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ABSTRACT. In a two-dimensional model of an ice mass breaking off from a cliff, stresses and velocities are 
calculated numerically according to Glen's flow law. A tensile crack opens in the zone of maximum tensile 
principa l stress UI and propagates to a depth where u, i, zero. Ice flow then produces an overhang of th e 
partly detached ice mass. Consequently, the stress cr, b elow the tip of the crack becomes tensile again and the 
crack propagates for another small distance. This process goes on until the centre of gravity of the detaching 
ice mass has moved past the supporting edge of the b edrock. Velocities v of the ice mass calcula ted for different 
stages of the process are plotted as a function of time t. The plotted points lie in the vicinity of a curve given 
by 

B 
v - vc = (tA - t )D' 

where vc, tA , Band D are constants. T he same type offunction has been found for velocities m easured at an 
ice mass breaking off the Grubengletscher. 

R EsuME. Mouvement d'une masse de glace importante p recedant la rupture. D a ns un modele bidimensionnel d 'une 
masse d e glace se detachant d'un front glaciaire abrupt, les tensions et les vitesses sont calcuIees sur la base 
de la loi d e fluage de G len. Une fissure d e traction se produit p erpendiculairement a la direction de la 
tension principale de traction cr , et se propage jusqu'a une profondeur telle que u, = o. L e fluage de la glace 
provoque un surplomb progressif de la masse d e glace en voie de detach em ent, et par la d e nouvell es tensions 
de traction sont induites a la base de la fissure , d e tell e sorte que celle-ci peut se propager un peu plus pro­
fondement. Ce mecanisme d'approfondissem ent progressif de la fissure se poursuit jusqu'a ce que le centre 
de gravite d e la masse de glace ne soit plus situe au-dessus de la surface d 'appui. L es vitesses v calculees 
pour differentes profondeurs d e la fissure, portees dans un diagramme en fonction du temps t, sont un 
ensemble d e points situes sur une courbe qui es t don nee en bonne approximation par une equation du type 

B 
v- vc = (tA - t )D' ( I ) 

(vc, B, tA , D sont constantes) . Une representation semblable s'est averee adaptee a la d escription des vitesses 
pour une masse de glace mesurees se detachant Grubengletscher. 

ZUSAMMENFASSUNG . D ie B ewegung einer grosselZ Eismasse vor ihrem Abbruch. In einem 2-dimensionalen 
Modell e iner Eismasse, die von einer stei len Gle tscherfront abbricht, werden die Spannungen und 
Geschwindigkeiten unter der Annahme d es Glen 'schen Fliessgese tzes numerisch b erechnet. Eine 
Zugspalte bffnet sich senkrecht zur Richtung der grbssten Ha,uptspannung u, (Zug) bis zu einer Tiefe, wo 
crI = o. Durch Fliessen d es Eises entsteht a llma hlich ein Uberhang d er sich ablbsenden Eismasse und 
dadurch erneu t eine Zugspannung > 0 unterhalb der Spalte, sodass diese ein Stuck ti efer vordringen ka nn. 
Dieser Prozess der schri ttweisen Vertiefung der Spalte setzt sich fort, bis der Schwerpunkt der abbrechenden 
Eismasse nicht mehr uber d er U nterstiltzungsflache liegt. Die fur verschiedene Spaltentiefen berechneten 
Geschwindigkeiten v des abbrechenden Teils ergeben, aufgetragen gegen die Zeit t, eine Kurve, die gut durch 
die Funktion 

B 
v-vc = (tA- t )D' 

beschrieben wird (vc, tA, B und D sind Konstanten ) . Diese Darstellung hat sich auch a ls geeignet erwiesen, 
die am Grubengletscher gemessenen Geschwindigkeiten einer abbrech enden Eismasse zu b eschrieben. 

INTRODUCTION 

In 1973 an ice mass, separated by a large crevasse from the glacier behind, was threatening 
a village (R anda, Wallis). The time of breaking-off has been predicted quite accurately by 
extrapolation of the veloci ty- time function measured in the preceding mon ths (Flotron, 1977; 
Rothlisberger, 1977). By the same method, the calving of an ice mass from the Gruben­
gletscher (Wallis) was forecast (Haeberli , 1975)' While velocity measurements are indispens­
able for su ch forecasts, a better understanding of the breaking mechanism is desirable. 
Such a knowledge could improve the choice and layout of future measurements or initiate 
new investigations. One way of obtaining a better understanding of the process is to set up a 
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model based on eXIstmg observations. This has been attempted for the Grubengletscher 
where the geometry is relatively simple and where both long-term as well as detailed measure­
ments have been made. The glacier borders a shallow lake which undercuts the steep cliff 
causing calving about once a year. However, the glacier is not floating and buoyancy forces 
are negligible. The problem thus differs from that of calving from floating ice shelves or ramps 
which has been treated theoretically by Weertman (1957), Reeh (1968) and Holdsworth 
(1973). The mechanism studied in the case of the Grubengletscher applies for an ice mass 
breaking off from the main ice body under the effect of its own weight. The process starts in 
the zone of maximum tensile stress which exists at some distance from the cliff as a consequence 
of the horizontal gradient oflongitudinal stress (this stress is equal to the hydrostatic pressure 
far away from the cliff and zero at the vertical cliff). A crack, starting in the zone of maximum 
tension does not proceed downwards to the ice edge at once but only in a series of steps each 
of which corresponds to a greater overhang of the detaching ice mass. This step-wise propaga­
tion of a crack is modelled. 

K ,-:-r---t 

L 

o , 

a b 
Fig. I. Plan (a) and side view (b) of calvingfrollt at the Grubengletscher: L = lamella , B = ice block supporting lamella, 

K = kryokinemeter. 

GEOMETRY OF CLIFF AND RESULTS OF MEASUREMENTS 

In Figure I the part of the cliff which broke off in 1974 is sketched; in this paper it will be 
termed the lamella. The figures refer to an early stage; later the lamella became much thinner 
by ablation. The movement of the lamella relative to the main glacier has been measured 
with a kryokinemeter. Observations at intervals of one minute showed that the movement 
was jerky. Haeberli and Rothlisberger (1976) assumed that the jerks correspond to the forma­
tion of cracks. This suggests the following breaking mechanism: 

OUTLINE OF ASSUMED BREAKING MECHANISM 

The mechanism consists of two alternating processes: 

I. formation of a crack which stops at a certain depth; 
2. growth of stress at the base of the crack until further crack propagation is possible. 

Process I. The crack opens perpendicular to the direction of the tensile principal stress 0"1 

and stops at a depth where crI = o. 
Process 2. Growth of tensile stress at the base of the crack is caused by two further 

processes: 

(a) ice flow which results in an increasing overhang of the lamella; 
(b) further undercutting of the cliff by the lake current (neglected in this paper) . 
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It is assumed that, once the crack has stopped, it becomes blunted and therefore a stress cri 
greater than a critical value cre > 0 is necessary to trigger further propagation. 

ASSUMPTIONS AND SIMPLIFICA TIONS 

(i) Stresses and velocities are calculated for plane strain, i .e. the lamella sketched in 
Figure 1 b is taken to be of unlimited exten t in the direction perpendicular to the paper. 

(ii) It is assumed that Glen 's flow law a pplies for effective stresses > 0.3 bar. In Glen's 
flow law 

. T e n - I I 

£if = ~ cri j , (2) 

where feij are the components of the strain-rate tensor and cril those of the stress deviator. 
'Te, the effective stress, is given by 2Te2 = cril cri/ , n is taken to be equal to 3 and A = 580 
bar secS corresponding to the value which Nye (1953) obtained from the closure ra te of bore 
holes with a slight modification by Rothlisberger ( 1972). 

(iii) For effective stresses ~0.3 bar a linear fl ow law is used. While the choice of the 
limiting value of 0.3 bar is arbitrary, the adoption of a linear fl ow law at low stresses is in 
accordance with results of creep tests by Butkovich and Landauer (1960) and Melior and 
Testa (1969) . (The latter authors, however, found no strictly linear flow law. Further, they 
questioned whether secondary creep was established in a ll creep tests.) In any case, the choice 
of the flow law for low stresses is of little influence on the calculated velocities. 

(iv) It is assumed that the first crack opens in the glacier surface perpendicular to the 
direction of the tensile principal stress when this stress has grown to a certa in value. This 
critical value is of the order of I bar, as can be inferred from strain-rates measured in regions 
of glaciers where transverse crevasses form. H oldsworth (1969) reports strain-rates in the 
range of 0 .01 a - I to 0 .0 3 a - I associated with the formation of transverse crevasses. 

In our model the tensile stress in the glacier surface grows as the lake current undercuts the 
cliff deeper and deeper. It is not unreasonable to assume that the first crack forms when the 
tensile stress in the glacier surface amounts to, say, 0.8 bar which corresponds to a n undercut 
by the lake of 3 m . In any case, the principa l process of a step-wise extension of the crack 
does not depend on this particular assumption. In fact, in a second model of the glacier cliff 
we have chosen an undercut of 4 m and have in addition introduced the crack closer to the 
front. The process of detachment was very simila r to that in the first model. 

(v) The critical tensile stress necessary for further propagation of a crack which had 
stopped is arbitrarily taken as cre = 0.03 bar. 

(vi) The direction of crack propagation is inferred from the stress field calculated at each 
new onset of crack propagation on the basis of Glen's flow law. Actually, once the crack has 
started propagating elastic strains determine the direction of further propagation. All elastic 
effects, however , a re neglected. Further defi ciencies in the determination of the crack 
direction ar e specified in the next section. 

(vii) Ablation a t the ice surfaces is neglected , although it did significantly cha nge the 
shape of the lamella at the Grubengletscher 

(viii) The effect of water pressure acting o n the small submerged part of the lamella is 
neglected . 

M ETHOD OF COMPUTATION 

Calculations were carried out with a computer program for finite-element analysis of 
elastic sheets, plates and shells developed by U. Walder and D. Green at the Institut fUr 
Baustatik, ETH ZUrich. This program is based on a hybrid stress model. The assumed 
stress field satisfies the equilibrium requirements within an element. Stresses are discon­
tinuous, however, at the element boundaries. Functions for the deformations of element 
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boundaries are chosen in such a way that for equal displacements and rotations in nodal 
points the deformations of two neighbouring element boundaries are equal. Applying the 
generalized principle of the minimum of complementary energy the stiffness matrix is cal­
culated. Due to complete a nalogy of equations, the program can also be used for Newtonian 
liquids with the flow law: 

. , , 
"if = - crii , 

2YJ 

where YJ is the viscosity and "it' are the components of strain-rate deviator. For the special 
case of incompressibility "it' can be replaced by "ii and then Equation (3) is formally identical 
with Glen 's flow law (2) provided that the term tAn/T en - I stands for a stress-dependent 
viscosity YJ ( Te). Numerical values of YJ ( T e) have been found for each element by means of an 
iteration scheme: In the first step YJ was taken to be equal to YJ(I) = t A3/T e(J) Z with Te(I) = 0·3 
bar for all elements . With YJ(d new values of Te (different for each element) were calculated: 
they are called here T e (z). YJ( z) was then calculated from the recurrence relations 

{

YJ(I ) 

0·5 (YJ(i) + 2( A3 )2) 
Te(i+ I) 

if T e (i + I) > 0.3 bar 

and so on. This procedure was continued until two successive values YJ(i) and 1](i+ d did not 
differ in the first two digits for any element. 
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Fig. 2 . Model of ice cliff undercut by shallow lake at the right-hand edge. Numbers are values of the more-tensile principal 
stress u, in tenths of bar, upright numbers indicate tension, slanting numbers compression. The dotted line is the boundary 
between tensile and compressive values of u, . Line elements indicate direction perpendicular to u,. Below the arrow a crack 
will be introduced. 

Calculations were started with the crack-free cliff (Fig. 2). Mesh points (not shown in 
Figure 2) at the lower boundary were fixed, because along its edge this glacier is frozen to 
its bed. M esh points at the left side of the part considered are fixed with r espect to horizontal 
motion but free to move vertically. (This is appropriate at a very large distance from the 
front. ) In the zone of maximum tensile stress a crack was introduced following the direction 
of the stress field shown. Once a crack was introduced, the stress field became slightly more 
inclined below the crack. The crack was deepened in the new direction until the larger 
principal stress in the elem ent below the crack was no longer positive (tensile). Time tl = 0 
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was assigned to this stage shown in Figure 3. Figure 3a shows the stress distribution in ice 
assuming ma terial properties as described a bove while F igure 3b refers to a Newtonian 
liquid . Note the greater depth of the crack a nd the much la rger tensile stresses in the interior 
of the lamella of Figure 3a as opposed to Figure 3b. T he la tter p eculiarity is a consequence of 
the lower stress-dependent viscosity a t the base of the lamella . This will be considered in the 
next section. 
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Fig. 3. 
a. Same cliff as Figure 2 with stable crack (i .e. stress below crack tip is compressive) . 
b. Same cliff as Figure 2 with stable crack, material is a Newtonian liquid. ( T he material shown in all other figures obeys 

Glen's jlow law for effective stresses > 0.3 bar.) 

From the calculated velocities of the mesh points at the surface of the lamella, m ovements 
over a chosen sm all time increment !'!.I were inferred. Drawing these displacem ents the next 
position of the la mella was found and the time 12 = t , + !'!.I was assigned to i t. Figure 4 shows 
the lamella a fter three such steps, at time t4 • In Figure 4a the crack is unsta ble because 
0' , > 0 at its tip . It is extended until 0' , in the element below the crack is no longer positive 
(Fig. 4b). A t depths grea ter tha n, say, 17 m the direction of further crack propagation 
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becomes difficult to infer . The reason is that then the principal stress eJz is so large that 
immediately below the crack it is necessarily parallel to the traction-free crack surface the 
shape of which is determined by the quadrilateral finite elements. Simply by continuity the 
crack has then been extended smoothly towards the edge of the cliff. A stage of this procedure 
is shown in Figure 5. In the surface of the inner side of the curved crack, tensile stresses have 
developed parallel to the crack surface. Quite possibly the true crack then follows a zig-zag 
path. Detailed examinations of the crack path are outside the scope of this study. 
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Fig. 4. 
a. Later stage with overhanging lamella. Crack is unstable (i .e. stress below crack tip is tensile ). 
b. Same overhang of lamella as in Figure 4a. Crack is deeper and stable. 

DISCUSSION OF STRESS DISTRIBUTION. PREFERRED FRACTURE ZONES 

In Figure 5, numerical values of eJz are shown beside those of crI ' At first sight the absolute 
values of eJz next to the upper surface of the lamella appear surprisingly large. The reason 
becomes clear when the distribution of effective stress is inspected: The effective stress 
Te = HeJI - eJZ) is largest in the lower core of the lamella; inside the broken line - ' - ' -
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Fig_ 5. Distribution oJ both. principal stresses in overhanging lamella. Small numbers are values of pri71cipal stress a, in tenths 
of bar, always compressive. Larger, thinner numbers are values of al (straight nll1nbers indicate tension , slanting numbers 
compression ). Line elements indicate direction of a,. The dolled line is the boundary between tensile and compressive values 
oJ al_ Inside the broken line the iffective stress is greater than 0.65 bar. 

it is greater than 0.65 bar resulting in a relatively low viscosity T) (Te) = tA3 /Te2. The stiffer 
frame outside the broken line is bending, partly due to its own weight, partly due to the 
pressure acting from the inside on the curved side-walls of the frame. While the angles at the 
upper corners of the frame remain nearly unchanged, the side-walls bend outwards and the 
upper surface inwards. This explains why large compressive stresses occur parallel to the 
upper surface of the lamella and why large tensile stresses are formed at greater depth (below 
the "neutral zone" of the "top beam" ). The curvature of the frame also explains why tensile 
stresses occur in the frame adjacent to the crack. 

The lateral tensile stresses in the upper part of the core of the lamella increase with time 
during the process of detachment. In the stage shown in Figure 6 they already exceed the 
stress at which the first crack in the glacier surface opened (Fig. :2 ), provided that air has 
access to the interior of the lamella_ It is thus possible that the lamella breaks apart along a 

0/ 01 

0/ 01 

0/ 01 

0/ 01 

~ ____________ ~lOm 

Fig. 6. Lamella shortly bifore breaking-off, the broken line shows a possible surface of shear fracture_ 
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surface approximately through its centre and parallel to the ice front- a nd this considerably 
earlier than the event of detachment of the whole la m ella which would be predicted from 
velocity measurements. Indeed, this kind of failure seems to have taken place in a relatively 
thick lamella breaking off from the Grubengletscher in 1975 (personal communication from 
W . Haeberli). Typically, at the surface of the lamella no crack appeared prior to the moment 
of break-off (as shown in Figure 5, lateral stresses are compressive in the upper surface). The 
difference in failure of the two lamellae h as its correspondence in the calculations which show 
tha t towards the end stage the tensile stresses in the core of a thick lamella become larger than 
those in a thin lamella of the same height. 

Another probable fracture zone is the lower edge of the ice front facing the lake. In 1974 
from this zone of the lamella an ice mass detached three hours before the entire lamella broke 
off (Haeberli, 1975). 

Shear fracturing might also be expected, although it has not been observed at the Gruben­
gletscher. On the basis of H aynes' interpretation of his triaxiallaboratory tests on strength of 
ice (Haynes, 1973), one would expect shear fracture along planes making a ngles of approxi­
mately 30° with the direction of U z. Such a surface is sketched in Figure 6 (dashed line) . It is 
questionable, however, whether this particular result applies for glaciers, because the strength 
values from laboratory tests are generally an order of m agnitude larger than those at which 
fracture in glaciers actually takes place. 

VELOCITY OF LAMELLA AS FUNCTION OF TIME 

Velocities v of the mid-point of the upper boundary of the lamella relative to the m ain 
glacier were calculated for different stages of inclination of the lamella and stable crack. 
Time intervals between two successive stages i and i+ I were calculated from the movem ent 
between these stages (a ) by assuming constant initial velocity Vi during the time interval 
(this method was m entioned under "procedure of calculation"), (b) from the relation 

di 
t i + I-tt = ~( ) ~ , 

<[ Vi + Vi+ I +~vm 

where ti is the time at stage i, dt the distance moved between stages i and i + I , Vi the velocity 
at stage i, and Vm the velocity a t the mid-point of the time interval inferred from an approxi­
mate velocity- time function (I). Suitable constants Vc and tA were then chosen and the 
differences Vi - Vc and tA - tt were plotted on double-logarithmic paper (Fig. 7). A straight 
line was drawn through these points, representing a function of the form ( I ). In Figure 7 two 
modelled and two measured velocity- time functions are shown together : Points I , 4, 6, a nd 9 
of line III correspond to the different stages of the modelled lamella shown in Figures 3a, 
4b, 5 (with longer crack) and 6. Time intervals were calculated with method (b). 

The points of line IV correspond to a model of a thinner lamella which is more similar to 
the one measured in 1974. The height of the cliff in this model is 20 m , the distance of the 
crack from the ice front I1 m and the horizontal extent of the undercut is 4 m. Time intervals 
were calculated with m ethod (a), the first interval in two steps with the a id of an interpola ted 
point. 

The points of lines I and 11 were obtained from the measurements made at the two 
lamellae detaching from the Grubengletscher in the years 1974 and 1975 respectively. 

At time l = lA the velocity becom es infinite according to Equation ( I ); this implies that 
the actua l detachment takes place at a time R < l A. In the models R is assumed to be close 
to the time when the centre of gravity of the lamella moves past the supporting edge of the 
bed (where it borders the lake). For the lamellae measured at the Grubengletscher the time 
R of final collapse is known ; when fitting Equation ( I) to the data, tA turned out to be only 
one minute later than R. 
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Line I: Velocities measured at the Grubengletscher in 1974 (vc = 0 mmlh, tA = 1000 h). Line Il : Velocities 
measured at the Grubengletscher in 1975 (vc = 0 mmlh, tA = 1000 h). Line Ill : Modelled velocities, lamella is shown 
in Figures 3a , 4a- 6 (vc = 0.03 mmlh, tA = 18 0 18 h ). Line IV: Modelled velocities of thinner lamella (dimensions 
give/! in the text ) (vc = 0.03 mmlh, tA = 17640 h). 

Figure 7 shows that both measured and modelled data are reasonably well described by 
Equation ( I) . In view of the complex geometry and support conditions of the lamella 
measured in 1974 a better agreement with results can hardly be expected. 

T he effect of choosing a different value for A in Glen's flow law (2) would be equivalent 
to a translation of all modelled points in Figure 7 in the direction making an angle of 1350 
with the abscissa. * 

Changing the size (not the shape) of a lamella has a similar effect: The points of a lamella 
enlarged by a factor ,\ would have a ,\qimes higher velocity. The path of a point between 
two stages of the lamella would be '\-times greater than before, thus the time interval between 
the stages would be reduced by a factor ,\3. I n the graph this corresponds to a shift of a ll 
points by 3 log ,\ along the abscissa (towards the left) and 4 log ,\ along the ordinate. An 
interesting aspect of practical importance is that the time interval between lA (time of 
asymptote) and R (time of actual break-off) is reduced by a factor ,\3 while the velocity at 
break-off is enlarged by a factor ,\4. 

CONCLUSIONS 

Comparing the velocity- time function of the measured three-dimensional lamella (I ) 
with those of the two-dimensional models, of course no quantitative coincidence is found. 
However, the type of function is the same in both cases . This is taken as corroboration of the 
basic assumptions of the model. 

* This and the following considerations are stri ctly correct only when the ice is modelled by Glen's flow law 
throughout. W e have, however, used a linear flow law for effective stresses < 0.3 bar. 

https://doi.org/10.3189/S0022143000215505 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000215505


JO U RNAL OF GLA C IOLOGY 

Unless shape and m a terial properties of the detaching ice mass were known in detail and 
a three-dimensional model constructed, no quantitative predictions would be possible. Wha t 
knowledge, then, may be gained from an approximate two-dimensional model ? 

I. Zones of large tensile stresses in the interior of a lamella can be d e tected . There, the 
magnitude of the tensile stresses is a measure of the probability that failure occurs in 
these zones before the whole lamella breaks off (and before the predicted time of this 
event) . 

2. The approximate deformation of the ice mass can be calculated. This permits one to 
distinguish whether an observed shape change is the result of normal ice flow or whether 
it is due to fracture or possibly enhanced flow going along with a change of ice proper­
ties in certain zones. 

3. Approximate rules for the influence of size and shape of the detaching ice mass on the 
velocity can be worked out. 
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DISCUSSION 

R. LIST: Your mathematical model is not continuous whereas the equation for the velocity is. 
What is the time interval between cracks in the model? How does it affect the result and how 
does it compare with the cracking in nature? 

A. IKEN: The function inferred from the calculated points is continuous only on a large scale. 
In the model, the time intervals are calcu lated from the velocity of the ice flow alone. The 
time involved in actually propagating the cracks is neglected. The observed time intervals 
between cracks were small; Haeberli ( 197 S) observed several cracks per minute. 

H. ROTHLISBERGER: In spite of the generally very regular acceleration there were short-term 
irregularities in the case of the small glacier of the Weisshorn above Randa, which could not 
be explained by surveyors' error. This may indicate that the ice mass moves with discrete 
jerks. 

J. W. GLEN: Why did you not allow for any increase in the overhang due to undercutting by 
the water? 

I KEN: The erosion by lake water was neglected because 

( I) I t has not been measured. 
(2) We think that the effect of progressive ice erosion on the breaking process is small 

compared to that of ice flow once the breaking process has started. 

D. M. MCCLUNG: Can you comment on how you are able to model the stresses at a crack 
tip and the propagation of a crack with a viscous flow law? 

IKEN: I did not model the crack propagation itself but calculated the stresses before and after 
each propagation. I did not calculate the stress concentration at the tip. However as soon 
as the more tensile of the principal stresses, 0'" is zero or compressive at some distance from the 
tip, the crack cannot propagate further, no matter what the crack tip looks like. 
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