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The controlled impact of elastic plates on a
quiescent water surface

An Wang1,†,‡, Kit Pan Wong1, Miao Yu1, Kenneth T. Kiger1

and James H. Duncan1,†
1Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA

(Received 4 September 2021; revised 5 January 2022; accepted 16 February 2022)

The impact of flexible rectangular aluminum plates on a quiescent water surface is studied
experimentally. The plates are mounted via pinned supports at the leading and trailing
edges to an instrument carriage that drives the plates at constant velocity and various
angles relative to horizontal into the water surface. Time-resolved measurements of the
hydrodynamic normal force (Fn) and transverse moment (Mto), the spray root position
(ξr) and the plate deflection (δ) are collected during plate impacts at 25 experimental
conditions for each plate. These conditions comprise a matrix of impact Froude numbers
Fr = Vn(gL)−0.5, plate stiffness ratios RD = ρwV2

n L3D−1 and submergence time ratios
RT = TsT−1

1w . It is found that RD is the primary dimensionless ratio controlling the role of
flexibility during the impact. At conditions with low RD, maximum plate deflections on
the order of 1 mm occur and the records of the dimensionless form of Fn, Mto, ξr and δc are
nearly identical when plotted vs tT−1

s . In these cases, the impact occurs over time scales
substantially greater than the plate’s natural period, and a quasi-static response ensues
with the maximum deflection occurring approximately midway through the impact. For
conditions with higher RD (� 1.0), the above-mentioned dimensionless quantities depend
strongly on RD. These response features indicate a dynamic plate response and a two-way
fluid–structure interaction in which the deformation of the plate causes significant changes
in the hydrodynamic force and moment.

Key words: wave–structure interactions, flow–structure interactions

1. Introduction

The impact of a structure on a wavy or quiescent water surface is a complex phenomenon
in which many physical processes are involved. Typically, the impact generates highly
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transient impact loads, rapid structural deformation and violent water surface motion,
including the formation of waves and high-speed sprays. These physical processes interact
with each other over short time scales and the rates of change of many physical quantities
are substantial. In addition, under certain circumstances, air can be entrained into the flow
system and the resulting two-phase flow may affect the flow dynamics and acoustics. In
an effort to study the physics of impact phenomena, investigators have taken advantage
of simplified structure geometries and motions typically during impact with calm water
surfaces. A number of these studies are discussed briefly below.

The classic problem of the vertical water entry of a rigid wedge at high Froude number
has been studied extensively in a two-dimensional potential flow framework; see, for
example, Wagner (1932), Dobrovol’Skaya (1969) and Zhao & Faltinsen (1993). These
models explain the dynamics of this flow in which the water surface overturns as it rises
along the tilted surface of the wedge. The region where the flow overturns is called the
spray root. The theory is based on the assumption of a self-similar flow with constant
wedge velocity and predicts a high pressure ridge that moves along the wedge surface
with the spray root. Extended mathematical models for the water entry of rigid objects of
various geometry were developed in studies such as Howison, Ockendon & Wilson (1991),
Vorus (1996), Xu et al. (1998), de Divitiis & de Socio (2002), Moore et al. (2012) and Wu
& Sun (2014).

The physics of the impact of rigid objects on a water surface has also been studied
through experiments. Early experimental studies on the gravity-driven free drop of a rigid
wedge or three-dimensional objects on a water surface were reported by Chuang (1966),
Chuang & Milne (1971) and Chuang (1973). These studies largely confirm the theoretical
findings discussed above. Experiments performed by Judge, Troesch & Perlin (2004) on
the vertical/oblique impact of a tilted wedge on a water surface illustrated the effects of
the wedge’s initial velocity ratio and the level of asymmetry from the vertical axis at its
vertex on the symmetry of the spray root propagation as well as on the flow separation
from the wedge’s surface. Mathematical models for the water entry of an asymmetric
wedge are developed in studies such as Semenov & Iafrati (2006) and Semenov & Wu
(2018). Breton, Tassin & Jacques (2020) performed an experimental study on the vertical
water entry/exit of axisymmetric bodies. The evolution of the wetted surface under the
body and the force on the body during the process were measured. The effect of gravity
on the impact at low initial impact velocity is pointed out by the authors. Experimental
investigations on the vertical impact of an inclined nearly rigid plate with prescribed
impact velocity on a water surface were performed by Wang et al. (2016) and Wang &
Duncan (2019). In Wang & Duncan (2019) the effect of gravity on the evolution of the
spray over time was characterized by an instantaneous Froude number associated with
the temporally varying nominal submerged length of the plate. Iafrati (2016) performed
an experimental study on the ditching of a rectangular plate of negligible deformation
into the water surface with substantial horizontal velocities just before the impact. The
study shows that the propagation speed of the pressure peak on the plate relative to the
geometrical intersection of the plate with the still water surface varies over time and
the impact load scales favourably with the velocity normal to the plate. It is also worth
noting that if the local inclination of the impactor is small near the touchdown point, due
to the flow induced by the air cushion between the impactor and the water surface, the
water surface can deform before the impact. The effect of the air cushion is especially
important for phenomena at the very initial stage, when the instantaneous Froude number
is tremendously large. The detailed behaviour of the air cushion and its effect on various
aspects of the impact, such as splash, pressure and force, are studied in, for example,
Bouwhuis et al. (2015), Jain et al. (2021), Moore (2021), Hicks et al. (2012).
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The impact of a vertically moving flexible wedge on a water surface was also
investigated extensively in the past (see, for example, Maki et al. 2011; Luo, Wang &
Soares 2012; Khabakhpasheva & Korobkin 2013; Panciroli, Abrate & Minak 2013; Piro &
Maki 2013; Shams & Porfiri 2015; Shams, Zhao & Porfiri 2017; Yu, Li & Ong 2019; Zhang
et al. 2021). Panciroli (2013) indicated that the deformation of a flexible wedge can cause
the separation of the spray sheet from the wedge surface. The results shown in Shams
et al. (2017) by model and experiments on the free falling of a rigid/flexible wedge on a
water surface indicate a very limited effect of hydroelasticity on the spray root propagation
during the water entry stage. However, the results indicate that the impact force is reduced
as the structural deformation increases during the water entry stage of the gravity-driven
wedge. The reduction of the impact force during the gravity-driven vertical impact of a
wedge with flexible panels is also illustrated by Ren et al. (2019) and Ren, Javaherian &
Gilbert (2021). It should be pointed out that in a gravity-driven impact, the variation of
the hydrodynamic force induced by deformation also modifies the rigid body motion of
the impactor and in turn changes the flow characteristics and impact force. Therefore, it is
difficult to decouple the effect of the deformation on the impact force.

During the vertical water entry of a flexible wedge, an important parameter that
characterizes the effect of hydroelasticity is the ratio between the characteristic impact
time (wetting time) to the natural period of the panel (Faltinsen 1999; Panciroli et al.
2013). For a gravity-driven vertical impact of a flexible wedge on a water surface, the
wetting time is also associated with the mass of the wedge, in addition to the initial impact
speed, the deadrise angle and the distance between the vertex and the chine.

Faltinsen & Semenov (2008) performed a theoretical study on the oblique water entry of
a rigid two-dimensional (2-D) plate. The oblique impact calculations presented in the work
of Faltinsen & Semenov (2008) cover a range with relatively small horizontal-to-vertical
entry velocity ratios (smaller than 2.75) as well as a relatively large pitch angle (greater
than 15◦). The variation of the pressure and normal force coefficients are shown under
various combinations of the velocity ratio and the plate pitch angle. Reinhard, Korobkin
& Cooker (2013) performed a theoretical study on the oblique impact of an elastic 2-D
plate with free ends on a water surface at large horizontal speed. The calculation indicates
that the elastic deformation of the plate may increase the impact force and the chance of
cavitation, both due to the low fluid pressure induced by the plate vibration. It should be
noted that the calculation is performed with a free-end boundary condition and rigid body
motion of the plate is not prescribed.

In the experimental investigation on the impact of a fuselage specimen on a water
surface by Iafrati & Grizzi (2019), cavitation and ventilation, triggered by the curved
shape of the specimen, were observed when the horizontal velocity is sufficiently large.
It is pointed out that the cavitation and ventilation have a significant influence on the
impact load. In a computational study on the 2-D oblique impact of an elastic plate (beam)
with free-free boundary condition at both ends on a thin liquid layer, Khabakhpasheva &
Korobkin (2020) also show the possibility of air entrainment as a consequence of plate
deformation and rotational motion. Spinosa & Iafrati (2021) conducted an experimental
study of the water impact of aluminum plates at large horizontal speed and it is pointed
out that the structural deformation causes a reduction in peak pressure and an increase
in the total load. Faltinsen (1999) proposed an orthotropic plate theory for the coupled
analysis of the structural dynamics and the flow motion during the vertical water entry
of a ship panel. It is pointed out that the hydroelastic response increases as the ratio of
the wetting time to the lowest order natural period of the panel decreases. Wang et al.
(2019) performed an experimental study on the oblique impact of a flexible and a rigid
plate with non-zero pitch and roll angles. Under the same motion trajectory, it is found
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that the maximum deformation of the flexible plate occurs at a more downstream location
for a greater impact speed. It is also found that the outboard spray generation during the
impact is influenced by the plate deformation.

The impact of a horizontally oriented elastic flat plate falling on a wave crest is studied
theoretically by Kvålsvold & Faltinsen (1995), Faltinsen (1997), Faltinsen, Kvålsvold &
Aarsnes (1997) and Korobkin & Khabakhpasheva (2006). Faltinsen (1997) suggested that
the impact process can be categorized into an initial structural inertial phase, which is a
very short period during which the plate does not have enough time to rebound before the
plate is completely wet, and a subsequent free vibration phase of the plate with associated
added mass. It is also shown experimentally by Faltinsen (1997) and Faltinsen et al. (1997)
that the maximum bending stress in the plate is not sensitive to the relative location of
the wave crest on the plate nor the radius of curvature of the wave crest in the impact
region. It is pointed out by both Faltinsen (1997) and Korobkin & Khabakhpasheva (2006)
that cavitation and/or ventilation can occur during the impact, as a result of the plate
deformation.

In the present study the oblique and vertical impact of flexible plates on a quiescent
water surface is investigated experimentally. This study includes several features that have
not been examined in the above-mentioned experimental studies. First, the plate is driven
into the water surface while its velocity is held constant during the time interval between
the passage of the plate’s trailing (lower) and leading (upper) edges through the still water
level (SWL). (The plate is pitched at a 10◦ angle.) Second, the force and moment required
to maintain the steady plate motion are measured during the impact. And finally, the plate
flexibility is varied from stiff, creating maximum deflections of only a few millimetres even
at the highest impact speeds, to the very flexible, creating large maximum deflections, on
the order of 50 mm. These large deflections create two-way fluid–structure interactions in
which the hydrodynamic force and moment change compared with those found during a
rigid plate impact at the same velocity. Also, the set-up and wide range of highly controlled
experimental conditions allow for a parametric investigation of the interaction between the
structural response and the fluid motion.

Some of the data from the present study were used in Wu & Earls (2021) and Pellegrini
et al. (2020) for validation of fluid–structure interaction numerical codes.

In the remainder of this paper, the details of the experimental set-up, measurement
techniques and experimental conditions are described first in § 2. In § 3 the experimental
results are presented along with analysis and discussions. Finally, the concluding remarks
are given in § 4.

2. Experimental details

In this section the details of the experimental set-up, procedures and conditions are
described in detail. This description is divided into a series of subsections with the
experimental facilities, the force and moment measurements, the flexible plates, the plate
deflection measurements, the under-plate spray root measurements, the measurements of
the plates’ free vibration frequencies and the experimental conditions and procedures
given in § 2.1 to § 2.7, respectively.

2.1. Experimental facilities: towing tank and two-axis carriage
The experiments were performed in the towing tank facility in the hydrodynamics
laboratory at the University of Maryland. A schematic of the facility is given in
figure 1. The tank is 13.41 m long, 2.45 m wide and 1.33 m tall and consists of a series
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Figure 1. Schematic drawing of the towing tank and high-speed carriage system. The interior side and bottom
panels of the tank are made of clear acrylic to allow for flow visualization. The flexible plates are attached
to the two-axis carriage that is driven horizontally along one side of the towing tank by a belt and hydraulic
servo motor system. The vertical carriage rides on rails that are attached to the horizontal carriage and is driven
by a belt and electric servo motor system. Camera 1 is installed under the tank for the measurement of the
under-plate water surface motion. Cameras 2–4 are installed along the tank’s side wall for the measurement of
the plate deflection.

of 35 mm-thick transparent acrylic side and bottom panels that are bolted to a steel
superstructure frame. The frame is in turn bolted to the concrete floor of the laboratory.
Another steel superstructure frame (herein called the carriage support frame) is positioned
next to one of the long sidewalls of the tank and spans its entire length. The frame is
3.7 m tall and is bolted to the laboratory’s concrete floor and sidewall. Two precision
horizontal rails, which span the length of the tank, are bolted to two very stiff steel box
beams which are in turn bolted to the carriage support frame. A two-axis towing carriage,
designed and built for the present experiments, runs along the two horizontal rails. The
horizontal motion of the carriage is driven by a belt that is in turn driven by two hydraulic
servo motors that are attached to the carriage support frame and powered by a 44 kw
hydraulic power unit. The carriage support frame is not in contact with the towing tank,
thus avoiding any undesired tank vibration or water surface motion induced by the motion
of the carriage.

The two-axis towing carriage, as shown in figure 2(a), is made of 304 stainless steel and
consists of a horizontal carriage, which moves along the two horizontal rails described
above, and a vertical carriage, which moves along two vertical precision rails that are
bolted to the horizontal carriage. The horizontal and vertical carriages are constructed
from stiff frames, composed from a series of I-beams and bulkhead stiffeners, with a
sheet metal skin (12 and 14 gauge thickness) riveted to the frames. The horizontal carriage
carries an electric servo motor and a belt-sprocket motion system that drives the vertical
carriage. The instantaneous positions of the horizontal and vertical carriages are measured
with an absolute rotary encoder (model 1037504, SICK Sensor Intelligence) and a linear
position sensor (Temposonics R-series model RH, MTS, Inc.), respectively, at a sample
rate of 1024 Hz. Motions of both axes are controlled by a position feedback control system
through a computer.
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Figure 2. Schematics drawings of the carriage and flexible plate. In (a) the structure of the two-axis high-speed
carriage and the dynamometer system are shown. The coordinate system of the undeformed plate is denoted.
The origin of the coordinate system is at the undeformed plate’s centre, O, and the longitudinal, transverse and
normal coordinates are denoted as l̂, t̂ and n̂, respectively. In (b) a side view of the dynamometer system and
some details of the plate mounting mechanism are shown. The direction of the horizontal and vertical carriage
velocities, U and W, and the orientation of the water surface, are denoted. The pitch angle of the plate is denoted
as α. The five locations where the out-of-plane deflection is measured are denoted as Ri (i = 1, . . . , 5). The
locations of Ri are at the transverse mid plane (t = 0) and are equally spaced between the axes of the two
shafts, with R3 at the plate centre. In (c) the projected view of the dynamometer system and the plate is shown
when viewed toward the positive longitudinal direction. The numerical values of the dimensions labelled in
the figure are as following: α = 10◦, L = 1080 mm, Ls = 1016 mm, l1 = Ls/6 = 169.3 mm, d1 = 38.1 mm,
d2 = 28.6 mm, B = 406 mm and Bs = 269 mm. In (d) a detailed schematic of a single deflection sensor is
shown.

2.2. Plate mounting structure and force/moment measurement system
The impact plate is installed under the vertical carriage through a mounting structure that
includes four struts, a dynamometer and two rotary bearing systems, as shown in figure 2.
The struts are right angle beams made of aluminum alloy. In the present experiments
the lengths of the four struts are chosen to create a 10◦ pitch angle and 0◦ roll angle for
the plate. The dynamometer includes two parallel frames made of square box beams and
stiffeners. The upper and lower dynamometer frames are connected at each of the four
frame corners through a dynamic three-component load cell with thick steel mounting
blocks (Kistler 9367C, 60 kN range, with 5080A multichannel charge amplifier); see
figure 2(a). With this configuration, the dynamometer can measure all three components
(l-longitudinal, t-transverse and n-normal; see figure 2a) of the total force and the total
moment, exerted by the lower frame and its attachments to the upper frame.

The impact plate is connected to the lower frame of the dynamometer using a linear
bearing system (SRB2-08SS-016, PBC Linear) at the forward and aft ends of the
dynamometer frame; see figure 2. In this configuration, one bearing is centred on and
bolted to the bottom of each load cell unit. Near each of the transverse plate edges, herein
called the leading edge or the trailing edge (labelled in figure 2b), an aluminum T-rail that
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is bolted to a stainless steel round shaft (diameter 12.7 mm) is bolted to the plate. The
relatively thick T-rail covers the entire plate width and is bolted to the plate with pairs of
machine screws placed every 50.8 mm across the plate width. The flat heads of the screws
are counter sunk into the bottom surface of the plate so as to minimize their effect on the
water flow during the experiments. With this configuration, the plate bending along the two
transverse edges is believed to be small under a nearly uniformly distributed load along
the transverse direction, as in the present experiments. Each round shaft goes through
two rotary bearings described above and is free to rotate about the axis of the shaft. The
translation of each shaft along its axis is prevented by shaft collars. With this configuration,
the shaft, which is centred 28.6 mm (d2, see figure 2) above the upper surface of the plate
and at a longitudinal distance of 32 mm away from the plate’s leading/trailing edge, is only
allowed to rotate about its axis while rotation about other directions and translation along
any directions are prohibited. This mounting configuration is analogous in some way to
a plate simply supported at two opposite edges and free at the other two opposite edges.
However, one should keep in mind that the rotational axis of the present configuration is
above the plate and inward of the plate’s leading and trailing edges.

The impact plates used in the present experiments are all made of aluminum 6061-T651
alloy (density of ρp = 2700 kg m−3; elastic modulus of E = 68.9 GPa; Poisson’s ratio
νp = 0.3). Three impact plates are used in the present experiments. All plates are L =
1080 mm long by B = 406 mm wide while their thicknesses varied from plate to plate.
Next to the port edge of the plate, a very stiff vertical wall that reaches the tank bottom is
installed along the tank. The distance between the vertical wall and the plate’s port edge
is 2 mm and remains nearly constant along the length of the wall.

The impact force and moment are sampled using an A/D system (PXIe-4497,
National Instrument) with a sample rate of 40.96 kHz. Double shielded cables are
used to avoid the electrical noise contamination from the vertical carriage servo motor
system. The manufacturer’s calibration data of each load cell was verified and the total
force/moment measured by the dynamometer was also verified by applying standard
weights to the individual load cells and to the dynamometer frame at various locations,
respectively.

2.3. Thickness of the impact plates
In order to evaluate the uniformity of the plates and to obtain a statistical description
of each plate’s thickness, an ultrasonic thickness meter (GE CL5 Krautkramer, with
Alpha2-DFR probe) was used to measure the plate thickness at both the edges and the
interior of the plate. Before measuring the thickness of each plate, the ultrasonic meter
was calibrated by the thickness at the edge of the same plate which was also measured
with a high-precision micrometre in a small section where the paint on the lower surface
was removed. The ultrasonic probe was then placed at a series of 22 × 8 grid points
with 50.8 mm spacing on the upper side of the plates for the measurements, so that only
the aluminum thickness was captured by the ultrasonic meter; in this configuration the
thickness of the very thin layer of paint on the lower side of the plates does not affect
the measurements. The measurement resolution of the ultrasonic meter is 0.001 mm. The
statistics of the thicknesses at a total of 176 measured locations for each plate are listed in
table 1. The results indicate that the thickness of each impact plate is highly uniform with
a range of variation of approximately 0.1 mm and a standard deviation of approximately
0.02 mm. In the following discussion, the mean thicknesses of the three plates will be used
in the data analysis.
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Plate 1 Plate 2 Plate 3

Mean (mm) 6.608 8.269 13.224
Standard deviation (mm) 0.021 0.026 0.023

Range (mm) (6.558, 6.665) (8.194, 8.306) (13.165, 13.264)

Table 1. Statistics of the thicknesses of the three impact plates, measured by an ultrasonic thickness meter at
176 grid points on each plate.

2.4. Plate deformation measurement
The out-of-plane deflection of the plates is measured at five locations along the
longitudinal plate centreline. All five measurement locations lie between the axes of the
two plate mounting shafts and are equally spaced by a distance of 169.3 mm (l1, see
figure 2). The out-of-plane deflection gauge employed in this study consists of a metal
rod whose lower end connects to a swivel joint that is glued to the plate’s upper surface;
see figure 2. The rod goes through a hole on a ball joint fixed on a frame that is in turn
bolted to the four dynamometer mounting struts. An imaging target, a white board with a
random black dot pattern printed on it, is installed at the tip of each metal rod and at the
fixed ball joint. As the plate deforms, the relative distance from the target at the rod tip to
the target on the fixed ball joint varies. Three high-speed cameras (cameras 2–4 in figure 1,
model V640, V641, VEO 640L, Vision Research Inc.) are installed along the side of the
tank to record the motion of these imaging targets at a frame rate of 1024 Hz and a field of
view of 98 cm by 61 cm. Flood lights were installed along the side of the tank to provide
illumination for the imaging. The camera image sensors measure 2560 by 1600 pixels
resulting in a 0.38 mm pixel−1 resolution. Each black dot on the imaging target is 2.25 mm
(5.9 pixel) in diameter and there are 25 dots in each image of the target. The processing
aims at finding the relative displacement vector of the same target between the first image
of the target in each camera and the current image of the target by using cross-correlation
values of the image intensity map between the two images. A three-point Gaussian peak fit
to the three highest cross-correlation values around the peak was used to achieve sub-pixel
accuracy of the displacement. Calibration experiments were performed in which one of
the dot-pattern targets was attached to a linear translation stage with an accuracy of
0.0127 mm and photographed at 100 successive locations separated by 0.0254 mm (total
displacement = 2.54 mm). Using various combinations of pairs of images, correlations
were performed for at least 50 pairs of images for relative target displacements (Δ) ranging
from 0.0254 mm to 1.27 mm. It was found that a displacement of 0.1 mm was measured by
this system with a standard deviation of ±7 %.

2.5. Under-plate water surface measurement
The water surface evolution under the flexible plates was also recorded during the impact
experiments. For this purpose, a high-speed camera (camera 1 in figure 1, model V640,
Vision Research Inc. 2500 by 1600 pixel sensor), a flat mirror oriented at a 45◦ angle from
the horizontal plane, and two flood lights were installed under the towing tank near the
impact site, as illustrated in figure 1. With this configuration, the camera views the plate’s
lower surface and the under-plate water surface, through the transparent tank bottom panel.
Flat white paint was sprayed uniformly over the lower surface of each flexible plate in order
to provide a uniformly illuminated background for observing the water surface evolution.
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Spray root line

Figure 3. An image from a high-speed movie taken looking up from under the tank during an impact of the
thinnest plate for Fr = 0.43 and UW−1 = 8.33. The spray root line is visible as marked in the image. The
camera and flood lights set-up is shown in figure 1. The plate is moving from left to right and the image was
taken at t/Ts = 0.50.

Grid lines were then added to each painted surface with spacing of 50.8 mm to inform the
location of water surface features relative to the plate surface.

A sample image taken from one of the high-speed movies during an impact of the
thinnest plate is given figure 3. The location of the spray root, defined in the following,
is extracted from each image. During impact, the water surface rises between the plate’s
geometrical intersection with the SWL and the plate’s leading edge, and, via a region
called the spray root, overturns to join a thin spray sheet which extends over time along
the plate’s lower surface as the impact proceeds (see, for example, studies of the vertical
impact of a wedge/plate on a water surface, Zhao & Faltinsen 1993; Wang & Duncan 2019).
The under-plate spray root line is a spatial curve consisting of points on the under-plate
water surface where the surface normal becomes horizontal. In the region between the
spray root line and the plate’s trailing edge, the left side of the image in figure 3, the
camera views the lower side of the plate only through the water phase. Thus, this region
appears smooth in the images. In the region between the spray root line and the plate’s
leading edge, to the right in figure 3, the image of the plate appears rough, due to the
rough surface of the under-plate spray sheet (caused by the growing turbulent boundary
layer within the spray sheet and gravitational instability) and the rough lower water surface
(caused by splashes due to falling droplets and ligaments). In the images, the spray root
line separating these two regions appears as a narrow opaque band, due to the total internal
reflection of the subsurface light rays that reach the spray root region. The edge of the band
closest to the plate trailing edge is taken as the location of the spray root line, and is marked
in figure 3. Using measurements of the actual distance of the spray root from the surface
of a wedge during vertical impact, Wang & Duncan (2019), and the camera viewing angle
relative to the normal to the plate surface in the present experiments (4◦ to 24◦), it is
estimated that the error between the true position of the spray root and that measured by
the above method is at most 0.004L.

The coordinates of the spray root line in the reference frame of the plate’s lower surface
at a set of equally spaced times during impact are obtained by the following method.
The times when the spray root line crosses each grid point are first extracted from the
high-speed movies. Then an interpolation is applied at uniformly distributed time steps to
the longitudinal position data. Finally, at each time step, with the interpolated longitudinal
position and the known transverse position of each longitudinal line, a fourth-order
polynomial is applied to approximate the instantaneous shape of the spray root
line.
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Imaging targets

Symmetry wall

Port

Starboard

169 mm 169 mm

169 mm

High-speed Cameras

Water surface

Plate upper surface

Plate lower surface

Dynamometer frame

Imaging targets

High-speed Camera
Mirror

(b)(a)

Figure 4. Top and side views of the set-up for the free vibration experiments are shown in (a,b), respectively.
In the depicted configuration, the lower side of the plate is slightly below the water surface while the upper
side is dry. The carriage structure above the dynamometer frame is omitted.

2.6. Measurements of the plates’ free vibration frequencies
The natural frequencies and damping coefficients of the three plates were measured in
free vibration experiments. During the plate-water impact experiments, the upper surface
of the plate remains in air while the portion of the wetted lower surface between the trailing
edge and the spray root drives the motion of the flow. This wetted plate area ranges from
zero at initial impact to the entire underside of the plate when the spray root reaches the
plate’s leading edge. In order to evaluate the influence of the added mass of the water
on the structural dynamics, the free vibration experiments were performed under two
conditions for each plate. In both conditions, the plates were oriented horizontally. The
first condition is the free vibration of the entire plate in air (the condition at the beginning
of the plate-water impact) while the second condition is the free vibration of the plate
when its upper surface is dry and its entire lower surface is located slightly below the water
surface (mimicking in some ways the condition at the end of the plate-water impact).

To perform the free vibration experiments under the two conditions described above, the
following set-up and procedure was used. To orient the plate horizontally, both forward
supporting struts, which connect the dynamometer frame to the vertical carriage, were
replaced with struts of equal length to the two aft struts. The symmetry wall was located
next to the port edge of the plate with the same gap width used in the impact experiments.
The SWL in the tank was also kept the same as that during the impact experiments.
The free vibration was excited by an impulsive impact near the plate centre by a rubber
hammer. An optical switch was used to trigger the data recording, which starts just before
the impact occurs. Five targets, with random dot patters printed on each of them, were
glued to the plate along its centreline and the starboard plate edge, as shown in figure 4.
Two synchronized high-speed cameras were used to record the motion of the targets during
the impact. The position of each target at every instant is extracted from the high-speed
movies by the image correlation method used in the plate deflection measurements.
The resolutions of the two cameras for the centreline and edge targets are 6.48 and
7.20 pixels mm−1, respectively, and all movies were taken at 3600 pps. High-speed movies
taken simultaneously by a third camera, which was installed under the tank and viewed
the lower surface of the plate, were used to ensure that no air pockets were trapped
between the water surface and the plate’s lower surface during the vibration experiments.
In addition to these displacement measurements, records of the normal (vertical for this
plate orientation) force were also recorded. For each plate under each vibration condition,
the measurements were repeated at least five times.
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Impact of elastic plates on a water surface

h (mm) f1a (Hz) f2a (Hz) ζ1a ζ2a f1w (Hz) f2w (Hz) ζ1w ζ2w

6.608 25.1 245.9 0.0447 0.0015 7.5 132.5 — 0.0076
8.269 28.4 308.2 0.0819 0.0013 10.1 180.3 — 0.0119
13.224 39.5 491.6 0.0684 0.0020 13.7 327.6 — 0.0093

Table 2. Natural frequencies (f ) and damping ratios (ζ ) of each plate for modes one and two, denoted by
subscripts 1 and 2, respectively. Data are given for cases with the plate in air, denoted by subscript a, and with
the plate’s lower surface slightly below the water surface while the upper surface remains in air, denoted by
subscript w. The data are obtained from the free vibration experiments described in § 2.6.

Spectral analysis of the displacement vs time data was then used to examine the
plate response in the frequency domain. For the same plate, it is found that the power
spectral density of the displacement at all five measurement locations is prominent at two
frequencies for each experimental condition. These two natural frequency components
also consistently appear with prominent power in the spectrum of the normal force
data. At the lower frequency (f1), it is found that the vibration at all five measurement
locations are in phase, indicating a dominant first-order mode shape in the longitudinal
direction. At the higher frequency (f2), the three locations along the centreline vibrate
at an approximately 180◦ phase lag from the two locations along the edge, indicating
a dominant first-order mode shape in the transverse direction. Qualitative observations
indicate that longitudinal bending dominates the plate’s deformation during the water
impact experiments. Numerical values of the two dominant frequencies and their damping
characteristics were obtained by fitting the solution of the linear damping equation,

z(t) = Ae−ζωt sin((1 − ζ 2)0.5ωt + φ), (2.1)

where ω = 2πf and ζ is the damping ratio, to the deflection vs time records obtained by
band-pass filtering the raw data at the frequencies of the above-mentioned two spectral
peaks. The results for dry and wet conditions for each of the three plates are given in
table 2. The solution of the linear oscillator equation was not a good fit to the lowest mode
wet plate data, which has an unusual decay pattern. Thus, no values of ζ are given for these
cases. As can be seen from the table, the dry and wet natural frequencies for both modes
increase with increasing plate thickness. Also, the lowest order wet natural frequency (f1w)
is approximately 1/3 of the lowest order dry natural frequency (f1a) for all three plates.

In the plate-water impact experiments, the submergence time, defined as the time
interval between the passage of the plate’s trailing and leading edges through the SWL,
Ts = L sin α/W, ranges from 0.21 s to 0.78 s. In the current experiments, the lowest
order natural period when the plate’s lower side is wet (1/fw1) ranges from 0.07 s for
h = 13.22 mm to 0.13 s for h = 6.61 mm. Thus, the ratio of the submergence time scale to
the wet natural period, RT = Ts/T1w, ranges from 1.59 for the thinnest plate at the highest
vertical velocity to 10.70 for the thickest plate at the slowest vertical velocity. As the ratio
approaches its lower boundary, the two time scales are of the same order and an increased
coupling effect between the structural dynamics and the flow dynamics is expected.

2.7. Experimental procedures and conditions
In each experimental run with oblique motion (U > 0), the carriage starts at a position near
one end of the tank with the vertical carriage position set so that the plate’s trailing (lower)
edge is 117.3 mm above the still water surface. The horizontal carriage is then accelerated
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over a travel distance of 1.52 m to a horizontal speed, U, which is held constant until
after the leading edge of the plate passes through the SWL. A laser-trip system, which
consists of a sharp knife edge installed on the horizontal carriage, a HeNe laser beam
that is directed across the width of the tank at a fixed position (carriage travel distance of
1.96 m), and a photodiode placed at a fixed position to receive the laser beam, is used to
create a time reference for triggering the vertical carriage motion; see figure 1. When the
knife edge interrupts the laser beam, the change in state of the photodiode is detected by a
pulse delay generator (Model 577, Berkeley Nucleonics Corp.) which, after an adjustable
time delay, sends a signal to initiate the vertical carriage motion. Using this triggering
system, the run-to-run variation of the streamwise tank position where the impact plate
first makes contact with the water surface varies by no more than ±2.5 mm from run to
run. Starting just before the plate’s trailing (lower) edge makes contact with the still water
surface, despite the hydrodynamic load exerted on the plate, the horizontal and vertical
carriage speeds, U and W, remain at nearly constant values, which are programmed and
controlled by a feedback system, until the plate’s leading (higher) edge reaches the SWL.
Subsequently, the horizontal and vertical carriages undergo constant deceleration to zero
speed. For runs with vertical motion only, the horizontal carriage is placed at the centre of
the symmetry wall and the vertical carriage motion is triggered manually.

The procedure for each experimental run was as follows. After the previous run,
the filtration system of the tank is turned on for 15 min. Then the fluid motion in the
tank is allowed to die away over a period of approximately 40 min. The SWL is then
measured (using a mechanical point gauge, Lory Type-C, resolution: 0.1 mm) to ensure
its consistency throughout the entire experimental campaign. The surface tension was
measured two times each day with a Wilhelmy plate device and was maintained at that
of clean water at room temperature, 73 ± 0.5 dyne cm−1, via water surface skimming and
filtration.

The following experimental conditions were used in the present study. Throughout the
impact experiments, the pitch angles of the undeformed plates, α, are set to 10◦ and the
deadrise (roll) angles of the plates, β, are set to zero. The constant horizontal and vertical
speeds of the carriage during impact, U and W, respectively, are varied from one impact
condition to another as shown in figure 5. In the primary set of the impact conditions,
for the same plate, U and W are varied simultaneously so that either the normal impact
speed, Vn = U sin α + W cos α, or the cotangent of the angle between the carriage motion
trajectory and the still water surface, UW−1, is changed while the other quantity remains
a constant. With this concept, five values of Vn ranging from 0.58 m s−1 to 1.39 m s−1

are chosen and for each value of Vn, four values of UW−1 ranging from 4.50 to 8.33
are chosen. Besides the primary experimental matrix described above, impact with only
vertical motion (UW−1 = 0) was performed for Vn = 0.58 and 0.88 m. In addition, the
impact condition with Vn = 1.39 m s−1 and UW−1 = 8.33 is chosen as a baseline for an
additional set of conditions with the same vertical impact speed but different values of
UW−1 and Vn. Three impact plates with different thicknesses are used for each of the
impact conditions described above. All of the experimental conditions are listed in table 4
of the Appendix.

Measurements for each experimental condition were repeated for at least two runs for
the deflection and spray root measurements, while the force and moment measurements
were recorded in all runs and so repeated six or more times. In figure 6 the normal force,
Fn, the transverse moment about the plate centre, Mto, the deflection at the plate centre,
δc, and the horizontal and vertical carriage speeds, U and W, are plotted vs the time for
three runs in panels (a–d), respectively, for the thinnest plate, h = 6.61 mm. It can be seen
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Figure 5. The impact conditions plotted in U–W space, where U and W are the horizontal and vertical carriage
speed during the impact, respectively. Plotting symbols: ◦, the primary set of the oblique impact conditions; �,
the set of vertical impact conditions (UW−1 = 0); �, the set of impact conditions with the same W. The primary
conditions with the same UW−1 are connected with blue dashed lines and the primary conditions with the same
Fr (and Vn) are connected with red dash-dotted lines. The four conditions with the same W are connected with
a green dashed line. The Froude number is given by Fr = Vn(gL)−0.5, where Vn = U sin α + W cos α is the
component of the carriage velocity normal to the undeformed plate. For each condition presented in this plot,
the experiments were performed for three plates with thicknesses shown in table 1.

from the figure that U and W are nearly constant during the impact for all runs and that
the run-to-run repeatability of all quantities is excellent. In view of these results, the data
for each experimental condition in all plots given below is from one experimental run.

3. Results and discussion

In this section the experimental results from the oblique and vertical impact of the
three elastic plates will be presented and discussed. The section is organized into three
subsections with the impact force and moment results in § 3.1, the spray root results in
§ 3.2 and the plate deformation results in § 3.3. Since the fluid and structure dynamics are
strongly coupled in the impact process, the depth of the discussion increases as more of
the data is presented.

The water surface behaviour in these flexible plate experiments is quite similar to that
found in theoretical and experimental studies of the vertical impact of a rigid wedge/plate
on a quiescent water surface (see, for example, Zhao & Faltinsen 1993). In particular, at
a high Froude number in both cases after the lower structural edge makes first contact
with the water surface, the water surface rises under the plate/wedge surface and forms a
region called the spray root, where the water surface locally becomes vertical. Between
the spray root and the higher edge (chine) of the wedge/plate, the water surface turns
over and creates a spray sheet that is attached to the wedge/plate surface. In the case of
2-D rigid plate/wedge impacts, when gravity is ignored, theoretical studies support the
idea that the pressure distribution between the lower wedge/plate edge and the spray root
is self-similar in time as the spray root moves along the surface of the wedge/plate. In
addition, these studies show that the magnitude and gradient of the pressure distribution
on the rigid plate/wedge surface near the spray root are substantially greater than that at
regions far away from it. Given that the water surface behaviour is similar in both the
rigid plate/wedge impact and the present flexible plate impact, it seems reasonable that the
general behaviour of the pressure distribution would be qualitatively similar as well. Thus,
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Figure 6. Typical data set for multiple experimental runs: (a) normal force, Fn; (b) transverse moment about
plate’s centre, Mto; (c) out-of-plane deflection at the plate’s centre, δc; and (d) horizontal and vertical impact
speeds, U and W, vs time since initial impact at t = 0 for h = 6.61 mm, Vn = 1.31 m s−1 and U/W = 8.33.
The dash-dotted (left) and dashed (right) vertical lines represent, respectively, the instants when the trailing
edge and leading edge reach the SWL.

Symbol Definition value

D Plate bending stiffness Eh3/(12(1 − ν2
p ))

Fr Froude Number Vn/
√

gL
RD Plate stiffness ratio ρwV2

n L3/D
RT Submergence time ratio Ts/T1w

Table 3. Definitions of the bending stiffness and three dimensionless ratios.

in the following, the pressure distribution concepts from the rigid plate/wedge studies will
be used to help interpret the present experimental results.

The presentation and interpretation of the data is somewhat complicated by the large
number of parameters describing the experimental conditions. While the experimental
conditions matrix was chosen as a set of Vn, U/W and h values, the dimensionless
parameters include the Froude number; the ratio of the hydrodynamic pressure force to
the plate’s stiffness, called the stiffness ratio RD; and the ratio of the submergence time
to the plate’s wet natural period, called the submergence time ratio RT . The definitions of
these parameters are given in table 3 to aid the reader in following the detailed discussion
below. The values of all of these dimensionless ratios are given along with the dimensional
experimental conditions in the Appendix, table 4 and are highlighted in the captions and
titles of the figures.
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Impact of elastic plates on a water surface

The explanation of the significance of the parameters RT and RD is aided by considering
qualitatively the linearized equation of motion for the deflection of a simply supported
beam (length Lb, width Bb, moment of inertia about neutral axis Ib, elastic modulus Eb
and density ρb). In this model the beam deflection is excited by a moving load (qb) of
prescribed self-similar distribution, where qb(xb, tb) has units of force per unit length
and tb and xb denote the time from initial impact and the distance from one end of
the beam, respectively, which is qualitatively like that found for rigid wedge vertical
impact. The beam is considered to have a vertical velocity, Wb, and a pitch angle αb
relative to a quiescent water surface; the low end of the beam is designated x̃b = 0. The
non-dimensional form of this deflection equation is

∂4δ̃b
(
x̃b, t̃b

)
∂ x̃4

b
+ 1

R2
Tb

∂2δ̃b
(
x̃b, t̃b

)
∂ t̃2b

= p̃b

(
x̃b

t̃b

)
, (3.1)

where dimensionless quantities are denoted with a ,̃ x̃b = xb/Lb, t̃b = tb/Tsb, Tsb =
Lb sin αb/W,

δ̃b
(
x̃b, t̃b

) = 2EbIb

ρwW2
b BbL4

b
δb (xb, tb) = δb (xb, tb)

LbRDb
, (3.2)

p̃b

(
xb

Wbtb

)
= qb(xb, tb)

1
2ρwW2

b Bb
, (3.3)

RTb =
√

EbIb

ρbAbL4
b

T2
sb = 2

π

(
Tsb

T1b

)
, (3.4)

RDb = ρwW2
b BbL3

b
2EbIb

, (3.5)

where T1b is the lowest order natural period of the dry beam. The parameters RTb and
RDb are similar to RT and RD, respectively, in the present plate impact experiments. In
this simple model, in the limit that RTb → ∞, i.e. the submergence time, Tsb, is much
larger than the beam’s natural period, one finds a quasi-static response limit in which
the deflection at any instant is the static response of the beam to the instantaneous
hydrodynamic pressure distribution. In this case, due to the combined effects of the
non-uniform instantaneous pressure distribution (a high pressure ridge followed by a
region of more moderate pressure), the increasing area over which the pressure distribution
is applied as time increases, and the zero-deflection end conditions, the maximum
deflection occurs after the pressure ridge passes the beam’s centre but well before the
pressure ridge emerges from the beam at x̃b = 1. As RTb approaches 1, a dynamic response
occurs in which the value of t̃b corresponding to peak deflection increases from its value
in the static response case. For sufficiently small RTb, the peak deflection occurs after
the pressure ridge emerges from the beam. According to the above one-way beam model,
δb = RDbLbδ̃b, where the distribution δ̃b is a function of RTb. Numerical solutions of (3.1)
indicate that the maximum value of δb in a given calculation is a function of both RTb
and RDb, but is dominated by its linear proportionality with RDb; see (3.2). It should
be kept in mind that this model represents a one-way fluid–structure interaction. In a
two-way interaction the deflection is large enough to affect the flow and, therefore, the
hydrodynamic pressure distribution. In the remainder of the paper, variables used in the
2-D beam model described above (with a subscript b) will no longer be used. Instead, their
counterparts of the same physical meaning for the flexible plate, such as RD, RT (defined
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where they first appear in the text and in tables 3 and 4), will be used in the discussion of
the present experimental results.

3.1. Impact force and moment
In this subsection the normal component of the transient impact force and the transverse
component of the moment during the impact of the three flexible plates under various
values of Vn and UW−1 will be presented and discussed. The remaining force and moment
components are at most 3 % and 10 % of the maximum values of Fn and Mto, respectively,
for the most extreme impact condition and are not presented here. The normal impact
force, Fn, and the transverse moment about the plate centre, Mto, are plotted against
time t in figure 7(a,b), respectively, for the highest speed, Vn = 1.39 m s−1 (Fr = 0.43,
RD = 1.33), the thinnest plate (h = 6.61 mm) and the four non-zero values of UW−1.
The time t = 0 is chosen as the instant when the plate’s trailing edge first makes contact
with the still water surface. The large-scale features of the normal force and transverse
moment curves are described as follows. The normal force increases at a variable rate
over time during the impact until it reaches a maximum, ranging from approximately
2700 to 2900 N, and then suddenly decreases. The overall increase in force is qualitatively
consistent with previous theoretical and experimental studies of vertical impact of rigid
plates and wedges and is thought to be primarily due to the increasing wet plate area, which
is under hydrodynamic pressure. The transverse moment, Mto, also initially increases with
time but quickly reaches a maximum value before decreasing, crossing zero and reaching a
sharp negative peak value ranging from −400 Nm to −530 Nm. The times of the negative
peak values of Mto match the times of the positive peak values of Fn at the same impact
conditions. As will be discussed in the following subsection, the times of these extreme
values of Fn and Mto correspond to the times when the spray root reaches the leading edge
of the plate, which is denoted in the following as t = te. At this instant, the leading edge
of the plate begins to go under the local water surface. The temporal behaviour of Mto is
consistent with a temporally increasing magnitude of the total normal force and a centre of
hydrodynamic pressure that moves from the trailing to the leading edge of the plate during
the impact, as it does in the case of vertical impact of a rigid wedge or plate. Because
of these competing effects, the moment reaches a maximum and then decreases to zero
as the moment arm goes to zero when the centre of pressure moves across the middle of
the plate. After this point, the moment becomes negative and continuously increases in
magnitude (due to the increasing force and moment arm) until the spray root reaches the
plate’s leading edge; see § 3.2.

In addition to the general features of the Fn(t) and Mto(t) curves in figure 7, as described
above, several significant detailed features are noteworthy. Starting at early time, before
t = 0, the value of Fn for all four cases undergoes small-amplitude oscillations with
frequencies close to f1a (= 25.1 Hz), the first mode natural frequency of the plate in air; see
table 2. These force oscillations are most likely due to plate oscillations excited by the prior
horizontal and/or vertical accelerations of the carriage. The corresponding oscillations
in the record of Mto are less evident, indicating that the plate vibrations may be nearly
symmetric, in support of the idea of first mode plate oscillations. After initial impact,
as Fn increases, there is a sudden decrease in slope at times increasing monotonically
with increasing U/W, from t ≈ 0.05 s at U/W = 4.5 to 0.07 s at U/W = 8.33. Close
examination of the data indicates that the sharp change in slope appears to be part of a
fine-scale oscillation in the curves, with a single period starting at approximately 0.03 s and
lasting for approximately 0.08 s in all cases. The corresponding frequency (≈ 20 Hz) is a
little less than f1a = 25.1 Hz, which at this stage of approximately 20 % plate submergence
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Figure 7. The normal force, Fn, and the transverse moment about the plate centre, Mto, are plotted vs time, t,
in panels (a,b), respectively, for a single plate thickness (h = 6.61 mm), Vn = 1.39 m s−1 and various values of
U/W. The time t = 0 is the instant when the plate’s trailing (low) edge first makes contact with the quiescent
water surface. For these experimental conditions, Fr = 0.43, RD = 1.33 and RT ranges from 2.47 at U/W =
8.33 to 1.79 at U/W = 4.5.

seems an appropriate dynamic time scale. This slope change/oscillation cycle can also be
observed as a slope decrease in the Mto(t) curves during the same period of time. This
oscillatory behaviour will be further examined in the discussion of the plate deflection
in § 3.3. It also should be noted that, due to the small length of the wetted part of the
plate, the flow is initially two dimensional and becomes more three dimensional as time
proceeds. Thus, one would expect that the rate increase of force would change as time
proceeds even for the case of the rigid plate. Subsequent to the instant of the break in
slope in the Fn plot, there are several cycles of small-amplitude secondary oscillations
with frequencies approximately four times the plate’s fundamental natural frequency in
air. These oscillations damp out as Fn rises over time. After these small high-frequency
oscillations, the four curves of both Fn and Mto separate more significantly than before the
break in slope occurs. In this region, the positive slope of the Fn(t) curves increases with
time as the peak value is approached. The times of the maximum Fn, the zero crossing of
Mto and the minimum of Mto all increase monotonically with increasing UW−1. Finally,
the maximum value of Fn is similar for all values of UW−1, while the minimum value of
Mto increases as UW−1 increases. Despite these differences, the shape and amplitudes of
these curves are very similar, indicating that proper time scaling alone can collapse these
curves significantly.

Nine plots of the inertially scaled dimensionless normal force, F∗
n = Fn(ρwV2

n BL)−1,
and transverse moment, M∗

to = Mto(ρwV2
n BL2)−1, vs dimensionless time t/Ts are given

in figures 8 and 9, respectively. In each of the three rows of plots in each figure, Vn is
held constant, resulting in one value of Fr = Vn/

√
gL in each row, while in each column

of three plots, h is held constant, resulting in the same values of the natural period, T1w,
and bending stiffness, D. In each plot, curves for various values of U/W are given. With
this arrangement of plots based on the selection of h, Vn and U/W in the experiment,
there results a single value of RD = ρwV2

n L3/D for each plot while each curve for a
given value of U/W within a plot corresponds to a different value of RT . The values of
these dimensionless ratios are given in the title of each plot. The raw data used to create
figures 8(a i) and 9(a i) is the same as that plotted in figure 7(a,b), respectively.
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Figure 8. The dimensionless normal force, F∗
n = Fn(ρwV2

n BL)−1, vs dimensionless time, t/Ts, is plotted for
Vn = 1.39, 1.17 and 0.875, m s−1 in rows (i), (ii) and (iii), respectively, and for three plate thicknesses h =
6.61 mm, 8.27 mm and 13.22 mm in columns (a,b,c), respectively. In each plot, the data for various values of
U/W are plotted, as indicated by the legends in (a i) for the plots in rows (i) and (ii) and in (a iii) for the plots
in row (iii). The values of h, Vn, Fr, RD and RT are given above each plot; see table 4 for additional details.
Results are shown for (ai)–(aiii) h = 6.61 mm, (bi)–(biii) h = 8.27 mm, (ci)–(ciii) h = 13.22 mm.

There are several notable features in the plots in figures 8 and 9. Perhaps the most
obvious feature is that the four curves for UW−1 /= 0 (each corresponding to a different
value of RT ) are nearly collapsed to a single curve in each plot. This collapse includes
fairly accurate alignment of the dimensionless time of the maximum F∗

n , the minimum
M∗

to and the zero crossing of M∗
to, and closely matched magnitudes of F∗

n and M∗
to.

The least successful collapse of the curves occurs over the dimensionless time range
0.2 ≤ t/Ts ≤ 0.7 in the cases with higher Vn. In this region of the F∗

n(t/Ts) plots, the
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greatest vertical separation of the curves is approximately 7 % of the maximum F∗
n for

Vn = 1.39 m s−1 and h = 6.61 mm in subplot (a i). Separations of similar magnitude are
found in the M∗

to(t/Ts) results. In general, the success of the alignment is due to the
selection of Ts to non-dimensionalize time and the selection of experimental conditions
in which Vn is held constant, rather than U or W, which vary significantly from curve
to curve in each plot. Also, the fact that RT varies continuously and monotonically from
curve to curve over each row of plots (see the plot titles and table 4), while the collapsed
curves change shape abruptly from plot to plot in rows (i) and (ii) (with a single value
of RD for each plot), indicates that RD, not RT , is of primary importance in collapsing
the data in each plot, at least for this range of RT . When comparing the collapsed curves
from plot to plot it can be seen that the overall magnitudes of the curves are fairly similar,
a result that indicates that ρwV2

n , which varies by a factor of 2.5 from row (iii) to row
(i), is the primary scaling factor for forces and moments. However, the magnitudes and
shapes of the F∗

n and M∗
to curves do have some trends from plot to plot. In particular,

the peak values of the F∗
n curves in the plots with the three highest values of RD (plots

(a i), (a ii), (b i)) are slightly higher than in the other plots. Also, the shapes of the F∗
n

curves for these three highest values of RD have a region where the slope increases with
time starting at approximately t/Ts = 0.2 and ending with a sharp peak at te/Ts, while for
the cases with lower RD, the slope of the curves decreases with time throughout and the
peak is less sharp. These variations in curve shape also include the change in slope in the
Fn(t/Ts) curves at approximately t/Ts = 0.2 which is most evident in the curves for the
two highest values of RD (plots (a i) and (a ii)), but gives way to a softer transition as RD
decreases. As mentioned previously, the soft transition of the slope at small RD is likely
a result of the transition from initially a nearly 2-D flow to a three-dimensional flow (see
also Iafrati 2016). It can also be seen that the peak values of F∗

n and minimum values of
M∗

to occur at later t/Ts as RD increases. All of these behaviours are clear evidence that at
high RD the plate’s flexibility significantly affects the magnitude and temporal evolution
of the force and moment, a result that indicates a strongly coupled fluid–structure system.
For the cases with the lowest values of RD, the shapes of the force and moment curves
are nearly independent of RD. This indicates that at low RD the plate flexibility is less
important in determining the forces and moments, i.e. that the deflections are small, even
for the thinnest plate; see § 3.3 for verification of this conjecture. Finally, the curves for the
UW−1 = 0 in the plots in row (iii) at first seem anomalous; however, it should be noted
that the jump in magnitude of UW−1 from zero to the lowest non-zero value of UW−1 is
slightly greater than the range of non-zero values.

In order to better understand some aspects of the present Mto(t′) results, the times of the
peak value, zero crossing and minimum value can be compared with the theoretical results
of Wagner (1932) (see also the discussion in the second paragraph of the introduction to
this section) for the vertical water entry of a 2-D rigid wedge at infinite Froude number.
The Wagner model predicts that the value of Mto reaches a maximum at t/Ts = 0.25 and
crosses zero at t/Ts = 0.5, with a minimum value occurring when the spray root reaches
the plate’s leading edge at t/Ts = 2/π = 0.637. The present experimental conditions
deviate from the Wagner theory since the plate motion is oblique (in most cases), the
plate is flexible, the flow is somewhat three dimensional and the Froude number is not
infinite, though in the first instants of the impact the wetted width-to-length ratio and
Froude number based on wetted length are quite large. In the experiments the value of t/Ts
at the maximum Mto is in the range 0.15 ≤ t/Ts ≤ 0.2, the Mto zero crossings for oblique
impacts occur in the range 0.5 ≤ t/Ts ≤ 0.7, and the values of te/Ts range from 0.75 to
0.85, with the later zero crossing and higher te/Ts occurring for the highest RD. In the
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Figure 9. The dimensionless transverse moment about the plate’s centre, M∗
to = Mto(ρwV2

n BL2)−1, vs t/Ts
is plotted for the same conditions as in the corresponding plots of F∗

n(t/Ts) in figure 8. See the caption to
figure 8 for additional details. Results are shown for (ai)–(aiii) h = 6.61 mm, (bi)–(biii) h = 8.27 mm, (ci)–(ciii)
h = 13.22 mm.

vertical impact cases (see figure 9, row (iii)) the maximum Mto occurs at 0.2 < t/Ts < 0.3,
in better agreement with the Wagner’s model than in the oblique impact cases; however,
the zero crossing occurs even later in time than in the oblique impact cases.

The effects of Vn and h on F∗
n(t/Ts) and M∗

to(t/Ts) are illustrated more clearly by the
plots in figure 10 where U/W = 8.33 for all curves. The figure contains plots of F∗

n and
M∗

to vs t/Ts for each of the three plate thicknesses. Each plot contains data for five values
of Vn, resulting in separate values of RD, RT and Fr for each curve, as shown in the plot
titles and legends. The scaling generally collapses the data in each plot to a thin band;
however, in each of the plots for the two thicker plates, the curves for the four higher Vn
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Figure 10. The dimensionless normal force, F∗
n , and the dimensionless transverse moment about the plate

centre, M∗
to, are plotted vs t/Ts in rows (i) and (ii), respectively. The two plots in each column are for the same

plate thickness (see below). All of the data in these plots is from runs with U/W = 8.33 and each plot contains
data for the same five values of Vn as indicated by the Fr values in the legend of plot (a i). The values of
RD and RT in the legends and titles, respectively, of the top row of plots apply to the moment plots below in
the same column. Results are shown for (ai) and (aii) h = 6.61 mm, (bi) and (bii) h = 8.27 mm, (ci) and (cii)
h = 13.22 mm.

values collapse fairly accurately to a single curve; see plots (b i), (c i), (b ii) and (c ii). For
the thinnest plate, the F∗

n(t/Ts) and M∗
to(t/Ts) data, plots (a i) and (a ii), respectively, form

a single curve for small time, t/Ts � 0.2, but spread into separate curves, one for each
combination of RD, RT and Fr, as the peak force and minimum moment are approached at
separate values te/Ts, for the four highest values of Vn. In these cases, the peak values of
F∗

n at first increase and then decrease, the minimum value of M∗
to increases and the values

of te/Ts and t/Ts at the M∗
to zero crossing increase with increasing RD (decreasing RT and

increasing Fr). The differences in the behaviour of F∗
n(t/Ts) and M∗

to(t/Ts) among the four
highest values of RD for the thinnest plate are likely due to the influence of the dynamic
response of the plate and the strong interaction between the plate deformation and the flow.
For the lowest Froude number cases in figure 10, the curves move away from the collapsed
data for t/Ts ≥ 0.2. As mentioned previously, the effect of gravity becomes strong in these
low Froude number cases, particularly at later times, and this is most likely the reason that
the present inertial scaling fails. Further discussion of the low Froude number flow will be
given in § 3.2.

In figure 11 plots of F∗
n(t/Ts) (top row) and M∗

to(t/Ts) (bottom row) are presented
for plate motions with the same vertical velocity, W = 0.57 m s−1, and various values
of UW−1. The two plots in each column contain results for the same plate thickness.
With this arrangement, each plot contains data for a single value of RT and curves with
various values of RD. For the two thicker plates, columns (b,c), the data for U/W > 0
nearly collapse to single curves, while the U/W = 0 curve is anomalous. These cases
have relatively large values of RT (3.32 and 4.50 for plots (b) and (c), respectively) and
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Figure 11. The dimensionless normal force, F∗
n , and the dimensionless transverse moment about the plate

centre, M∗
to, are plotted vs t/Ts in the top and bottom rows of plots, respectively, for a single value of W =

0.57 m s−1. The two plots in each column are for the same plate thickness (see plot titles). In each panel, the
data for four Froude numbers are plotted: Fr = 0.43, black line; Fr = 0.36, blue line; Fr = 0.27, red line;
Fr = 0.17, green line. These conditions are selected to yield a single value of RT in each column of two plots
(see titles of the top row of plots) and the values of RD as listed in the legends of the top row of plots. Results
are shown for (ai) and (aii) h = 6.61 mm, (bi) and (bii) h = 8.27 mm, (ci) and (cii) h = 13.22 mm.

relatively low values of RD (0.68–0.11 and 0.17–0.03 for plots (b,c), respectively). For the
thinnest plate, column (a), the data does not collapse to a single curve indicating that the
results are strongly influenced by flexibility for this value of RT(= 2.47) and range of RD
(1.33–0.22). The fact that the curves for conditions with the same relatively low value of RT
vary significantly with RD confirms the above finding that RT , while certainly important,
is not dominant in determining the plate response.

Some information about the shape of the pressure distribution on the plate can be
learned from the plots of the dimensionless transverse moment arm about the plate’s
trailing edge, Mtt(FnL)−1, vs t/Ts in figure 12. These plots are for the same conditions
as those in figure 10. The dimensionless moment arm is the distance between the centre
of pressure and the plate’s trailing edge divided by L. In addition to the experimental
data, two straight lines from theory are given in each plot. The dashed straight line is
from the analytical solution by Wagner (1932) for the infinite Froude number vertical
water entry of a rigid 2-D wedge. This theory predicts that Mtt(FnL)−1 = t/Ts. The dotted
straight line is from the fictitious case of a uniform pressure distribution of magnitude ρV2

n
between the geometrical intersection of a rigid plate with the SWL and the plate’s trailing
edge. This case is a very low Froude number approximation and gives the relationship
Mtt(FnL)−1 = 0.5t/Ts. For all plates and all values of Vn, the data for the evolution of
the moment arm falls between the two extreme theoretical cases described above. For
each experimental condition, after an initial transient, the moment arm curve follows the
Wagner theory line and then falls off the Wagner line at values of t/Ts that increase with
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Figure 12. In each panel the dimensionless transverse moment arm about the plate’s trailing edge, Mtt(FnL)−1,
is plotted vs t/Ts for U/W = 8.33, a single plate thickness (as indicated in the title of each plot) and the same
five values of Vn. The corresponding values of RD, RT are indicated in the plot legends and titles, respectively.
For the values of Fr, see the legend of plot (a i) in figure 10. Results are shown for (a) h = 6.61 mm, (b)
h = 8.27 mm, (c) h = 13.22 mm.

increasing plate thickness and Fr. It is thought that for a rigid plate of the same dimensions
as the plates in the present study, the moment arm curve would fall off the Wagner line at
a t/Ts slightly greater than that for the h = 13.22 mm plate since, as will be discussed in
§ 3.3, the deflections for the 13.22 mm plate are small. It is also evident that the moment
arm data for the thickest plate nearly collapses to a single curve when Fr � 0.27 while
for the thinnest plate, the spread of the data is found to be more significant, as would
be expected for strong fluid–structure interaction and considering the force and moment
results in figure 10.

In order to summarize the effect of plate thickness on the impact force and moment,
the dimensionless normal force, transverse moment about the plate centre and moment
arm about the trailing edge are plotted against t/Ts in figures 13(a), 13(b) and 13(c),
respectively, for the most extreme experimental condition, Fr = 0.43, UW−1 = 8.33. Each
plot contains three curves, one for each of the three plate thicknesses. As is shown
in figure 13(a), the F∗

n curves for all plate thicknesses nearly follow the same trend
for t/Ts � 0.2. However, the one-cycle oscillation experienced by the thinnest plate at
t/Ts ≈ 0.2 and thought to be caused by the dynamic plate response at the initial impact
stage is not obvious for the two thicker plates. Following the oscillation cycle described
above, the value of F∗

n for the thinnest plate falls off from that of the thicker plates. For a
time period of 0.2 � t/Ts � 0.7, F∗

n is smaller for the thinnest plate. Subsequently, before
the time of maximum force, F∗

n for the thinnest plate rises very quickly and surpasses
values for the thicker plates. The separation of the data for t/Ts > 0.2 also occurs in the
dimensionless moment and moment arm curves, see figures 13(b) and 13(c), respectively.
Both plots indicate that the more flexible the plate, the slower the propagation of the
pressure centre. The dimensionless times for the pressure centre to reach the plate’s
centre for the thin, medium and thickest plates are approximately 0.72, 0.60 and 0.52,
respectively, approaching the predicted value by the Wagner’s 2-D rigid wedge model
(0.5) for the thickest (most rigid) plate. Similarly, the moment arm propagation for the most
flexible plate shows the most falloff from the 2-D rigid wedge model; see figure 13(c).

The final parameter of interest discussed in this subsection is the impulse of the normal
force herein defined as

In =
∫ te

0
Fn dt. (3.6)
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Figure 13. The dimensionless normal force, F∗
n (panel a), the dimensionless transverse moment about the

plate centre, M∗
to (panel b), and the dimensionless transverse moment arm about the plate’s trailing edge,

Mtt(FnL)−1 (panel c), are plotted vs t/Ts for Vn = 1.39 m s−1 (Fr = 0.43), U/W = 8.33 and each of the three
plate thicknesses h (as indicated by the legend in each plot). For these impact conditions, Ts = 0.329 s in
all cases while RD = 1.33, 0.68 and 0.17 and RT = 2.47, 3.32 and 4.50 for h = 6.61, 8.27 and 13.22 mm,
respectively, in each plot.

The values of In from all experimental conditions with Fr � 0.27 are plotted vs
Fr in figure 14(a) and the corresponding values of the dimensionless impulse, I∗

n =
In/(ρwV2

n BLTs), are plotted vs RD (= ρwV2
n L3D−1) in figure 14(b). For the remaining

Froude number, Fr = 0.18, te is not well defined (see § 3.2) and this prevents the
computation of an impulse comparable to those plotted in the figure. As can be seen
in figure 14(a), In increases with increasing Fr and UW−1, and to some degree with
decreasing plate thickness. The range of the values of I∗

n (13.5 < I∗
n � 15) is quite limited

and the data form a nearly horizontal line when plotted against RD in figure 14(b). This
limited range of I∗

n can be traced back to the success of the V2
n scaling and changes in te

and the shapes of the Fn(t/Ts) curves as the plate thickness is varied. As can be seen
in figure 13(a), te and the peak value of Fn increase with decreasing plate thickness,
thus tending to increase In. However, in the region 0.2 � t/Ts � 0.7 the typical value
of Fn at a given time decreases with decreasing h. The changes in these competing effects
largely balance each other in each case, resulting in similar values of I∗

n for the three plate
thicknesses.

3.2. Water surface motion under the plate
In this section the under-plate water surface motion, which is characterized by the shape
and motion of the under-plate spray root, is presented. In figure 15 four rows of three
images from high-speed movies of the under-plate water surface evolution are shown. The
three images in each set were taken at t/Ts = 0.05, 0.5 and 0.75. In the top three rows,
the impact conditions are identical, Fr = 0.43 and UW−1 = 8.33, but the plate thickness
varies with h = 13.22 mm, 8.27 mm, and 6.61 mm in rows (a), (b) and (c), respectively.
This arrangement results in RD = 0.17, 0.68 and 1.33, and RT = 4.50, 3.32 and 2.47 in rows
(a), (b) and (c), respectively. In row (d) images for Fr = 0.18 and UW−1 = 8.33 with h =
6.61 mm (RD = 0.24 and RT = 5.86) are shown. The photographic set-up, interpretation
of the images and extraction of the spray root line from these images is discussed in detail
in § 2.5. The sequence of spray root lines, taken from the same high-speed movies as the
images in rows (a) to (c) in figure 15, are plotted at uniformly distributed time steps in
figure 16, where the profiles corresponding to the images in figure 15 are plotted in red.
The profiles are plotted until the instant when any part of the spray root line emerges from
the plate’s leading edge.
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Figure 14. (a) The impulse of the normal force, In, vs Fr for conditions with UW−1 > 0. (b) The dimensionless
impulse, In(ρwV2

n BLTs)
−1, vs RD(= ρwV2

n L3D−1) for the same conditions as in plot (a). The impulse is the
integral of the normal force, Fn, over the period from tI to te. Plotting symbols: ◦: h = 6.61 mm; �: h =
8.27 mm; �: h = 13.22 mm. Plotting symbol colours: black, UW−1 = 8.33; blue, UW−1 = 6.28; red, UW−1 =
5.50; green, UW−1 = 4.50.

Several qualitative features are apparent from the images and data in figures 15 and 16,
respectively. At the early stage of the impact, the spray root lines for all four conditions are
nearly straight and parallel to the plates’ trailing edges, indicating that the flow is nearly
two dimensional at this early stage; see the images at t/Ts = 0.05 in figure 15 column
(i) and the corresponding profiles in figure 16. At later times, for example, t/Ts = 0.50,
the tangent of the spray root line is only parallel to the trailing edge near the plate’s port
edge, while the minimum longitudinal distance from the trailing edge to the spray root line
appears at the plate’s starboard edge. Thus, the three dimensionality of the flow increases
as the instantaneous aspect ratio B/ξr, where ξr is chosen as the curvilinear distance along
the plate surface from the trailing edge to the spray root at η = 0.125B (see caption to
figure 16), of the wet area of the plate between the trailing edge and the spray root line
decreases over time. Another interesting feature of the spray root behaviour is the effect
of the plate thickness on the spray root’s speed of propagation. This effect can be seen
by comparing the profile sequences for the Fr = 0.43 impacts for the three plates. At the
early stage of the impact, the location of the spray root line relative to the plate’s trailing
edge is nearly the same for the three plates at corresponding times. At later times, for
example, at t/Ts = 0.5, the distance from the trailing edge to the spray root line decreases
monotonically with increasing plate flexibility. Subsequently, the spray root emerges from
the plate’s leading edge at later times as the plate flexibility increases, as can be seen
by comparing the images and profiles at t/Ts = 0.75. This difference in spray root speed
can be seen in more detail in the spacing between successive spray root lines, which is
proportional to the spray root speed. The spacing is approximately uniform over time for
the thickest plate, while for the thinnest plate, the spacing first decreases to a minimum
and then expands at the final stage of the impact, indicating that the propagation speed
slows down and then speeds up. To a lesser degree, this behaviour can be seen in the
profiles for the plate with intermediate thickness. The varying speed of the spray root is
thought to be due to the plate’s evolving deformation as will be discussed in § 3.3. One
final feature of the data concerns the effect of Froude number as illustrated by comparison
of the images for the thinnest plate between rows (c), where Fr = 0.43, and (d), where
Fr = 0.18, of figure 15. As can be seen from the images at the same t/Ts the spray root has
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t/Ts = 0.05

RD = 0.17, RT = 4.50

RD = 0.68, RT = 3.32

RD = 1.33, RT = 2.47

RD = 0.24, RT = 5.86

t/Ts = 0.50 t/Ts = 0.75(ai) (aii) (aiii)

(bi) (bii) (biii)

(ci) (cii) (ciii)

(di) (dii) (diii)

Figure 15. Four sequences of three images from high-speed movies showing the spray root propagation under
the plate for various conditions with U/W = 8.33. The plate is moving from left to right and each column
of images was taken at the same t/Ts and with the same plate impact location relative to the camera, which
remained at a fixed position under the tank for all measurements; see § 2.5 for details. The vertical symmetry
wall, next to the port edge of the plate, is located near the lower side of each image, while the upper side of
each image is facing the open towing tank. The values of h, Fr, RD and RT for each row of images is given in
the titles of the images in the left column. The bright spots in the images in the left column are reflections of
flood lights that are placed on the laboratory floor next to the high-speed movie camera. A composite movie
showing the nine high-speed image sequences from which the images in the first three rows of this figure were
taken is given as supplemental movie 1 available at https://doi.org/10.1017/jfm.2022.154. Results are shown for
(ai)–(aiii) h = 13.22 mm, Fr = 0.43, (bi)–(biii) h = 8.27 mm, Fr = 0.43, (ci)–(ciii) h = 6.61 mm, Fr = 0.43,
(di)–(diii) h = 6.61 mm, Fr = 0.18.

travelled farther in the lower Froude number case. This may be associated with the smaller
deflection in this case as will be shown in § 3.3. Also, in the last image in row (d), the spray
root line has become irregular and partially obscure, in contrast to its sharp appearance in
the other images. This behaviour is believed to be caused by the increasing influence of
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Figure 16. Three sequences of profiles of the spray root line measured along the lower surface of the plate as
it bends during impact. The horizontal coordinate, ξ , is the longitudinal curvilinear distance from the plate’s
trailing edge, while the vertical coordinate, η, is the transverse curvilinear distance from the port edge, which
is next to the vertical symmetry wall. The impact conditions and plate thicknesses are the same as those in
the top three rows of images in figure 15. The time interval between successive profiles is 2.93 ms and the
total time durations of the plotted profiles are 260.7 ms, 263.7 ms and 281.3 ms for (a,b,c), respectively. In each
plot, the red profiles correspond to the photographs in figure 15, which are recorded at t/Ts = 0.05, 0.50 and
0.75. The dashed line in each plot is the transverse location (η = 0.125B) where the spray root position vs time
is recorded for further analysis. The spacing between successive profiles is proportional to the instantaneous
spray root speed along the plate surface. Results are shown for (a) h = 13.22 mm, Fr = 0.43, UW−1 = 8.33,
(b) h = 8.27 mm, Fr = 0.43, UW−1 = 8.33, (c) h = 6.61 mm, Fr = 0.43, UW−1 = 8.33.

gravity as the impact proceeds, which is characterized by the decreasing instantaneous
Froude number, Frt = Vn(gξr(t))−0.5, during the entire impact and ending with Frt = Fr.
Under the strong influence of gravity toward the end of the impact in this case, observations
indicate that the spray sheet over turns and falls back on the tank water surface immediately
adjacent to the spray root. The impingement of the spray sheet on the tank water surface
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produces splashes and entrains clouds of air bubbles which can be seen in the image. Due
to the effect of these phenomena on the flow approaching the plate from upstream, the
spray root is not expected to follow the same physics as in the ideal potential flow analysis,
such as Wagner’s theory for a 2-D rigid wedge impact with infinite Froude number. In
agreement with these ideas, the force and moment appear to deviate from the scaling that
fits the high Fr cases, as shown in figure 10 and discussed in § 3.1.

In the following, plots of ξr/L at a fixed η vs t/Ts are used to compare the spray root
propagation from one impact condition to another. The transverse position η = 0.125B
was chosen for these measurements since this section of the spray root profile is typically
farthest from and parallel to the trailing edge. This presentation is followed by a discussion
of the connections between various features of the plots and the force and moment results
from § 3.1.

Six plots of ξr/L vs t/Ts are shown in figure 17. As in the plots of F∗
n(t/Ts) and M∗

to(t/Ts)
in figures 8 and 9, respectively, each plot contains curves for one plate thickness, single
values of Fr and RD and various values of UW−1 and RT . The conditions in rows (i) and
(ii) of figure 17 are the same as those for the corresponding plots in rows (i) and (iii),
respectively, of figures 8 and 9. One feature of the ξr(t/Ts)/L curves that is common to
these and all subsequent plots is that the curves follow the prediction of Wagner’s theory
for t/Ts � 0.15, (the dashed-dotted lines in the plots), but then fall below the theory line
for later time. This initial agreement with the Wagner theory is to be expected since the
assumptions of the theory (infinite Froude number, two dimensionality, rigid surface) are
satisfied during the very early phase of impact; see above discussion. Another common
feature of all of the plots in figure 17 is that the curves for the various values of UW−1

nearly collapse to a single curve, as did the force and moment data in figures 8 and 9.
The collapse to a single curve is more complete in the cases with Fr = 0.43, row (i),
1.33 ≥ RD ≥ 0.17; however, this may be only a result of the larger range of UW−1 in
the plots for Fr = 0.27, row (ii), 0.53 ≥ RD ≥ 0.07. Closer examination of the curves in
each plot, particularly those for Fr = 0.27, indicates that at the same t/Ts, the ξrL−1 value
is slightly greater, i.e. the spray root is closer to the plate’s leading edge, for cases with
greater UW−1.

Comparison of the ξr/L(t/Ts) curves from one Froude number/plate thickness condition
to another (figure 17) yields a number of general trends. First, the curves in the three
plots of row (ii), Fr = 0.27 and 0.53 ≥ RD ≥ 0.07, are nearly the same. This is consistent
with the previously described curves of Fn(t/Ts) and Mto(t/Ts) in row (iii) of figures 8
and 9, respectively. As will be shown in the following subsection, this is also consistent
with the small plate deflection for all plate thicknesses at this low value of Fr = 0.27.
Second, in the three plots in row (i) (Fr = 0.43, 1.33 ≥ RD ≥ 0.17), the ξr/L(t/Ts) curves
are strongly affected by plate thickness, with ξr/L at the same t/Ts decreasing with
decreasing h, increasing RD and decreasing RT . Finally, comparisons of the pairs of
plots for conditions with the same plate thickness and different Fr, RD and RT ranges,
indicates that these parameters have little affect on the spray root propagation for the
thickest plate (RD = 0.17 and 0.07, 2.89 ≤ RT ≤ 7.14), but significant affect for the
thinnest plate (RD = 1.33 and 0.53, 1.58 ≤ RT ≤ 3.91), with the case with the highest
RD, plot (a i), exhibiting a significantly slower spray root propagation. Comparison of the
shapes of the ξr/L(t/Ts) and Fn(t/Ts) curves in rows (i) of figures 17 and 8, respectively,
indicates that the changes in the shape of the Fn(t/Ts) curves as h is decreased,
including the increasing slope with time for t/Ts > 0.2 and the very rapid increase in
Fn as t approaches te, also appear in the ξr/L(t/Ts) curves as the plate thickness is
decreased.
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Figure 17. The dimensionless longitudinal position of the spray root at η = 0.125B, ξr/L, is plotted vs t/Ts
for Vn = 1.39 and 1.17 m s−1 in rows (i) and (ii), respectively. The two plots in each column are for the same
plate thickness (see plot titles). In each plot, data for various values of U/W are plotted, as indicated by the
legends. The experimental conditions for each plot are the same as those for the corresponding force and
moment plots in rows (i) and (iii), respectively, of figures 8 and 9. The values of h, Vn, Fr, RD and RT are
given above each plot. The straight dash-dotted (upper) lines represent the location of spray root as predicted
by Wagner’s theory for the infinite Froude number vertical impact of a rigid 2-D wedge. The straight dashed
(lower) line represents the location of the geometrical intersection of the undeformed plate’s lower surface with
the still water surface. Results are shown for (a i) h = 6.61 mm, (b i) h = 8.27 mm, (c i) h = 13.22 mm, (a ii)
h = 6.61 mm, (b ii) h = 8.27 mm, (c ii) h = 13.22 mm.

In figure 18 three plots of ξr(t/Ts) are shown with the experimental conditions for each
plot the same as those for the corresponding plots of F∗

n(t/Ts) and Mto(t/Ts) in figure 10.
Thus, the data in the three plots is for UW−1 = 8.33 and each plot contains four curves
for the same plate thickness and separate values of Vn. This arrangement results in the
ranges of RD and RT varying from plot to plot as noted in the plot titles and legends. In
all three plots, the values of ξr/L at any t/Ts � 0.15 decrease with increasing RD. As a
result, at the same t/Ts, the spray root location is closer to the plate’s leading edge for
a case with smaller RD and the four curves in each plot separate. This trend is nearly
negligible for the most rigid plate (0.07 ≤ RD ≤ 0.17) and becomes more pronounced
as the plate’s relative flexibility increases (0.53 ≤ RD ≤ 1.33 for the thinnest plate). The
above described behaviour of the spray root trajectories is consistent with the various
degrees of collapse of the F∗

n(t/Ts) curves in the three corresponding plots in row (i) of
figure 10.

Three plots of ξr(t/Ts)/L for the set of experiments with the same W = 0.57 m s−1 are
shown in figure 19. As in the corresponding F∗

n(t/Ts) and M∗
to(t/Ts) plots in figure 11, each

plot in figure 19 is for a single plate and, therefore, since all conditions have the same W,
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Figure 18. Three plots of the dimensionless longitudinal position of the spray root, ξr/L, vs t/Ts for UW−1 =
8.33 and a single plate thickness for each plot, see plot titles. In each plot, the data for various values of Vn
are plotted. The experimental conditions are the same as in the corresponding force and moment plots in rows
(i) and (iii), respectively, of figure 10. The values of RD, RT and Fr for each impact condition are given in the
legends and titles of each plot. See the caption of figure 17 for the definitions of the two straight lines in each
plot. Results are shown for (a) h = 6.61 mm, (b) h = 8.27 mm, (c) h = 13.22 mm.

a single value of RT . Curves for the same set of U/W values are shown in each plot, while
the RD values vary from curve to curve and plot to plot. In the plots for h = 13.22 mm
(RT = 4.50 and 0.03 ≤ RD ≤ 0.17) and h = 8.27 mm (RT = 3.32 and 0.11 ≤ RD ≤ 0.68),
the data nearly collapses to single curves which are also nearly identical from plot to plot.
For the thinnest plate (h = 6.61 mm, RT = 2.47 and 0.22 ≤ RD ≤ 1.33), the trajectories
exhibit a slowing of the spray root motion with increasing RD. This effect is relatively
minor for RD = 0.22, 0.53 and 0.94, but substantial for the curve for RD = 1.33. This
strong effect on the trajectory at the largest RD occurs in spite of the fact that all four
curves were measured at conditions with the same value of RT . Comparison of each of
the three plots with the corresponding F∗

n(t/Ts) and M∗
to(t/Ts) plots in figure 11 reveals

that while the force and moment curves for U/W = 0 do not collapse with the curves for
the other values of U/W, this anomalous behaviour is not present in the ξr(t/Ts) data. As
noted above, the U/W = 0 condition corresponds to the lowest Froude number (= 0.17)
and from under-plate spray root movies, see the images in figure 15, it appears that the
spray root structure is affected by gravity after the initial period of impact. This change
in the flow may be responsible for the change in the force and moment curves; however,
from figure 19(a) it appears that gravity has not affected the spray root propagation in a
significant way.

The effect of the plate thickness on ξr(t/Ts)/L at three values of Vn (0.88, 1.31 and
1.39 m s−1) is illustrated by the plots in figures 20(a), 20(b) and 20(c), respectively. All of
the data in the plots are for U/W = 8.33 and within each plot there are three curves, one
for each plate thickness. The data in plot (c) corresponds to the set of images shown in rows
(a–c) of figure 15 and the spray root profiles in figure 16. At the lowest Vn = 0.88 m s−1,
the spray root trajectories are nearly independent of plate thickness, probably as a result
of the low relative flexibility at this low speed (0.53 ≥ RD ≥ 0.07 and 3.91 ≤ RT ≤ 7.14).
However, as Vn is increased, the curves separate and the shape of the trajectories for the
two thinner plates at the two higher speeds (1.33 ≥ RD ≥ 0.61 and 2.47 ≤ RT ≤ 3.51)
indicates that the spray root at first slows down and then speeds up in the final moments
of the impact. These effects are illustrated in more detail in the plots in figures 21(a)
and 21(b). In plot (a) the non-dimensional time delay relative to the Wagner theory value
(td/Ts = (tr − tW)/Ts, where tr is the measured time for the spray root to reach position ξr
and tW = 2ξr sin α/(πW) is the time to reach position ξr from Wagner’s theory) is plotted
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Figure 19. Three plots of the dimensionless longitudinal position of the spray root, ξr/L, vs t/Ts for a single
value of W = 0.57 m s−1 and a single plate thickness for each plot, see plot titles. In each plot, the data for four
impact speeds are plotted and the corresponding Froude numbers are: Fr = 0.43, black line; Fr = 0.36, blue
line; Fr = 0.27, red line; Fr = 0.17, green line. As in the corresponding plots of force and moment in figure 11,
these conditions are selected to yield a single value of RT for each plate thickness. The values of RD, RT and
U/W are listed in the legends and title of each plot. See the caption of figure 17 for the definitions of the two
straight lines in each plot. Results are shown for (a) h = 6.61 mm, (b) h = 8.27 mm, (c) h = 13.22 mm.
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Figure 20. Three plots of the dimensionless longitudinal position of the spray root, ξr/L, vs t/Ts for U/W =
8.33 and a single value of Vn for each plot. Each plot contains three curves, one for each plate thickness:
h = 6.61 mm – black triangles (�); h = 8.27 mm – blue circles (◦); and h = 13.22 mm – red squares (�). The
conditions for plot (a) correspond to those in the plots of F∗

n , M∗
to and Mtt/(FnL) in figure 13. See plot titles

and legends for values of Fr, RD and RT , and see the caption of figure 17 for the definitions of the two straight
lines in the plots. Results are shown for (a) Vn = 0.88 m s−1, Fr = 0.27, (b) Vn = 1.31 m s−1, Fr = 0.40, (c)
Vn = 1.39 m s−1, Fr = 0.43.

as a function of dimensionless spray root position along the plate (ξr/L). The time delay
starts out at zero but then begins to increase at ξr/L ≈ 0.2. For the thinnest plate, the
dimensionless time delay reaches 0.23 at ξr/L ≈ 0.95 and then decreases slightly as the
spray root reaches the plate’s leading edge. In plot (b) the dimensionless spray root speed
(Vr/VW , where Vr is the measured spray root speed (from the data in figure 20a) and
VW = πW/(2 sin α) is the spray root speed in Wagner’s theory) is plotted vs ξr/L. The
dimensionless spray root speed is initially one but then, for the h = 6.61 mm case, slows
down to a minimum of approximately 0.55 at ξr/L = 0.58 and finally increases steadily
to a maximum of 1.2 as the spray root reaches the plate’s leading edge. This curve shape
occurs, with decreasing amplitude, as h increases.

The dimensionless time delay when the spray root reaches the plate’s leading edge
(td/Ts evaluated at ξr/L = 1.0, i.e. t = te) is plotted vs RD for all experimental conditions
in figure 22. This time delay provides an overall measure of the effect of the plate thickness
and impact conditions on the spray root propagation. As can be seen from the plot, the data
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Figure 21. Characteristics of the spray root propagation for the most extreme impact condition, Vn =
1.39 m s−1 and UW−1 = 8.33, and the three plate thicknesses. (a) The dimensionless delay time relative to
Wagner’s infinite Froude number 2-D rigid wedge model, tdT−1

s , vs the longitudinal position of the spray root,
ξrL−1, where td = tr − tW , tr is the time for the spray root to reach a given position on the plate, and tW is
the time to reach the same position according to Wagner’s model. (b) The dimensionless speed of the spray
root along the surface of the plate, defined as the ratio between the measured spray root speed Vr = dξr/dt and
the spray root speed from Wagner’s 2-D infinite Froude number wedge model (0.5πW/ sin α), vs ξrL−1. The
horizontal dashed and dash-dotted lines are the speed of the spray root from Wagner’s model and the speed of
the geometrical intersection between the lower surface of the undeformed plate and the SWL, respectively.
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Figure 22. The dimensionless delay time at spray root emergence from the leading edge of the plate, td/Ts, vs
RD. The definition of td is given in the caption of figure 21. Plotting symbol definitions: black – h = 6.61 mm;
blue – h = 8.27 mm; red – h = 13.22 mm; ◦ – U/W = 8.33; � – U/W = 6.28; � – U/W = 5.50; � – U/W =
4.50.

generally follows a curve with a slope that increases slowly with increasing RD. However,
the data does form a vertical band of as much as ±15 % about the mean at any RD and
within this data, at each RD, td/Ts increases with increasing U/W (increasing RT). Also,
one can easily discern separate mean curves for each plate. These features indicate that
td/Ts is a complicated function of RD, RT , U/W and Fr.

3.3. Plate out-of-plane deflection
In this section the plate out-of-plane deflection measurements from the five sensors
distributed along the plate’s centreline are presented and discussed in light of the force,
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moment and spray root results presented above. Before presenting these results we
discuss the deflection measurement accuracy. Under all experimental conditions, the plate
deflections are measured by monitoring the distance between the plate’s upper surface and
part of the frame connecting the dynamometer to the carriage; see § 2.4. Any compression
of the structure between the plate and the fixed part of the deflection sensor will be added to
the actual plate deflection to form the deflection reading. As the plate thickness increases,
the plate deflections decrease and the carriage deflection, which depends primarily on the
impact condition, will makeup a larger component of the deflection reading. Thus, in any
experiment, for a large enough plate thickness, this error will overwhelm the actual plate
deflection measurement. In the present experiments, we believe that at the most extreme
impact condition (Vn = 1.39 m s−1, U/W = 8.33) the carriage deflection might be as high
as 1 mm. For this condition, the measured peak deflections at the centre of the plate are
approximately 50 mm, 13 and 3 mm for the thin, medium and thick plates, respectively. In
view of these results, we have not reported the data for the thickest plate since in this case
the error could be as much as 50 % of the plate deflection.

In figure 23 sequences of instantaneous shape profiles of the two more flexible plates
(h = 6.61 mm and 8.27 mm) are plotted in a reference frame moving horizontally at
speed U (the horizontal carriage speed) for the impact conditions Vn = 1.39 m s−1 and
UW−1 = 8.33. The geometrical intersection of the deformed plate’s lower surface and the
SWL is shown on each profile as is the instantaneous position of the spray root on the plate
as obtained from the data in the previous subsection. Further details are given in the figure
caption. By comparing the temporal evolution of the profiles of the two plates, it is evident
that under the same impact condition, the thinnest plate experiences more significant
deformation, as expected. The above-described moment arm and spray root results and
the theory and experimental data for wedge vertical impact indicate that the force in the
present experiments results from a high-pressure ridge followed by a plateau that moves
longitudinally along the plate surface at non-constant speed. The plate deflection is, on the
other hand, essentially a first mode response with maximum deflection at approximately
the plate’s midpoint for all time during the impact; see figure 23. In the case of the thinnest
plate, there is a sudden pause in the plate motion which is seen as a decrease in spacing
between the profiles centred at about the eighth profile (t/Ts ≈ 0.2) from the top profile
(t/Ts = 0). Thus, the pause occurs at the dimensionless time of the change in slope of
the Fn(t/Ts) curves; see figures 7(a) and 8(a i) for example. Since the bearing supports
are moving vertically with constant speed, the intersection of the plate’s lower surface
and the SWL would move horizontally at constant speed if the plate were rigid. Thus, the
plate deformation is also indicated by the non-uniform spatial distribution of the local
geometrical intersection (blue squares, see figure caption) at the uniformly distributed
times of the profiles in figure 23. For both plates, the spacing between intersection points
first decreases (decreasing horizontal speed) and then increases (increasing horizontal
speed). The spray root location, which is also noted in the figure (red circles), will be
discussed at the end of this section.

In the following, the deflection at the plate centre, δc, is chosen to illustrate some typical
behaviour as a function of impact parameters and plate thickness. The concepts of static
and dynamic plate response as discussed relative to the simple beam model presented at
the end of the introduction to § 3 will be used to help interpret the experimental results.

In each panel of figure 24, the dimensionless deflection at the plate centre, δc(RDL)−1 =
δcD(ρwV2

n L4)−1, is plotted vs t/Ts for one value of Vn, one value of h and various values
of UW−1. In each row of figure 24 the data for one of three values of Vn (each row
corresponding to a single value of Fr) are shown, while in each column, the data for one of
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Figure 23. Plate shape profiles are plotted in a reference frame that moves horizontally at speed U for two
cases with the same impact conditions, Vn = 1.39 m s−1 and UW−1 = 8.33, and two plate thicknesses: h =
6.61 mm in plot (a) and h = 8.27 mm in plot (b). The shape profile at each instant is estimated by a fourth-order
polynomial fitted to the five plate deflection measurements and assuming that the deflection is zero at the
position of the centrelines of the T-rails near the plate’s leading and trailing edges. The profiles are measured
with a frame rate of 1024 Hz and the time interval between successive profiles plotted here is 7.813 ms. The
upper and lower dashed lines in each plot represent the undeformed plate positions when the trailing and
leading edges reach the SWL (z = 0), respectively. The solid and dash-dotted lines are profiles before and after
the time (te) of spray root emergence, respectively. The instantaneous position of the spray root, determined by
its optical projection on the plate as described in § 2.5 and shown previously in § 3.2, is marked by a red circle
(◦) on each profile. The local geometrical intersection of the SWL with the instantaneous plate’s lower surface
is marked by blue squares (�). The horizontal and vertical axes are plotted with different scales, in order to
illustrate the detailed features of the plate shape.

the two thinner plates are shown. These plots correspond to the force, moment and spray
root plots in figures 8, 9 and 17, respectively, though not all the conditions for each plot
are the same. With this arrangement of experimental conditions, as in these earlier plots,
each plot in figure 24 includes data for one value of RD and various values of RT .

A consistent feature of the plots in figure 24 for which RD � 1.0 ((a iii) and all plots in
column (b)) is that the four curves with various values of U/W (and RT ) in each plot are
nearly identical. Thus, as was found in all of the corresponding force, moment and spray
root plots in figures 8, 9 and 17, respectively, the dimensionless ratios that depend on Vn
(Fr and RD) dominate the plate response. For the two cases with RD � 1.0 (a i and a ii),
the four curves separate in each plot with the maximum separation occurring in plot (a i),
the cases with the highest RD and lowest values of RT . The corresponding force, moment
and spray root position curves, plots (a i,a ii) in figures 8, 9 and 17, respectively, have little
variation from one U/W to another.

Another important feature of the data is that both the dimensionless time and
dimensionless magnitude of the peak deflection increase as RD increases from plot to
plot going up in each column. This can be seen more clearly in figure 25 where curves
of δc/(LRD) vs (t/Ts) are plotted for the cases with the four higher values of RD and
U/W = 8.33 for each plate thickness, with data for h = 6.61 mm and 8.27 mm in plots
(a,b), respectively. For the thicker plate, plot (b), t/Ts at the peak deflection is relatively
constant, increasing from approximately 0.5 to 0.65 as RD increases from 0.27 to 0.68
while the peak value of δc/(LRD) increases from approximately 0.013 to 0.017 over the
same range of RD. For the thinnest plate, there is a wider variation of both quantities
with t/Ts at the peak deflection increasing from about 0.6 to 0.9 and δc/(LRD) at the
peak increasing from approximately 0.017 to 0.037 as RD increases from 0.53 to 1.33. The

939 A4-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

15
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.154


Impact of elastic plates on a water surface

0

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1.0

tTs
–1

0

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1.0

tTs
–1

δ c(
LR

D
)–

1

0

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1.0 0

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1.0

δ c(
LR

D
)–

1

0

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1.0 0

0

0.01

0.02

0.03

0.04

0.2 0.4 0.6 0.8 1.0

δ c(
LR

D
)–

1

RT = 2.47

RT = 2.11

RT = 1.97

RT = 1.79

U/W = 8.33

U/W = 6.28

U/W = 5.50

U/W = 4.50

RT = 3.32

RT = 2.84

RT = 2.65

RT = 2.41

RT = 2.60

RT = 2.22

RT = 2.08

RT = 1.89

RT = 3.51

RT = 2.99

RT = 2.78

RT = 2.55

RT = 2.93

RT = 2.50

RT = 2.34

RT = 2.13

RT = 3.95

RT = 3.36

RT = 3.15

RT = 2.87

(ai) (bi)

(aii) (bii)

(aiii) (biii)

RD = 0.68, Fr = 0.43RD = 1.33, Fr = 0.43

RD = 0.61, Fr = 0.40RD = 1.19, Fr = 0.40

RD = 0.48, Fr = 0.36RD = 0.94, Fr = 0.36

Figure 24. The dimensionless out-of-plane deflection at the plate centre, δc(LRD)−1, is plotted vs t/Ts for
three typical values of Vn = 1.39, 1.31 and 1.17 m s−1 in rows (i), (ii) and (iii), respectively, and for two plate
thicknesses h = 6.61 and 8.27 mm in columns (a,b), respectively. In each panel, the data for four values of U/W
are plotted, as indicated by the legend in plot (a i). The data in each plot is from single values of RD and Fr
and a range of values of RT as indicated in the plot titles. For 0 ≤ t/Ts ≤ te/Ts, the deflection is indicated by
thick solid lines while, for t/Ts > te/Ts, thin dotted lines are used. These plots correspond to selected plots
of F∗

n(t/Ts), M∗
to(t/Ts) and ξr(t/Ts) in figures 8, 9 and 17, respectively. Results are shown for (a i) Vn =

1.39 m s−1, h = 6.61 mm, (b i) Vn = 1.39 m s−1, h = 8.27 mm, (a ii) Vn = 1.31 m s−1, h = 6.61 mm, (b ii)
Vn = 1.31 m s−1, h = 8.27 mm, (a iii) Vn = 1.17 m s−1, h = 6.61 mm, (b iii) Vn = 1.17 m s−1, h = 8.27 mm.
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Figure 25. The dimensionless out-of-plane deflection at the plate centre, δcL−1, vs t/Ts for U/W = 8.33
and Vn = 0.88 – 1.39 m s−1 is plotted for two plate thicknesses: h = 6.61 and 8.27 mm in panels (a) and
(b), respectively. The values of RD and RT are indicated in the plot legends and titles, respectively. These
plots correspond to selected plots of F∗

n(t/Ts) and M∗
to(t/Ts) in figure 10 and ξr(t/Ts) in figure 18. For

0 ≤ t/Ts ≤ te/Ts, the deflection is indicated by thick solid lines while, for t/Ts > te/Ts, thin dotted lines are
used. Results are shown for (a) h = 6.61 mm, (b) h = 8.27 mm.

ranges of RT are given in the titles of each plot. It should be noted that for the thinnest plate
and the highest RD, the peak deflection occurs for t > te. For the cases in column (b), the
fact that the time of maximum deflection approaches 0.5 for the smallest RD and that there
are relatively small changes in the peak value of δc/(LRD), indicate that the plate dynamics
is tending to the static response case in this range of small RD and large RT . For the cases
in column (a), the rapidly increasing time and magnitude of the dimensionless maximum
deflection, reaching 0.9 and 0.037, respectively, as RD approaches its highest values (and
RT its lowest values), indicate a strong dynamic response. In these latter impact conditions,
the unique shape of the curves of F∗

n(t/Ts) at the highest values of RD (corresponding to the
lowest values of RT ) as shown in figure 13 also indicate a strong two-way fluid–structure
interaction. Given that the maximum deflection in the most extreme case (≈ 50 mm in plot
(a) of figure 25) is approximately seven times h, the plate response is clearly nonlinear in
these cases as well. It is thought that this nonlinearity may be partially responsible for the
sensitivity of the deflection curves to U/W in plots (a i,a ii) of figure 24.

One final feature of the plots in figure 24 is the pause in the deflection curves at
t/Ts = 0.2 in the cases with the thinnest plate. This pause corresponds to the pause in the
motion of the plate deflection profiles as shown in figure 23(a). This behaviour includes a
decrease of the slope of the centre point deflection curve. Also, the behaviour diminishes
and disappears as RD decreases (due to increasing h and/or decreasing Vn). This sudden
pause in deflection occurs at the same time as the sudden jump in slope of the normal
force curves at the same plate and impact conditions, as shown in figure 8 and discussed
in § 3.1. For each case, the duration for the pause, considered as the duration of the hump
between the two points with different nearly constant slopes just before and after the pause
in both the Fn and δc curves, approximately equals the natural period of the most flexible
plate in air; see table 2. The appearance of this behaviour in the deflection curves lends
further support to the hypothesis that the break in slope of the F∗

n curves is associated with
the dynamic response of the plate at the early stage of the impact, when most of the plate’s
lower surface remains in air and the effect of water added mass is thought to be relatively
small.
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Figure 26. The maximum dimensionless out-of-plane deflection at the plate centre, δmL−1, for all impact
conditions vs Fr2 (subplot a), RD (subplot b) and RT (subplot c). Symbol definitions: black – h = 6.61 mm; blue
– h = 8.27 mm. ◦ – U/W = 8.33; � – U/W = 6.28; � – U/W = 5.50; � – U/W = 4.50; ∗ – U/W = 0.00.

To further explore the out-of-plane deflection results, the scaling of the maximum
deflection at the plate centre point (δm) is also discussed. To this end, δmL−1 is plotted
vs Fr2, RD and RT in figures 26(a), 26(b) and 26(c), respectively. Plotting the deflection
vs Fr2 is essentially using V2

n as the independent variable, since g and L are constants. In
the plot of δmL−1 vs Fr2 the data mainly forms two curves, one for each plate thickness.
As pointed out in the discussion of figure 24, for the intermediate plate thickness, the
maximum deflection is nearly independent of UW−1 at all Fr2, while for the most flexible
plate, this conclusion is only true for the three lower values of Fr2. At the two highest
values of Fr2, the most flexible plate undergoes greater deflection with larger UW−1. In
addition, the relationship between δmL−1 and Fr2 is relatively linear for the intermediate
plate, while for the most flexible plate, the relationship becomes highly nonlinear. It
should be kept in mind that for Fr � 0.18, gravity affects the spray root as shown in
§ 3.2. As discussed previously, in a case with weak flow-structure interaction, the flow
field is similar to that of the water entry of a rigid wedge, which is characterized by a
self-similar moving pressure distribution proportional to the square of the normal impact
speed, V2

n . Under the assumption of a quasi-static deformation, the deformation should
scale with the pressure distribution and be linear with V2

n , i.e. Fr2 since g and L are
constants. The nonlinearity of the curve for the thinnest plate and mild nonlinearity for the
moderate thickness plate in figure 26(a) indicates an increasing effect of the flow-structure
interaction and dynamic plate response for the thinnest plate at the higher values of
V2

n , i.e. (Fr2). In the plot of δmL−1 vs RD, panel (b), the data comes close to falling
on a single curve. However, closer examination reveals again the spread in δmL−1 with
variation in U/W at high RD for the thinnest plate. Also, in the region where the data
for the two plates overlap, 0 ≤ RD � 0.7, it can be seen that the data for the thinnest
and the intermediate thickness plates fall on similar but slightly different curves. Thus,
while RD, which is equal to the ratio of the hydrodynamic force, ρwV2

n L2, to the bending
stiffness, D/L, captures much of the physics in the plate impact process, other factors
are important as well. From the plot of δmL−1 vs RT (c), it can be seen that though
the data loosely conform to a curve shape of δm/L ∝ (|RT − 2|), the scatter is quite
extensive.

Additional information at the instantaneous location of the spray root can be obtained
from the evolution of the plate deflection profiles. In figure 27(a) the inclination of the plate
surface at the location of the spray root is plotted vs t/Ts for Vn = 1.39 m s−1 at four values
of UW−1 for the thinnest and intermediate thickness plates. The inclination at each time
is obtained by differentiating the plate deflection polynomial functions, like those shown
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Figure 27. Plate kinematic characteristics at the location of the spray root for the impact condition with Vn =
1.39 m s−1 and h = 6.61 mm (Fr = 0.43 and RD = 1.33). In (a), αr, the local angle of inclination (relative to
horizontal) of the plate at the instantaneous location of the spray root, is plotted vs t/Ts while in (b), Vn + Vnr,
the component of the plate velocity at the instantaneous location of the spray root and in the direction of
the normal to the undeformed plate, is scaled by the normal impact speed Vn and plotted vs t/Ts. Symbol
definitions: black – h = 6.61 mm; blue – h = 8.27 mm; ◦ – UW−1 = 8.33; � – UW−1 = 6.28; � – UW−1 =
5.50; � – UW−1 = 4.50.

in figure 23, at the spray root location on each profile. In figure 27(b) the dimensionless
normal component of the plate’s impact velocity (in the laboratory reference frame) at the
location of the spray root (Vn + Vnr)/Vn) is plotted vs t/Ts for the same impact conditions
as in plot (a). In this dimensionless normal velocity, Vnr is measured in the reference
frame of the vertical carriage and is taken as the component of the plate’s local velocity
in the direction normal to the plate’s undeformed surface. According to panel (a), for
t/Ts � 0.4, which corresponds to a dimensionless spray root location ξrL−1 � 0.5, see
figure 20(c), the local inclination at the spray root, αr, is greater than the pitch angle of
the undeformed plate, α = 10◦, while for t/Ts � 0.4 or ξrL−1 � 0.5, αr becomes smaller
than α. This transition point, i.e. where αr = α, occurs near ξrL−1 = 0.5 for all cases,
indicating that at t/Ts = 0.4 the instantaneous maximum deflection point for all cases
appears very close to the plate middle point. As is shown in the plots for the more rigid
plate, even at the highest Vn, the temporal variations of both αr and (Vn + Vnr)/Vn) are
very small, within 2◦ and 0.05, respectively. For the most flexible plate, however, the
slope of the plate at the spray root varies in a much wider range, from 11◦ to 2◦, and
the value of (Vn + Vnr)/Vn) reduces to as low as 0.82 for 0.4 � t/Ts � 0.6. It is also
found that (Vn + Vnr)/Vn) vs t/Ts is nearly independent of UW−1 for both plates. For
the less flexible plate, the collapse of data among different values of UW−1 is also valid
for αr vs t/Ts; however, for the more flexible plate, the collapse of αr vs t/Ts only holds
before approximately t/Ts = 0.5. At later times, αr is smaller for a greater UW−1 at the
same t/Ts. This latter effect is believed to be caused by the greater deformation at greater
UW−1, under the influence of the plate’s dynamic response at these conditions, as shown
in figure 24(a i).

The above-described local plate behaviour near the spray root shown in figure 27 can
be used qualitiatively with the steady 2-D theory of rigid wedge impact to elucidate some
of the mechanisms in the fluid–structure interaction. In general, the deformation of the
plate creates two opposite influences on the temporal evolution of the impact load. During
roughly the first one half of the impact, the upward motion of the plate surface due to plate
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deflection delays the time when the spray root passes a given longitudinal location (see
figure 20c), resulting in a reduction of the plate area that is under hydrodynamic pressure
(the portion between the plate’s trailing edge and the spray root). This slowing of the
spray root motion may be due to the increased local angle of incidence, αr, during this
first part of the impact as shown in figure 27(a) (Wagner’s theory predicts that the spray
root speed decreases with increasing deadrise angle). In addition, during this early phase
of the plate deformation (up to the time of maximum deflection), the upward plate motion
relative to the mounting points causes a reduced local plate impact speed (Vn + Vnr), as
shown in figure 27(b). In Wagner’s theory, this reduced speed combined with the larger
local deadrise angle produces a lower hydrodynamic pressure on the plate surface. The two
mechanisms dominate over the middle stage of the impact (0.2 < t/Ts < 0.6) and combine
to produce a reduced Fn as observed for the thinnest plate; see figure 13(a). On the other
hand, after the spray root passes the instantaneous location of maximum deflection, the
plate deformation tends to generate a reduced local plate inclination; see figure 27(a).
When the spray root and its associated large pressure gradient travel to the region with
αr < α, a more severe local impact is created by a greater local peak pressure due to
the greater dimensionless pressure p(ρwV2

n )−1 at smaller inclination angles, according
to analysis of vertical rigid wedge impact (see, for example, Zhao & Faltinsen 1993).
In addition, the reduced inclination also results in a faster propagation speed of the
spray root (see figure 21b), i.e. a greater expansion rate of the area under hydrodynamic
pressure. Furthermore, during the late stage of the impact, t/Ts > 0.6, for the thinnest
plate, (Vn + Vnr)/Vn rises rapidly reaching approximately 1.0 at the end of the impact,
as shown in figure 27(b). This indicates that the normal component of the local plate
surface velocity returns to the rigid plate value, Vn, for the thinnest plate at these impact
conditions. These two mechanisms tend to increase the impact load and are thought to
be dominant in the final stage of the impact (0.6 < t/Ts < te), as is indicated by the fast
rising Fn at this stage, as shown in figure 13(a). During the early stage of the impact
(t/Ts < 0.2), due to the under developed plate deformation, the dynamics described above
are not significant.

4. Conclusions

An experimental study of the impact of three aluminum plates (length L = 1.08 m, width
B = 0.406 m, thicknesses h = 6.61, 8.27 and 13.22 mm, with a pitch angle of α = 10◦)
on a quiescent water surface was presented. The plates were attached, via pinned supports
at the leading and trailing edges, to a carriage that was held at constant horizontal and
vertical velocity while it drove the plates into the water surface. The impact conditions
were chosen with the component of the carriage velocity in the direction normal to the
plate’s undeformed surface (Vn) ranging from 0.561 to 1.39 m s−1 and with the ratio of
the carriage horizontal to vertical velocity components (U/W) ranging from 0 to 8.33.
For this set of experimental conditions, the Froude number (Fr = Vn/

√
gL, where g is the

acceleration of gravity) varied from 0.17 to 0.43, the plate stiffness ratio (RD = ρwV2
n L3/D,

where ρw is the density of water and D is the plate bending stiffness) varied from 0.027
to 1.33, and the plate submergence time ratio (RT = Ts/T1w) varied from 1.58 to 10.70.
In the latter ratio, Ts = L sin α/W and T1w is the measured lowest mode natural period
of the plate when its lower surface is in contact with the water surface. During each
impact, temporally resolved measurements of the component of the force in the direction
normal to the undeformed plate’s surface (Fn), the moment about the undeformed plate’s
centre (Mto), the moment arm about the plate’s trailing edge (Mtt/Fn), the spray root
position (ξr) and shape, and the plate’s out-of-plane deflection along the centreline (δ)
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were recorded. The wide range of experimental conditions created impacts ranging from
cases at small RD (and large RT ) in which the plate’s deflection was less than a millimetre
to impacts at large RD (and small RT ) in which the plate deflection was as large as
50 mm.

The results from this matrix of 24 impact conditions for each plate allowed for a
determination of the effect of the various dimensionless ratios on the results. It was
found that Fr had little influence on the results except at the lowest values, Fr ≤ 0.18,
for which the spray root system under the plate began to collapse toward the end
of the impact. In plots of the dimensionless forces (F∗

n = Fn/(ρwV2
n LB)), moments

(M∗
to = Mto/(ρwV2

n L2B)), moment arm (Mtt/(LFn)) and spray root position (ξr/L) vs
dimensionless time (t/Ts), the influence of RD is stronger than that of RT . In fact,
the data in plots of these quantities for impacts with a single RD and a range of RT
(obtained by varying U/W with fixed Vn and h) collapsed to a single curve while plots
for runs with a single RT and various values of RD (obtained by varying Vn and U/W
with fixed W and h) collapsed only for impacts that were not strongly affected by plate
flexibility, i.e. those with RD � 1.0. Curves of the plate deflection at its centre (δc/(LRD))
vs t/Ts at fixed RD are also independent of RT for oblique impacts with RD � 1.0, but
for the cases with the highest RD values, the peak deflection varied by approximately
±13 %.

The response mode was determined by RD and RT , which varied inversely over the
experimental conditions. For cases with RD � 1.0 and large RT , a static response was
found in which the peak deflection of at most a few millimetres occurred at approximately
0.5 � t/Ts � 0.65, the midpoint of the impact when the spray root is near the plate centre,
and the curves of δc/(RDL), F∗

n , M∗
to and ξr/L vs t/Ts nearly collapsed to single curves

for conditions with the smallest RD and largest RT values. This is indicative of a one-way
quasi-static plate response in which the hydrodynamic pressure distribution on the plate
is close to that for a rigid plate impact and the plate deflection at each instant in time
is close to that for a steady state response to the instantaneous hydrodynamic pressure
distribution. For cases with large RD and small RT , a dynamic response was found in
which the largest deflection in the most extreme case occurred shortly after the spray root
reached the plate’s leading edge. In these cases, the curves of δc/(RDL)(t/Ts), F∗

n(t/Ts),
M∗

to(t/Ts) and ξr/L(t/Ts) vary significantly with changes in RD. In these large-deflection
cases, a strong two-way fluid–structure interaction is indicated in which the motion of
the plate changed the temporally evolving position of the under-plate spray root and the
hydrodynamic force and moment compared with the case of a nearly rigid plate impact
under the same impact conditions.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2022.154.
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Appendix

Vn U W U/W Fr Ts h = 6.61 mm h = 8.27 mm h = 13.22 mm

(m s−1) (m s−1) (m s−1) (s) RD RT RD RT RD RT

1.386 4.750 0.570 8.33 0.43 0.329 1.327 2.47 0.677 3.32 0.166 4.50
4.195 0.668 6.28 0.43 0.281 1.327 2.11 0.677 2.84 0.166 3.85
3.930 0.715 5.50 0.43 0.262 1.327 1.97 0.677 2.65 0.166 3.59
3.532 0.785 4.50 0.43 0.239 1.327 1.79 0.677 2.41 0.166 3.27

1.313 4.500 0.540 8.33 0.40 0.347 1.191 2.60 0.608 3.51 0.149 4.75
3.974 0.633 6.28 0.40 0.296 1.191 2.22 0.608 2.99 0.149 4.06
3.723 0.677 5.50 0.40 0.277 1.191 2.08 0.608 2.78 0.149 3.80
3.346 0.744 4.50 0.40 0.252 1.191 1.89 0.608 2.55 0.149 3.45

1.167 4.000 0.480 8.33 0.36 0.391 0.941 2.93 0.480 3.95 0.117 5.36
3.532 0.563 6.28 0.36 0.333 0.941 2.50 0.480 3.36 0.117 4.56
3.310 0.602 5.50 0.36 0.312 0.941 2.34 0.480 3.15 0.117 4.27
2.974 0.661 4.50 0.36 0.284 0.941 2.13 0.480 2.87 0.117 3.89

0.875 3.000 0.360 8.33 0.27 0.521 0.529 3.91 0.270 5.26 0.066 7.14
2.649 0.422 6.28 0.27 0.444 0.529 3.33 0.270 4.48 0.066 6.08
2.482 0.451 5.50 0.27 0.415 0.529 3.11 0.270 4.19 0.066 5.69
2.231 0.496 4.50 0.27 0.378 0.529 2.84 0.270 3.82 0.066 5.18

0.584 2.000 0.240 8.33 0.18 0.781 0.236 5.86 0.120 7.89 0.029 10.70
1.766 0.281 6.28 0.18 0.667 0.236 5.00 0.120 6.74 0.029 9.14
1.655 0.301 5.50 0.18 0.623 0.236 4.67 0.120 6.29 0.029 8.54
1.487 0.331 4.50 0.18 0.567 0.236 4.25 0.120 5.73 0.029 7.77

0.875 0.000 0.889 0.00 0.27 0.211 0.529 1.58 0.270 2.13 0.066 2.89
0.584 0.000 0.593 0.00 0.18 0.316 0.236 2.37 0.120 3.19 0.029 4.33
1.167 3.489 0.570 6.12 0.36 0.329 0.941 2.47 0.480 3.32 0.117 4.50
0.875 1.808 0.570 3.17 0.27 0.329 0.529 2.47 0.270 3.32 0.066 4.50
0.561 0.000 0.570 0.00 0.17 0.329 0.217 2.47 0.111 3.32 0.027 4.50

Table 4. Some parameters associated with the present experimental conditions. The impact velocities of the
corresponding conditions are presented graphically in figure 5. In the table, Vn is the component of the carriage
velocity normal to the undeformed plate and Vn = U sin α + W cos α. The Froude number, Fr, is defined as
Fr = Vn(gL)−0.5. The submergence time, Ts, is calculated by Ts = L sin αW−1. The parameter RD is defined
as RD = ρwV2

n L3D−1, where D is the plate’s bending stiffness, and RT = Ts/T1w = Tsf1w is the submergence
time over the plate’s lowest order natural period when its bottom surface is touching the water surface. The
measurement of Tw1 is described in § 2.6 and its values are presented in table 2.
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