ON EQUIVALENCE OF ANALYTIC FUNCTIONS TO RATIONAL REGULAR FUNCTIONS

WOJCIECH KUCHARZ

(Received 15 April 1986)

Communicated by J. H. Rubinstein

Abstract

We give sufficient conditions for an analytic function from \mathbf{R}^{n} to \mathbf{R} to be analytically equivalent to a rational regular function.

1980 Mathematics subject classification (Amer. Math. Soc.): S7 R 45, 58 C 27, 32 C 40.

1. Introduction

We say that two functions $f_{1}, f_{2}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are analytically equivalent if $f_{2}=f_{1} \circ \sigma$ for some analytic diffeomorphism $\sigma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$.

A function $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is said to be rational regular or, simply, regular if it can be written as $\varphi=\lambda / \mu$, where λ and μ are polynomial functions on \mathbf{R}^{n} and μ does not vanish on \mathbf{R}^{n}.

In this paper we study the following problem.

Problem 1.1. Under what conditions is a given analytic function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ analytically equivalent to a regular function?

Some variations of this problem have been investigated in [1], [2], [5] and [6]. It was Thom's paper [6], which gave an impulse for research in this direction.

First let us observe that if f is analytically equivalent to a regular function, then for each point x in \mathbf{R}^{n} the germ f_{x} of f at x is locally analytically equivalent to a germ of a regular function, that is, $f_{x} \circ \sigma_{x}$ is a germ of a regular function for

[^0]some local analytic diffeomorphism $\sigma_{x}:\left(\mathbf{R}^{n}, x\right) \rightarrow\left(\mathbf{R}^{n}, x\right)$. The following example shows that even the nicest local behavior of f does not guarantee analytic equivalence of f to a regular function.

Example 1.2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be an analytic function with no critical point which has two distinct horizontal asymptotes, for example, $f(x)=\arctan x$. Clearly, for each point x in \mathbf{R}, the gerem f_{x} is locally analytically equivalent to the germ of the identity. However, f is not analytically equivalent to a regular function.

The only obstruction which prevents the function f of Example 1.2 from being analytically equivalent to a regular function is its "bad" behavior at "infinity" (cf. Theorem 1.5). To avoid this, we impose some restrictions on analytic functions under consideration.

Let S^{n} be the unit n-dimensional sphere and let $a=(0, \ldots, 0,1) \in S^{n}$.
DEFINITION 1.3. An analytic function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is said to be meromorphic at infinity if there exists an analytic diffeomorphism $\tau: S^{n} \backslash\{a\} \rightarrow \mathbf{R}^{n}$ such that $f \circ \tau$ extends to a meromorphism function on S^{n}, that is, there exist a connected neighborhood U of a in S^{n} and analytic functions $u, v: U \rightarrow \mathbf{R}$ such that v is not identically equal to 0 on U and $f \circ \tau=u / v$ on $U \backslash v^{-1}(0)$ (it is well-known that u and v can be selected with $v^{-1}(0)=\{a\}$).

Definition 1.3 is quite natural in the context of this paper. Indeed, we have
Proposition 1.4. If an analytic function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is analytically equivalent to a regular function, thenit is meromorphic at infinity.

Proof. Choose an analytic diffeomorphism $\sigma: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ such that $f \circ \sigma$ is a regular function. Let $\rho: S^{n} \backslash\{a\} \rightarrow \mathbf{R}^{n}$ be the stereographic projection from a,

$$
\rho\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\left(\frac{x_{1}}{1-x_{n+1}}, \ldots, \frac{x_{n}}{1-x_{n+1}}\right)
$$

Clearly, $f \circ \sigma \circ \rho$ can be written as $f \circ \sigma \circ \rho=\lambda / \mu$, where λ and μ are polynomial functions on \mathbf{R}^{n+1} with μ nonvanishing on $S^{n} \backslash\{a\}$. It follows that f is meromorphic at infinity.

Summarizing, every analytic function from \mathbf{R}^{n} to \mathbf{R}, analytically equivalent to a regular function, is locally analytically equivalent to a germ of a regular function and is meromorphic at infinity. It is an interesting question to what extent the converse is true.

Before we formulate our main result, we need to recall a few concepts. Given a point x in \mathbf{R}^{n}, we denote by \mathcal{O}_{x} the ring of all analytic function-germs $\left(\mathbf{R}^{n}, 0\right) \rightarrow \mathbf{R}$. If f_{x} belongs to \mathcal{O}_{x}, then $\Delta\left(f_{x}\right)$ denotes the ideal of \mathcal{O}_{x} generated by the first
partial derivatives of f_{x}. The Milnor number of f_{x} is the dimension of the R-vector space $\mathcal{O}_{x} / \Delta\left(f_{x}\right)$. It is well-known that if the Milnor number of f_{x} is finite, then given any analytic germ g_{x} in \mathscr{O}_{x} with $g_{x}-f_{x}$ being k-flat at x, one can find a local analytic diffeomorphism $\sigma_{x}:\left(\mathbf{R}^{n}, x\right) \rightarrow\left(\mathbf{R}^{n}, x\right)$ satisfying $g_{x}=$ $f_{x}{ }^{\circ} \sigma_{x}$, provided that k is sufficiently large [7]. In particular, f_{x} is locally analytically equivalent to the germ at x of a polynomial function.

Theorem 1.5. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be an analytic function whose germ at each point in \mathbf{R}^{n} has a finite Milnor number. Then f is analytically equivalent to a regular function if and only if the set of critical poins of f is finite and f is meromorphic at infinity.

We conclude this section by recalling that the set of all analytic functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that for each point x in \mathbf{R}^{n} the germ f_{x} has a finite Milnor number is very large [7].

2. Proof of Theorem 1.5

Let M be a C^{∞} manifold. Denote by $\mathscr{E}(M)$ the ring of C^{∞} functions on M. Let X_{1}, \ldots, X_{n} be C^{∞} vector fields on M generating the $\mathscr{E}(M)$-module of all C^{∞} vector fields on M. Given an element $\left(f_{1}, f_{2}\right)$ in $\mathscr{E}(M)^{2}$, we define $I\left(f_{1}, f_{2}\right)$ to be the ideal of $\mathscr{E}(M)$ generated by all 2×2 minors of the matrix

$$
\left(\begin{array}{llll}
f_{1} & X_{1} f_{1} & \cdots & X_{n} f_{1} \\
f_{2} & X_{1} f_{1} & \cdots & X_{n} f_{2}
\end{array}\right)
$$

and $S\left(f_{1}, f_{2}\right)$ to be the set of zeros of $I\left(f_{1}, f_{2}\right)$.
We shall need the following two auxiliary results.
Lemma 2.1. Let M be a compact C^{∞} manifold. Let $\left(f_{1}, f_{2}\right)$ be an element in $\mathscr{E}(M)^{2}$ and let Z be a subset of M. Assume that the ideal $I\left(f_{1}, f_{2}\right)^{2}$ is closed in the C^{∞} topology and the ideal $I(Z)$ of all functions in $\mathscr{E}(M)$ vanishing on Z is finitely generated. Then there exists a neighborhood \mathscr{V} of 0 in $\mathscr{E}(M)$ such that for every element $\left(g_{1}, g_{2}\right)$ in $\mathscr{E}(M)^{2}$ with

$$
g_{i}-f_{i} \in I(Z) I\left(f_{1}, f_{2}\right)^{2} \cap \mathscr{V}, \quad i=1,2,
$$

one can find a C^{∞} diffeomorphism $\sigma: M \rightarrow M$ and an element u in $\mathscr{E}(M)$ satisfying $\sigma(x)=x$ for all x in $Z, u>0$ and $\left(g_{1}, g_{2}\right)=\left(u\left(f_{1} \circ \sigma\right), u\left(f_{2} \circ \sigma\right)\right)$.

Proof. If Z is the empty set, then Lemma 2.1 is a particular case of [2], Theorem 2.1 with, in the notation of [2], $p=2$ and G being the subgroup of $G l(2, \mathbf{R})$ of all diagonal matrices having the diagonal of the form (λ, λ), where
$\lambda>0$. In the general case only an obvious modification of the proof of [2], Theorem 2.1 is necessary.

Lemma 2.2. Let M be a compact real analytic manifold. Let $\left(f_{1}, f_{2}\right)$ be an element of $\mathscr{E}(M)^{2}$. Assume that the set $S\left(f_{1}, f_{2}\right)$ is discrete and f_{i} is analytic in a neighborhood of $S\left(f_{1}, f_{2}\right)$ for $i=1,2$. Then there exist a neighborhood \mathscr{V} of 0 in $\mathscr{E}(M)$ and a positive integer k such that for each element $\left(g_{1}, g_{2}\right)$ in $\mathscr{E}(M)^{2}$ with $g_{i}-f_{i}$ belonging to \mathscr{V} and being k-flat at $S\left(f_{1}, f_{2}\right), i=1,2$, one has $S\left(g_{1}, g_{2}\right)=$ $S\left(f_{1}, f_{2}\right)$.

Proof. Since one can choose finitely many analytic vector fields on M generating the $\mathscr{E}(M)$-module of all C^{∞} vector fields on M, the ideal $I\left(f_{1}, f_{2}\right)$ is generated by finitely many C^{∞} functions which are analytic in a neighborhood of $S\left(f_{1}, f_{2}\right)$. Now the conclusion is a consequence of the following observation.

Let $u: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be an analytic function with $u^{-1}(0)=\{0\}$. By the Lojasiewicz inequality [7], there exist positive real numbers c and ε and a positive integer l such that

$$
|u(x)| \geqslant c\|x\|^{l} \quad \text { for }\|x\| \leqslant \varepsilon
$$

If $v: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a C^{∞} function such that $v-u$ is l-flat at 0 in \mathbf{R}^{n}, then, by the Taylor formula,

$$
\begin{aligned}
|v(x)| & \geqslant|u(x)|-|v(x)-u(x)| \\
& \geqslant c\|x\|^{l}-\left(\sup \left\{\sum_{\alpha} \frac{1}{\alpha!}\left|D^{\alpha}(v-u)(x)\right|:\|x\| \leqslant \varepsilon\right\}\right)\|x\|^{l+1} .
\end{aligned}
$$

We shall also need a special local version of Lemma 2.1. Let $\left(f_{1}, f_{2}\right):\left(\mathbf{R}^{n}, 0\right) \rightarrow$ \mathbf{R}^{2} be a C^{∞} map-germ. Denote by $I_{0}\left(f_{1}, f_{2}\right)$ the ideal of the ring \mathscr{E}_{0} of C^{∞} function-germs $\left(\mathbf{R}^{n}, 0\right) \rightarrow \mathbf{R}$ generated by all 2×2 minors of the matrix

$$
M_{0}\left(f_{1}, f_{2}\right)=\left(\begin{array}{ccc}
f_{1} & \frac{\partial f_{1}}{\partial x_{1}} \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
f_{2} & \frac{\partial f_{2}}{\partial x_{1}} \cdots & \frac{\partial f_{2}}{\partial x_{n}}
\end{array}\right)
$$

Lemma 2.3. Let $\left(f_{1}, f_{2}\right):\left(\mathbf{R}^{n}, 0\right) \rightarrow \mathbf{R}^{2}$ be an analytic map-germ. Assume that the set-germ of zeros of $I_{0}\left(f_{1}, f_{2}\right)$ is contained in $\{0\}$. Then there exists a positive integer k such that for each analytic map-germ $\left(g_{1}, g_{2}\right):\left(\mathbf{R}^{n},\right) \rightarrow \mathbf{R}^{2}$ with $g_{i}-f_{i}$ being k-flat at 0 in $\mathbf{R}^{n}, i=1,2$, one can find a local C^{1} orientation preserving diffeomorphism $\sigma:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ and a C^{1} function-germ $u:\left(\mathbf{R}^{n}, 0\right) \rightarrow \mathbf{R}$, both analytic off the origin and satisfying $u>0$ and $\left(g_{1}, g_{2}\right)=\left(u\left(f_{1} \circ \sigma\right), u\left(f_{2} \circ \sigma\right)\right)$.

Proof. Let k be a positive integer and let $\left(g_{1}, g_{2}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{2}$ be an analytic map-germ such that $g_{i}-f_{i}$ is k-flat at 0 in \mathbf{R}^{n} for $i=1,2$. Define $F(x, t)=$ $\left(F_{1}(x, t), F_{2}(x, t)\right)$ by $F_{i}(x, t)=(1-t) f_{i}(x)+\operatorname{tg}_{i}(x)$ for t in $[0,1]$ and $i=1,2$. Let $\mathcal{O}_{n}[0,1]$ be the ring of analytic function-germs $\left(\mathbf{R}^{n} \times \mathbf{R},\{0\} \times[0,1]\right) \rightarrow \mathbf{R}$. Set

$$
M_{0}\left(F_{1}, F_{2}\right)=\left(\begin{array}{llll}
F_{1} & \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \\
F_{2} & \frac{\partial F_{2}}{\partial x_{1}} & \cdots & \frac{\partial F_{2}}{\partial x_{n}}
\end{array}\right)
$$

and

$$
e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1}
$$

If Δ is a 2×2 minor of $M_{0}\left(F_{1}, F_{2}\right)$, then Δe_{i} is a linear combination of the columns of $M_{0}\left(F_{1}, F_{2}\right)$ with coefficients in $\mathcal{O}_{n}[0,1]$. Let δ be the sum of squares of all 2×2 minors of $M_{0}\left(F_{1}, F_{2}\right)$. Then

$$
-\delta(x, t) \frac{\partial F}{\partial t}(x, t)=\sum_{j=1}^{n} \xi_{j}(x, t) \frac{\partial F}{\partial x_{j}}(x, t)+\eta(x, t) F(x, t)
$$

for some ξ_{j}, η in $\mathcal{O}_{n}[0,1]$. Moreover, $\xi_{j}(\cdot, t)$ and $\eta(\cdot, t)$ are k-flat at 0 in \mathbf{R}^{n} for all t in $[0,1]$. Notice that $\delta(\cdot, 0)$ is the sum of squares of all 2×2 minors of the matrix $M_{0}\left(f_{1}, f_{2}\right)$. Thus the set-germ of zeros of $\delta(\cdot, 0)$ is contained in $\{0\}$. By the Lojasiewicz inequality [7],

$$
\delta(x, 0) \geqslant c\|x\|^{l} \quad \text { for }\|x\|<\alpha
$$

where $c, \alpha>0$ and l is a positive integer. Now assume that k has been chosen satisfying $k \geqslant 2(l+1)$. Since $\delta(\cdot, t)-\delta(\cdot, 0)$ is $(k-1)$-flat at 0 in \mathbf{R}^{n}, it follows that

$$
\delta(x, t) \geqslant \frac{c}{2}\|x\|^{\prime} \quad \text { for }\|x\|<\beta \quad \text { and } \quad t \in[0,1]
$$

where $\beta>0$. By choice of k, for each $j=1, \ldots, n, \xi_{j} / \delta$ and η / δ have C^{1} extensions ξ_{j}^{\prime} and η^{\prime} on a neighborhood of $\{0\} \times[0,1]$ vanishing on $\{0\} \times[0,1]$. One also has

$$
-\frac{\partial F}{\partial t}(x, t)=d_{2} F(x, t)\left(\xi^{\prime}(x, t)\right)+\eta^{\prime}(x, t) F(x, t)
$$

where

$$
\xi^{\prime}(x, t)=\sum_{j=1}^{n} \xi^{\prime}(x, t) \frac{\partial}{\partial x_{j}}
$$

Let $\tau:\left(\mathbf{R}^{n} \times \mathbf{R},\{0\} \times[0,1]\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ be a C^{1} map-germ satisfying

$$
\left\{\begin{array}{l}
\frac{\partial \tau}{\partial t}(x, t)=\xi^{\prime}(\tau(x, t), t) \\
\tau(x, 0)=x
\end{array}\right.
$$

and let

$$
v(x, t)=\exp \left(-\int_{0}^{t} \eta^{\prime}(\tau(x, s), s) d s\right) .
$$

Notice that

$$
\frac{\partial}{\partial t}(F(\tau(x, t), t))=-\eta^{\prime}(\tau(x, t), t) F(\tau(x, t), t)
$$

and

$$
\frac{\partial}{\partial t}(v(x, t) F(x, 0))=-\eta^{\prime}(\tau(x, t), t)(v(x, t) F(x, 0)) .
$$

By the uniqueness of the solution of ordinary differential equations, one obtains $F(\tau(x, t), t)=v(x, t) F(x, 0)$. It suffices to set $\sigma^{-1}(x)=\tau(x, 1)$ and $u(x)=$ $v(\sigma(x), 1)$. Clearly, σ and u are analytic off the origin and the conclusion follows.

Let M and N be C^{∞} manifolds and let $f: M \rightarrow N$ be a C^{∞} map. The set of critical points of f will be denoted by $\Sigma(f)$ and the germ of f at a point x in M by f_{x}. If X is a subset of \mathbf{R}^{n}, then by a polynomial function on X we shall mean the restriction to X of a polynomial function on \mathbf{R}^{n}.

Proof of Theorem 1.5. It follows from the assumption that the set $\Sigma(f)$ is discrete. Assume that $f \circ \sigma$ is a regular function for some analytic diffeomorphism $\boldsymbol{\sigma}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. Clearly, the set $\Sigma(f \circ \sigma)$ is semi-algebraic. Since every semialgebraic set has only finitely many connected components [3], the set $\Sigma(f \circ \sigma)$ and, hence also $\Sigma(f)$, is finite. By Proposition 1.4, f is meromorphic at infinity.
Now suppose that $\Sigma(f)$ is finite and f is meromorphic at infinity. Let $\tau: S^{n} \backslash\{a\} \rightarrow \mathbf{R}^{n}$ be an analytic diffeomorphism and let $u_{1}, u_{2}: U \rightarrow \mathbf{R}$ be analytic functions defined on a neighborhood U of a in S^{n} such that u_{2} does not vanish on $U \backslash\{a\}$ and $f \circ \tau=u_{1} / u_{2}$ on $U \backslash\{a\}$. We may assume that $u_{2} \geqslant 0$ on U (replace u_{1} and u_{2} by $u_{1} u_{2}$ and u_{2}^{2}, respectively, if necessary). It is easy to construct two C^{∞} functions $f_{1}, f_{2}: S^{n} \rightarrow \mathbf{R}$ such that $f_{i}=u_{i}$ on a neighborhood of $a, i=1,2, f_{2} \geqslant 0, f_{2}$ does not vanish on $S^{n} \backslash\{a\}$ and $f \circ \tau=f_{1} / f_{2}$ on $S^{n} \backslash\{a\}$. Notice that

$$
S\left(f_{1}, f_{2}\right) \subseteq \sum(f \circ \tau) \cup\{a\} .
$$

Let \mathscr{V} be a small neighborhood of 0 in $\mathscr{E}\left(S^{n}\right)$ and let k be a large positive integer (how small \mathscr{V} is and how large k is will be clear later on). For each $i=1,2$, one can find a polynomial map $\varphi_{i}: S^{n} \rightarrow \mathbf{R}$ such that $f_{i}-\varphi_{i}$ belongs to
\mathscr{V} and $f_{i}-\varphi_{i}$ is k-flat at $\Sigma(f \circ \tau) \cup\{a\}$ (cf. [1], Corollary 1). By Lemma 2.2, $S\left(\varphi_{1}, \varphi_{2}\right)=S\left(f_{1}, f_{2}\right)$. Moreover, for each point x in $\Sigma(f \circ \tau)$ one can find a local C^{∞} orientation preserving diffeomorphism $\alpha_{x}:\left(S^{n}, x\right) \rightarrow\left(S^{n}, x\right)$ and a C^{∞} func-tion-germ $v_{x}:\left(S^{n}, x\right) \rightarrow \mathbf{R}$ such that $v_{x}>0$ and $\left(\varphi_{1 x}, \varphi_{2 x}\right)=\left(v_{x}\left(f_{1 x} \circ \alpha_{x}\right)\right.$, $\left.v_{x}\left(f_{2 x} \circ \alpha_{x}\right)\right)$ (this follows from the fact that the Milnor number of f at $\tau(x)$ is finite and from [7], p. 169, Theorem 3.11 applied for $p=2$ and the subgroup G of $G l(2, \mathbf{R})$ consisting of all diagonal matrices having the diagonal of the form (λ, λ), where $\lambda>0$). By Lemma 2.3, there exists a local C^{1} orientation preserving diffeomorphism $\alpha_{a}:\left(S^{n}, a\right) \rightarrow\left(S^{n}, a\right)$ and a C^{1} function-germ $v_{a}:\left(S^{n}, a\right) \rightarrow \mathbf{R}$ such that $v_{a}>0, \alpha_{a}$ and v_{a} are analytic off a and $\left(\varphi_{1 a}, \varphi_{2 a}\right)=\left(v_{a}\left(f_{1 a} \circ \alpha_{a}\right)\right.$, $v_{a}\left(f_{2 a} \circ \alpha_{a}\right)$). Now one can find a C^{1} diffeomorphism $\beta: S^{n} \rightarrow S^{n}$ and a C^{1} function $w: S^{n} \rightarrow \mathbf{R}$ such that β and w are of class C^{∞} on $S^{n} \backslash\{a\}, \beta_{a}=\alpha_{a}$, $w_{a}=v_{a}, w>0$ on S^{n} and for each x in $\Sigma(f \circ \tau), \beta_{x}=\alpha_{x}$ and $w_{x}=v_{x}$. Set $g_{i}=w\left(f_{i} \circ \beta\right)$ for $i=1,2$. Clearly, g_{i} is a C^{∞} function on S^{n} and $g_{i}=\varphi_{i}$ on a neighborhood of $\Sigma(f \circ \tau) \cup\{\alpha\}$. Notice that the ideal $I\left(g_{1}, g_{2}\right)^{2}=I\left(\varphi_{1}, \varphi_{2}\right)^{2}$ is closed in $\mathscr{E}\left(S^{n}\right)$. Indeed, the ideal $I\left(\varphi_{2}, \varphi_{2}\right)^{2}$ can be generated by polynomial functions (choose the appropriate vector fields on S^{n}) and, hence, is closed [7]. Fix a polynomial function λ in $I\left(g_{1}, g_{2}\right)^{2}$ with $\lambda^{-1}(0)=S\left(g_{1}, g_{2}\right)$. For each $i=1,2$, we can find a C^{∞} function $h_{i}: S^{n} \rightarrow \mathbf{R}$ satisfies

$$
g_{i}-\varphi_{i}=h_{i} \lambda \quad \text { and } \quad h_{i}(a)=0
$$

Let μ_{i} be a polynomial approximation to h_{i} with $\mu_{i}(a)=0$. By Lemma 2.1 (with $Z=\{a\}$), there exist a C^{∞} diffeomorphism $\gamma: S^{n} \rightarrow S^{n}$ and a C^{∞} function $u: S^{n} \rightarrow \mathbf{R}$ such that $u>0, \gamma(a)=a$ and $\left(\psi_{1}, \psi_{2}\right)=\left(u\left(g_{1} \circ \gamma\right), u\left(g_{2} \circ \gamma\right)\right)$, where $\psi_{i}=\varphi_{i}+\mu_{i} \lambda$ for $i=1,2$. It follows that $f \circ \tau \circ \beta \circ \gamma \circ \rho^{-1}=\left(\psi_{1} / \psi_{2}\right) \circ \rho^{-1}$ on \mathbf{R}^{n}, where $\rho: S^{n} \backslash\{a\} \rightarrow \mathbf{R}^{n}$ is the stereographic projection. Notice that $\tau \circ \beta \circ \gamma \circ \rho^{-1}$ is a C^{∞} diffeomorphism and $\left(\psi_{1} / \psi_{2}\right) \circ \rho^{-1}$ is a regular function. By [4], Theorem 8.4, f and $\left(\psi_{1} / \psi_{2}\right) \circ \rho^{-1}$ are analytically equivalent.

References

[1] J. Bochnak, W. Kucharz and M. Shiota, 'On equivalence of ideals of real global analytic functions and the 17th Hilbert problem', Invent. Math. 63 (1981), 403-421.
[2] J. Bochnak, W. Kucharz, and M. Shiota, 'On algebraicity of global real analytic sets and functions', Invent. Math. 70 (1982), 115-156.
[3] S. Lojasiewicz, Ensembles semi-analytiques (I.H.E.S., Lecture notes 1965).
[4] M. Shiota, 'Equivalence of differentiable mappings and analytic mappings', Inst. Hautes Etudes Sci. Publ. Math. 54 (1981), 37-122.
[5] M. Shiota, 'Equivalence of differentiable functions, rational functions and polynomials', Ann. Inst. Fourier (Grenoble) 32 (1982), 167-204.
[6] R. Thom, 'L'équivalence d'une fonction différentiable et d'un polynôme', Topology 3, Suppl. 2 (1965), 297-307.
[7] J. Cl. Tougeron, Idéaux de fonctions différentiables, (Springer, Berlin-Heidelberg-New York. 1972).

Department of Mathematics
University of New Mexico
Albuquerque, New Mexico 87131
U.S.A.

[^0]: (c) 1987 Australian Mathematical Society $0263-6115 / 87 \$$ A2.00 +0.00

