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Diagonal Plus Tridiagonal Representatives
for Symplectic Congruence Classes of
Symmetric Matrices

D. Ž. Doković, F. Szechtman and K. Zhao

Abstract. Let n = 2m be even and denote by Sp
n
(F) the symplectic group of rank m over an infinite

field F of characteristic different from 2. We show that any n × n symmetric matrix A is equivalent

under symplectic congruence transformations to the direct sum of m × m matrices B and C , with B

diagonal and C tridiagonal. Since the Sp
n
(F)-module of symmetric n×n matrices over F is isomorphic

to the adjoint module sp
n
(F), we infer that any adjoint orbit of Sp

n
(F) in sp

n
(F) has a representative

in the sum of 3m − 1 root spaces, which we explicitly determine.

1 Introduction

A bilinear space over a field F is an ordered pair (V, ϕ) consisting of a finite-dimen-

sional F-vector space V and a bilinear form ϕ : V × V → F. In this context the first

basic question is to decide when two bilinear spaces, say (V, ϕ) and (W, ψ), are equiv-

alent, i.e., they admit a linear isomorphism f : V → W satisfying ψ( f (x), f (y)) =

ϕ(x, y) for all x, y ∈ V . P. Gabriel [7] showed how to reduce this problem to the non-

degenerate case. Work by J. Williamson [12] and C. Riehm [9] reduces the latter to

the equivalence of quadratic and hermitian forms and the similarity of matrices. The

equivalence problem of sesquilinear forms and its relationship to the determination

of conjugacy classes in the classical linear groups is considered by G. E. Wall in [11].

Let us mention one interesting application of the structure theory of bilinear

spaces. If (V, ϕ) is a bilinear space, define its transpose to be the bilinear space (V, ϕ ′)

where ϕ ′ is defined by ϕ ′(x, y) = ϕ(y, x) for all x, y ∈ V . It is a rather non-trivial

fact that the bilinear spaces (V, ϕ) and (V, ϕ ′) are equivalent. Moreover, the corre-

sponding form-preserving linear isomorphism can be chosen to be an involution.

This was first proved by R. Gow [8] under the restriction that ϕ is non-degenerate,

but the extension to the general case follows at once from Gabriel’s work. An alter-

native proof is given in [3]. An algorithm to compute the aforementioned involutory

isomorphism is presented in [6].

From now on we shall assume that the characteristic of F is not 2. Let (V, ϕ) be

a bilinear space. Given a basis B of V , we write MB(ϕ) for the Gram matrix of ϕ
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relative to B. We define the symmetric and alternating parts of ϕ to be the forms

ϕ+
= (ϕ + ϕ ′)/2 and ϕ−

= (ϕ− ϕ ′)/2.

In this paper we shall deal exclusively with bilinear spaces whose associated alternat-

ing form is non-degenerate. This implies that the dimension of our bilinear spaces is

even, say n = 2m. Let (V, ϕ) and (W, ψ) be such bilinear spaces. Let us write Jm, or

simply J, for the matrix
(

0 Im

−Im 0

)

.

The symplectic group Spn(F) is the stabilizer of J under the action of GLn(F) by

congruence transformations, i.e.,

Spn(F) = {X ∈ GLn(F) : X ′ JX = J}.

(Here X ′ denotes the transpose of X.) It is well known that V and W admit bases B

and C such that

MB(ϕ−) = J = MC(ψ−).

It follows that (V, ϕ) and (W, ψ) are equivalent if and only if the symmetric matrices

MB(ϕ+) and MC(ψ+) are equivalent under the congruence action of Spn(F).

Thus we are led to the study of normal forms of symmetric matrices under sym-

plectic congruence. This matrix problem is exactly the one considered and solved by

J. Williamson [12]. Although he worked in characteristic 0, his results and proofs

remain valid for any field of characteristic different from 2. Explicit normal forms in

the case of the real field were computed by D. M. Galin (see [2, Appendix 6]).

The present work aims at further contributing to this theory by exhibiting repre-

sentatives for the congruence action of Spn(F) on symmetric matrices which are very

much unlike any others previously considered.

We point out that the module, Symn(F), of symmetric n by n matrices over F
under the congruence action of Spn(F) is isomorphic to the adjoint module

spn(F) = {Z ∈ Mn(F) : Z ′ Jm + JmZ = 0}.

An explicit isomorphism from the former to the latter is given by A → Z = JmA.

Hence, the problem solved by Williamson is equivalent to the problem of finding

normal forms for the adjoint action of Spn(F) on its Lie algebra spn(F). In the case

of the real field, one can consult [4] or [5] for the description of normal forms. The

case when Z is nilpotent has been described in detail, for arbitrary F of characteristic

different from 2, by Springer and Steinberg [10, Chapter IV].

Let us consider the Z2-gradation g = g0 ⊕ g1 of g = spn(F), where

g0 =

{

(

X 0

0 −X ′

)

: X ∈ Mm(F)
}

,

and

g1 =

{

(

0 Y

Z 0

)

: X,Y ∈ Symm(F)
}

.
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(Here Mn(F) is the algebra of all n × n matrices over F.)

By generalizing a special case of a theorem of L. V. Antonyan [1, Theorem 2], we

obtained the following result in [6] (see Theorem 1.6, part (i)).

Theorem 1.1 Let F be any field of characteristic different from 2 and let n = 2m
be even. Then every adjoint orbit of Spn(F) in g = spn(F) meets the subspace g1.
Equivalently, for any A ∈ Symn(F), there exists X ∈ Spn(F) such that

X ′AX =

[

B 0

0 C

]

,

where B,C ∈ Symm(F).

It is obvious that in this theorem we can further require B or C to be a diago-

nal matrix. This is a consequence of the fact that every symmetric matrix over F
is congruent to a diagonal one and the observation that X ⊕ (X ′)−1 ∈ Spn(F) for

X ∈ GLm(F). It is not possible to demand that both B and C above are always diago-

nal. However, it is pleasantly surprising that, under the further assumption that F is

infinite, we can make B diagonal and C tridiagonal.

Theorem 1.2 Let F be an infinite field of characteristic different from 2, and A a sym-
metric matrix of size n = 2m. Then A is congruent under the symplectic group Spn(F)

to the direct sum of a diagonal m × m matrix B and a tridiagonal m × m matrix C.

It may be of interest to reformulate this theorem in terms of the adjoint module

g = spn(F). The subspace h ⊂ g consisting of the diagonal matrices

diag(ξ1, ξ2, . . . , ξm,−ξ1,−ξ2, . . . ,−ξm), ξ1, ξ2, . . . , ξm ∈ F

is a Cartan subalgebra of g. Let εi : h → F be the linear function which takes the value

ξi at the above diagonal matrix. The root system of (g, h) consists of the functions

±εi ± ε j for 1 ≤ i < j ≤ m and the functions ±2εi for 1 ≤ i ≤ m. The roots

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αm−1 = εm−1 − εm, αm = 2εm

form a base of this root system (of type Cm).

We denote by gα the (1-dimensional) root space corresponding to the root α:

gα = {Z ∈ g : [H,Z] = α(H)Z, ∀H ∈ h} .

If A = B ⊕C where B,C ∈ Symm(F), with B diagonal and C tridiagonal, then the

matrix Z = JmA ∈ g lies in the sum of root spaces corresponding to the roots

±2α1, ±2α2, . . . ,±2αm

and

α1 + α2, α2 + α3, . . . , αm−1 + αm.

Hence, the above theorem can be reformulated as follows.
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Theorem 1.3 For any infinite field F of characteristic different from 2, any adjoint
orbit of Spn(F) in g = spn(F) meets the sum of the root spaces gα where α runs through

the 3m − 1 roots listed above.

2 Preliminary Results

This section gathers subsidiary results to our main theorem. Recall that a square

matrix over F is said to be indecomposable if it is not congruent to the direct sum

of square matrices over F of smaller size. Let ∗ be the involution of F[t] which sends

t 7→ −t . Thus if f ∈ F[t], then f ∗(t) = f (−t). A proof for the following theorem

may be extracted from [10, Chapter IV]. More precisely, the assertions (a) and (b)

are well known (and easy to prove) and for (c) and (d) see [10, 2.19 and Corollary

2.20, p. 259].

Theorem 2.1 Let F be a field of characteristic different from 2, let n = 2m be an even
positive integer, and let A ∈ Symn(F). Assume that J + A is indecomposable (under

congruence) and set Z = JA. Then one of the following holds:

(a) Z is invertible and has only one elementary divisor. This divisor is of the form f k

where f is monic, irreducible, and f ∗ = f .
(b) Z is invertible and has two elementary divisors. These divisors have the form f k and

( f ∗)k, where f is monic, irreducible, and f ∗ 6= f .
(c) Z is nilpotent and has only one elementary divisor, tn.
(d) The integer m is odd and Z is nilpotent with exactly two elementary divisors, tm and

tm. Moreover, if B ∈ Symn(F) and the elementary divisors of Y = JB are tm and

tm then XY X−1
= Z for some X ∈ Spn(F).

Our requirement that char F 6= 2 is not needed in the next result.

Lemma 2.2

Let 〈 , 〉 : V × V → F be a symmetric bilinear form. Let v1, . . . , vs be vectors in V .
Define the vectors e1, . . . , es of V by expanding the following “determinants” along the
last column:

e1 = v1, e2 =

∣

∣

∣

∣

〈v1, v1〉 v1

〈v2, v1〉 v2

∣

∣

∣

∣

, . . . , es =

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vs−1〉 v1

〈v2, v1〉 〈v2, v2〉 . . . . 〈v2, vs−1〉 v2

...
...

...
...

〈vs, v1〉 〈vs, v2〉 . . . 〈vs, vs−1〉 vs

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then e1, . . . , es are orthogonal. Moreover, span{e1, . . . , es} = span{v1, . . . , vs}
provided each of

〈v1, v1〉,

∣

∣

∣

∣

〈v1, v1〉 〈v1, v2〉
〈v2, v1〉 〈v2, v2〉

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vs−1〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vs−1〉

...
...

...

〈vs−1, v1〉 〈vs−1, v2〉 . . . 〈vs−1, vs−1〉

∣

∣

∣

∣

∣

∣

∣

∣

∣
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is nonzero.

Proof Since span{e1, . . . , ei} ⊆ span{v1, . . . , vi} for all 1 ≤ i ≤ s, it suffices to ver-

ify 〈v1, ei〉 = · · · = 〈vi−1, ei〉 = 0 for all 2 ≤ i ≤ s in order to show the orthogonality

of e1, . . . , es. If 1 ≤ j < i ≤ s then 〈v j , ei〉 is the determinant of the i × i matrix

defining ei , except that its last column must be replaced by column j. Having two

equal columns, this determinant is 0. As the last assertion of the lemma is obvious,

the proof is complete.

We adopt the following conventions for the remainder of the paper. We fix a

matrix A ∈ Symn(F) and define the symmetric and alternating bilinear forms 〈 , 〉
and 〈 , 〉1 on the column space V = Fn, by means of

〈x, y〉 = x ′Ay, 〈x, y〉1 = x ′ Jy, x, y ∈ V.

Set Z = JA. We view V as module over the polynomial algebra F[t] by letting t act

as left multiplication by Z. Observe that

(2.1) AZ = −Z ′A and JZ = −A,

or equivalently

〈x, t y〉 = −〈tx, y〉, x, y ∈ V,(2.2)

〈x, t y〉1 = −〈x, y〉, x, y ∈ V.(2.3)

Repeated application of (2.2) yields

(2.4) 〈x, py〉 = 〈p∗x, y〉, x, y ∈ V, p ∈ F[t].

Observe the following immediate consequence of (2.1) and Theorem 2.1: the

characteristic polynomial, say f , of Z is even, i.e., f ∗ = f .

Let us say that v ∈ V is a generator if it generates V as F[t]-module.

Lemma 2.3 Suppose that the characteristic and minimal polynomials of Z are equal,
say to f . Given v ∈ V , let W = span{v,Z2v, . . . ,Z2(m−1)v}. Then

(i) 〈W,ZW 〉 = 0.

(ii) The vector v is a generator if and only if dim W = m and the restriction of 〈 , 〉 to
W is non-degenerate.

(iii) If v is a generator, then V = W ⊕ ZW , 〈W,ZW 〉 = 0, 〈W,W 〉1 = 0 and
〈ZW,ZW 〉1 = 0.

Proof By (2.2)

〈p(t2)v, tq(t2)v〉 = −〈t p(t2)v, q(t2)v〉

for all p, q ∈ F[t]. On the other hand, the symmetry of 〈 , 〉 and (2.4) give

〈p(t2)v, tq(t2)v〉 = 〈tq(t2)v, p(t2)v〉 = 〈t p(t2)v, q(t2)v〉.
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Since the characteristic of F is not 2, (i) is established.

We next turn our attention to (ii). If v is a generator, then V = W ⊕ZW , which by

(i) is an orthogonal decomposition of (V, 〈 , 〉). Hence dim(W ) = m and ker(Z) ∩
W = 0. As ker(Z) coincides with the radical of 〈 , 〉, the restriction of this form to

W is non-degenerate.

Suppose conversely that dim W = m and the restriction of 〈 , 〉 to W is non-

degenerate. Then W ∩ ZW = 0 by (i). If w ∈ W and Zw = 0 then 〈W,w〉 = 0, so

w = 0. Thus dim ZW = m, whence V = W ⊕ ZW , i.e., v is a generator.

To prove (iii), suppose that v is a generator. By (i) and (ii), we know that V =

W ⊕ ZW is an orthogonal decomposition of (V, 〈 , 〉). Since f is even, W and ZW

are Z2-invariant. Let i, j be non-negative integers, with j > 0. Then by (2.3), (2.4)

and (i),

〈t2iv, t2 jv〉1 = −〈t2iv, t2 j−1v〉 = 0.

It follows that 〈W,W 〉1 = 0. We may now use (2.3) to infer that 〈ZW,ZW 〉1 = 0,

as well.

Proposition 2.4 Let A ∈ Symn(F) and suppose the characteristic and minimal poly-

nomials of Z = JA coincide. Denote the field of rational functions on algebraically
independent variables x1, . . . , xn over F by K = F(x1, . . . , xn). Write also 〈 , 〉 for the
bilinear form on the column space Kn, defined by

〈y, z〉 = y ′Az, y, z ∈ Kn.

Let x =

(

x1

...
xn

)

∈ Kn. Then 〈 , 〉 has non-degenerate restriction to the subspaces

span{x}, span{x,Z2x}, . . . , span{x,Z2x, . . . ,Z2(m−1)x}. In other words, denoting by
Pk ∈ F[x1, . . . , xn] the determinant of the k × k left upper corner of

M =











〈x, x〉 〈x,Z2x〉 · · · 〈x,Z2(m−1)x〉
〈Z2x, x〉 〈Z2x,Z2x〉 · · · 〈Z2x,Z2(m−1)x〉

...
...

...

〈Z2(m−1)x, x〉 〈Z2(m−1)x,Z2x〉 · · · 〈Z2(m−1)x,Z2(m−1)x〉











,

then Pk is not zero for all k, 1 ≤ k ≤ m.

Proof By hypothesis there exists v in V which generates V as an F[Z]-module. Thus

by Lemma 2.3, the matrix obtained from M by making the substitution x → v is

invertible. Therefore det M = Pm is not zero. Clearly P1 is not zero either.

In order to show the other Pk are not zero, it will be convenient to replace M by a

similar matrix. Consider the matrix N ∈ Mm(F[x1, . . . , xn]), defined by

N =











〈x, x〉 〈Zx,Zx〉 · · · 〈Zm−1x,Zm−1x〉
〈Zx,Zx〉 〈Z2x,Z2x〉 · · · 〈Zmx,Zmx〉

...
...

...

〈Zm−1x,Zm−1x〉 〈Zmx,Zmx〉 · · · 〈Z2(m−1)x,Z2(m−1)x〉











.
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Denote by M(k) and N(k) the k × k left upper corners of M and N , respectively.

Let D(k) be the k × k diagonal matrix with alternating diagonal entries 1 and −1, in

this order. Since AZ = −Z ′A, we have as before,

〈y,Zz〉 = −〈Z y, z〉, y, z ∈ Kn.

It follows easily that

D(k)M(k)D(k) = N(k), 1 ≤ k ≤ m.

Thus it suffices to show the polynomials Rk = det N(k) are non-zero.

Given k, 1 ≤ k ≤ m, and l, 1 ≤ l ≤ m − k + 1, let N(k, l) be the k × k submatrix

of N in the intersection of rows 1, . . . , k and columns l, . . . , l + k − 1. Write Rk,l ∈
F[x1, . . . , xn] for the determinant of N(k, l). Thus Rk,1 is nothing but Rk. In fact, the

very definition of N yields the following fundamental relation:

(2.5) Rk,l(x) = Rk(Zl−1x).

Suppose our result is false and choose k as small as possible satisfying Rk = 0. We

know that k > 1. As Rk−1 is not zero, it follows that the first k − 1 rows of N(k) are

linearly independent over K and row k is a linear combination of the preceding rows.

Thus, by subtracting from row k a suitable linear combination of rows 1, . . . , k − 1

we may transform the first k entries on row k of N to zero.

Denote this new matrix by P. Since N is invertible and P is row equivalent to N ,

some entry along row k of P must be non-zero. Suppose this entry, say a, occurs in

the position s, where s is as small as possible.

For l = s−k+1, consider the submatrix T of P in the intersections of rows 1, . . . , k
and columns l, . . . , l + k − 1 = s. Its last row is 0, . . . , 0, a and the intersection of

its first k − 1 rows and columns constitute the matrix N(k − 1, l). Since Rk−1 is not

zero, it follows from (2.5) that the determinant of N(k − 1, l) is not zero. Hence

T is invertible. But T is row equivalent to N(k, l), which by (2.5) is singular. This

contradiction completes the proof.

3 Main Result

We are ready to prove our main result.

Theorem 3.1 Let F be an infinite field of characteristic different from 2, let n = 2m be

an even integer, and A ∈ Symn(F). Then there exists X ∈ Spn(F) and B,C ∈ Symm(F)

such that B is diagonal, C is tridiagonal, and

(3.1) X ′AX =

(

B 0

0 C

)

.
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Proof Clearly, without any loss of generality, we may assume that Jm+A is indecom-

posable. Let V = Fn be the space of column vectors. We make V into an F[t]-module

by letting t act as the matrix Z = JmA. By Theorem 2.1, there are four possibilities,

(a)–(d), for the matrix Z.

We assume first that V is cyclic as an F[t]-module, i.e., we exclude case (d).

Let P1, . . . , Pm be the non-zero polynomials defined in Proposition 2.4. Consider

their product P = P1 · · ·Pm. Since F is infinite and P is not zero, there exists v ∈ Fn

such that P(v) 6= 0, that is, none of P1, . . . , Pm vanish on v.

Consider the subspace W of V spanned by the vectors v,Z2v, . . . ,Z2(m−1)v. Since

Pm(v) 6= 0, Lemma 2.3 ensures that

V = W ⊕ ZW, 〈W,ZW 〉 = 0, 〈W,W 〉1 = 0, 〈ZW,ZW 〉1 = 0,

with the restriction of 〈 , 〉 to W non-degenerate.

Construct the vectors e1, . . . , em by applying Lemma 2.2 to the form 〈 , 〉 and

the vectors v,Z2v, . . . ,Z2(m−1)v . It follows that e1, . . . , em are orthogonal relative

to 〈 , 〉. As the restriction of 〈 , 〉 to W is non-degenerate, the vectors e1, . . . , em

are non-isotropic. Since none of P1, . . . , Pm−1 vanish on v, Lemma 2.2 ensures that

e1, . . . , em span W . Note that the matrix B of the restriction of 〈 , 〉 to W is diagonal

and nonsingular.

Let fi = −〈ei, ei〉
−1Zei , for 1 ≤ i ≤ m. It is not difficult to see at this point that

{e1, . . . , em, f1, . . . , fm} must be a symplectic basis of V .

We still have to show that the matrix C of the restriction of 〈 , 〉 to ZW is tridi-

agonal. This means that 〈Zei ,Ze j〉 = 0 if j − i > 1. Suppose that j − i > 1. We

have

〈Zei,Ze j〉 = −〈Z2ei, e j〉.

Since ei ∈ span{v,Z2v, . . . ,Z2(i−1)v}, it follows that

Z2ei ∈ span{v,Z2v, . . . ,Z2(i−1)v,Z2iv}.

At this crucial point we recall that none of P1, . . . , Pi vanishes at v. Hence, by Lemma

2.2,

span{v,Z2v, . . . ,Z2(i−1)v,Z2iv} = span{e1, e2, . . . , ei, ei+1}.

But e j is orthogonal to e1, . . . , ei, ei+1 relative to 〈 , 〉, whence 〈Zei ,Ze j〉 = 0.

It remains to consider case (d) of Theorem 2.1.

As m is odd, we set m = 2s+1. It is well known that there exists a nilpotent matrix

Y1 ∈ sp2s(F) of rank 2s − 1 (a principal nilpotent element of this Lie algebra). For

instance, we can take

Y1 =

[

Y11 Y12

0 −Y ′

11

]

,

where Y11 is the upper triangular nilpotent Jordan block of size s and all the entries

of Y12 are 0 except the one in the lower right hand corner which is equal to 1.
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Set A1 = − JsY1. Assume that Js + A1 is decomposable. Then there exists an

invertible matrix X such that

X ′( Js + A1)X = ( Jp + A11) ⊕ ( Jq + A12)

for some positive integers p, q (with p + q = s) and some symmetric matrices A11

and A12. We have

X ′ JsX = Jp ⊕ Jq, X ′A1X = A11 ⊕ A12.

We obtain that

Y1 = − J−1
s A1 = X( Jp ⊕ Jq)X ′(X ′)−1(A11 ⊕ A12)X−1

giving the contradiction X−1Y1X = JpA11 ⊕ JqA12. We conclude that Js + A1 is

indecomposable.

By the first part of the proof (covering case (c) of Theorem 2.1), A1 is symplecti-

cally congruent to a matrix B1 ⊕ C1, where B1,C1 ∈ Syms(F) with B1 diagonal and

nonsingular and C1 tridiagonal and of rank s − 1. As Js + A1 is indecomposable, all

entries of C1 lying just above the diagonal must be non-zero. In particular, the first

s − 1 rows of C1 are linearly independent. Since Js(B1 ⊕ C1) is nilpotent, we have

(B1C1)s
= (C1B1)s

= 0.

Let g1, g2, . . . , gs denote the standard basis of the column space Fs. Let S be the

s × s permutation matrix representing the transformation g1 ↔ gs, g2 ↔ gs−1, etc.
We take B to be the diagonal matrix B = B1 ⊕ [0] ⊕ (−SB1S) of size m and rank

m − 1, and define the tridiagonal matrix C ∈ Symm(F) by

C =





C1 gs 0

g ′

s 0 g ′

1

0 g1 −SC1S



 .

We claim that the matrix Y := Jm(B ⊕ C) is similar to the direct sum of two

nilpotent Jordan blocks, each of size m.

First we prove that Y m
= 0. Clearly we have

Y m
= (−1)s

[

0 (CB)sC
−(BC)sB 0

]

.

As

BC =





B1C1 B1gs 0

0 0 0

0 −SB1Sg1 SB1C1S
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and (B1C1)s
= 0, we have

(BC)s
=





0 (B1C1)s−1B1gs 0

0 0 0

0 −S(B1C1)s−1B1Sg1 0



 .

Hence (BC)sB = 0. Now B1 is invertible, so C1(B1C1)s−1
= 0. This fact together

with the last displayed equation and Sg1 = gs yield C(BC)s
= 0, or equivalently

(CB)sC = 0. This proves that Y m
= 0.

Next we shall prove that C has rank m − 1. Recall that the first s − 1 rows of C1

are linearly independent. As C1 is singular, its last row is a linear combination of the

first s − 1 rows. Consequently, by subtracting a suitable linear combination of the

first s − 1 rows of C from its s-th row, we obtain a row having all entries 0 except the

central entry which is equal to 1. A similar argument is applicable to the last s rows

of C , i.e., by subtracting a suitable linear combination of the last s− 1 rows of C from

the s + 2-nd row, we obtain the same row as above. This shows that C is singular.

On the other hand, by deleting the last row and the first column of C , we obtain an

invertible lower triangular matrix. We conclude that C has rank m − 1.

Since Y m
= 0 and Y has rank n − 2, Y has to be similar to the direct sum of two

nilpotent Jordan blocks of size m each, i.e., our claim is proved.

As we are dealing with case (d) of Theorem 2.1, both Y and Z belong to spn(F)

and are nilpotent and have exactly two elementary divisors, tm and tm. As m is odd,

we know from Theorem 2.1 that Y and Z are symplectically similar. Consequently,

the matrices A and B ⊕C are symplectically congruent.

This completes the proof of the theorem.

Final Comment It would be worthwhile to determine if Theorem 3.1 remains valid

for finite fields of characteristic different from 2. Our method yields a positive answer

provided the polynomial function associated to P1 · · · Pm (as defined in Proposition

2.4) is not identically zero, which is a problem of independent interest.
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