluency test. The Clinical Neuro-
psychologist, 20, 729-740.

Klove, H. (1963). Clinical neuropsychology. In FE.M. Forster (Ed.),
Medical Clinics of North America. New York: Saunders.

Knapp, L., Knapp, R.R., & Knapp-Lee, L. (1992). Career Ability
Placement Survey: CAPS Technical Manual. San Diego, CA:
EdITS.

Lu, L., Yun, J., Meyer, S.M., & Schretlen, D.J. (2005). Interrater
reliability, construct validity, and normative data for the clock
drawings of normal adults. Paper presented at the International
Neuropsychological Society, 33rd Annual Meeting, St. Louis,
MO, p. 80.

Manning, K.J., Gordon, B., Pearlson, G.D., & Schretlen, D.J. (2007).
The relationship of recency discrimination to explicit memory
and executive functioning. Journal of the International Neuro-
psychological Society, 13, 710-715.

Nelson, H.E. (1976). A modified card sorting test sensitive to
frontal lobe defects. Cortex, 11, 918-932.

https://doi.org/10.1017/51355617708080387 Published online by Cambridge University Press

445

Reitan, R.M. (1958). Validity of the Trail Making Test as an indi-
cator of organic brain damage. Perceptual and Motor Skills, 8,
271-276.

Reitan, R.M. & Wolfson, D. (1985). The Halstead-Reitan Neuro-
psychological Test Battery. Theory and Clinical Interpreta-
tion. Tucson, AZ: Neuropsychology Press.

Rey, A. (1941). L’examen psychologique dans les cas d’encepha-
lopathie traumatique. (Les problems). Archives de Psycholo-
gie, 28, 215-285.

Salthouse, T.A. (1991). Mediation of adult age differences in cog-
nition by reductions in working memory and speed of process-
ing. Psychological Science, 2, 179-183.

Schretlen, D.J. (1997). Brief Test of Attention Professional Man-
ual. Odessa, FL: Psychological Assessment Resources, Inc.
Schretlen, D.J., Buffington, A.L., Meyer, S.M., & Pearlson, G.D.
(2005). The use of word-reading to estimate “premorbid” abil-
ity in cognitive domains other than intelligence. Journal of the

International Neuropsychological Society, 11, 784-787.

Schretlen, D.J., Cascella, N.G., Meyer, S.M., Kingery, L.R., Testa,
S.M., Munro, C.A., Pulver, A.E., Rivkin, P., Rao, V.A., Diaz-
Asper, C.M., Dickerson, F.B., Yolken, R.H., & Pearlson, G.D.
(2007). Neuropsychological functioning in bipolar disorder and
schizophrenia. Biological Psychiatry, 62, 179-186.

Schretlen, D.J.,, Munro, C.A., Anthony, J.C., & Pearlson, G.D.
(2003). Examining the range of normal intraindividual vari-
ability in neuropsychological test performance. Journal of the
International Neuropsychological Society, 9, 864—870.

Testa, S.M. & Schretlen, D.J. (2006). Diagnostic utility of regres-
sion based norms in schizophrenia. The Clinical Neuropsychol-
ogist, 20, 206.

Tremont, G., Hoffman, R.G., Scott, J.G., & Adams, R.L. (1998).
Effect of intellectual level on neuropsychological test perfor-
mance: A response to Dodrill (1997). The Clinical Neuropsy-
chologist, 12, 560-567.

Ward, L.C. (1990). Prediction of verbal, performance, and full
scale 1Qs from seven subtests of the WAIS-R. Journal of Clin-
ical Psychology, 46, 436—440.

Wechsler, D. (1981). Wechsler Adult Intelligence Scale—Revised.
New York: Psychological Corporation.

Wechsler, D. (1987). Wechsler Memory Scale—Revised. San
Antonio, TX: The Psychological Corporation.

Wechsler, D. (1997). Wechsler Adult Intelligence Scale-Third Edi-
tion. San Antonio, TX: The Psychological Corporation Har-
court Brace & Company.

Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence.
San Antonio, TX: Harcourt Assessment, Inc.

Wilson, B.A., Cockburn, J., & Baddeley, A.D. (1985). The River-
mead Behavioural Memory Test. Bury St. Edmunds, UK:
Thames Valley Test Company.

Zachary, R.A. (1986). Shipley Institute of Living Scale Revised
Manual. Los Angeles: Western Psychological Services.


https://doi.org/10.1017/S1355617708080387

