J. Austral. Math. Soc. (Series A) 43 (1987), 279-286

ON EQUIVALENCE OF ANALYTIC FUNCTIONS TO RATIONAL REGULAR FUNCTIONS

WOJCIECH KUCHARZ

(Received 15 April 1986)

Communicated by J. H. Rubinstein

Abstract

We give sufficient conditions for an analytic function from \mathbb{R}^n to \mathbb{R} to be analytically equivalent to a rational regular function.

1980 Mathematics subject classification (Amer. Math. Soc.): 57 R 45, 58 C 27, 32 C 40.

1. Introduction

We say that two functions $f_1, f_2: \mathbb{R}^n \to \mathbb{R}$ are analytically equivalent if $f_2 = f_1 \circ \sigma$ for some analytic diffeomorphism $\sigma: \mathbb{R}^n \to \mathbb{R}^n$.

A function $\varphi : \mathbb{R}^n \to \mathbb{R}$ is said to be rational regular or, simply, regular if it can be written as $\varphi = \lambda/\mu$, where λ and μ are polynomial functions on \mathbb{R}^n and μ does not vanish on \mathbb{R}^n .

In this paper we study the following problem.

PROBLEM 1.1. Under what conditions is a given analytic function $f: \mathbb{R}^n \to \mathbb{R}$ analytically equivalent to a regular function?

Some variations of this problem have been investigated in [1], [2], [5] and [6]. It was Thom's paper [6], which gave an impulse for research in this direction.

First let us observe that if f is analytically equivalent to a regular function, then for each point x in \mathbb{R}^n the germ f_x of f at x is locally analytically equivalent to a germ of a regular function, that is, $f_x \circ \sigma_x$ is a germ of a regular function for

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

some local analytic diffeomorphism $\sigma_x: (\mathbf{R}^n, x) \to (\mathbf{R}^n, x)$. The following example shows that even the nicest local behavior of f does not guarantee analytic equivalence of f to a regular function.

EXAMPLE 1.2. Let $f: \mathbf{R} \to \mathbf{R}$ be an analytic function with no critical point which has two distinct horizontal asymptotes, for example, $f(x) = \arctan x$. Clearly, for each point x in **R**, the gerem f_x is locally analytically equivalent to the germ of the identity. However, f is not analytically equivalent to a regular function.

The only obstruction which prevents the function f of Example 1.2 from being analytically equivalent to a regular function is its "bad" behavior at "infinity" (cf. Theorem 1.5). To avoid this, we impose some restrictions on analytic functions under consideration.

Let S^n be the unit *n*-dimensional sphere and let $a = (0, ..., 0, 1) \in S^n$.

DEFINITION 1.3. An analytic function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be meromorphic at infinity if there exists an analytic diffeomorphism $\tau: S^n \setminus \{a\} \to \mathbb{R}^n$ such that $f \circ \tau$ extends to a meromorphism function on S^n , that is, there exist a connected neighborhood U of a in S^n and analytic functions $u, v: U \to \mathbb{R}$ such that v is not identically equal to 0 on U and $f \circ \tau = u/v$ on $U \setminus v^{-1}(0)$ (it is well-known that u and v can be selected with $v^{-1}(0) = \{a\}$).

Definition 1.3 is quite natural in the context of this paper. Indeed, we have

PROPOSITION 1.4. If an analytic function $f: \mathbb{R}^n \to \mathbb{R}$ is analytically equivalent to a regular function, then it is meromorphic at infinity.

PROOF. Choose an analytic diffeomorphism $\sigma: \mathbb{R}^n \to \mathbb{R}^n$ such that $f \circ \sigma$ is a regular function. Let $\rho: S^n \setminus \{a\} \to \mathbb{R}^n$ be the stereographic projection from a,

$$\rho(x_1,\ldots,x_n,x_{n+1}) = \left(\frac{x_1}{1-x_{n+1}},\ldots,\frac{x_n}{1-x_{n+1}}\right)$$

Clearly, $f \circ \sigma \circ \rho$ can be written as $f \circ \sigma \circ \rho = \lambda/\mu$, where λ and μ are polynomial functions on \mathbb{R}^{n+1} with μ nonvanishing on $S^n \setminus \{a\}$. It follows that f is meromorphic at infinity.

Summarizing, every analytic function from \mathbb{R}^n to \mathbb{R} , analytically equivalent to a regular function, is locally analytically equivalent to a germ of a regular function and is meromorphic at infinity. It is an interesting question to what extent the converse is true.

Before we formulate our main result, we need to recall a few concepts. Given a point x in \mathbb{R}^n , we denote by \mathcal{O}_x the ring of all analytic function-germs $(\mathbb{R}^n, 0) \to \mathbb{R}$. If f_x belongs to \mathcal{O}_x , then $\Delta(f_x)$ denotes the ideal of \mathcal{O}_x generated by the first

280

partial derivatives of f_x . The Milnor number of f_x is the dimension of the **R**-vector space $\mathcal{O}_x/\Delta(f_x)$. It is well-known that if the Milnor number of f_x is finite, then given any analytic germ g_x in \mathcal{O}_x with $g_x - f_x$ being k-flat at x, one can find a local analytic diffeomorphism $\sigma_x: (\mathbf{R}^n, x) \to (\mathbf{R}^n, x)$ satisfying $g_x = f_x \circ \sigma_x$, provided that k is sufficiently large [7]. In particular, f_x is locally analytically equivalent to the germ at x of a polynomial function.

THEOREM 1.5. Let $f: \mathbb{R}^n \to \mathbb{R}$ be an analytic function whose germ at each point in \mathbb{R}^n has a finite Milnor number. Then f is analytically equivalent to a regular function if and only if the set of critical poins of f is finite and f is meromorphic at infinity.

We conclude this section by recalling that the set of all analytic functions $f: \mathbf{R}^n \to \mathbf{R}$ such that for each point x in \mathbf{R}^n the germ f_x has a finite Milnor number is very large [7].

2. Proof of Theorem 1.5

Let M be a C^{∞} manifold. Denote by $\mathscr{E}(M)$ the ring of C^{∞} functions on M. Let X_1, \ldots, X_n be C^{∞} vector fields on M generating the $\mathscr{E}(M)$ -module of all C^{∞} vector fields on M. Given an element (f_1, f_2) in $\mathscr{E}(M)^2$, we define $I(f_1, f_2)$ to be the ideal of $\mathscr{E}(M)$ generated by all 2×2 minors of the matrix

$$\begin{pmatrix} f_1 & X_1 f_1 \cdots X_n f_1 \\ f_2 & X_1 f_1 \cdots X_n f_2 \end{pmatrix}$$

and $S(f_1, f_2)$ to be the set of zeros of $I(f_1, f_2)$.

We shall need the following two auxiliary results.

LEMMA 2.1. Let M be a compact C^{∞} manifold. Let (f_1, f_2) be an element in $\mathscr{E}(M)^2$ and let Z be a subset of M. Assume that the ideal $I(f_1, f_2)^2$ is closed in the C^{∞} topology and the ideal I(Z) of all functions in $\mathscr{E}(M)$ vanishing on Z is finitely generated. Then there exists a neighborhood \mathscr{V} of 0 in $\mathscr{E}(M)$ such that for every element (g_1, g_2) in $\mathscr{E}(M)^2$ with

$$g_i - f_i \in I(Z)I(f_1, f_2)^2 \cap \mathscr{V}, \qquad i = 1, 2,$$

one can find a C^{∞} diffeomorphism $\sigma: M \to M$ and an element u in $\mathscr{E}(M)$ satisfying $\sigma(x) = x$ for all x in Z, u > 0 and $(g_1, g_2) = (u(f_1 \circ \sigma), u(f_2 \circ \sigma))$.

PROOF. If Z is the empty set, then Lemma 2.1 is a particular case of [2], Theorem 2.1 with, in the notation of [2], p = 2 and G being the subgroup of $Gl(2, \mathbf{R})$ of all diagonal matrices having the diagonal of the form (λ, λ) , where

[4]

 $\lambda > 0$. In the general case only an obvious modification of the proof of [2], Theorem 2.1 is necessary.

LEMMA 2.2. Let M be a compact real analytic manifold. Let (f_1, f_2) be an element of $\mathscr{E}(M)^2$. Assume that the set $S(f_1, f_2)$ is discrete and f_i is analytic in a neighborhood of $S(f_1, f_2)$ for i = 1, 2. Then there exist a neighborhood \mathscr{V} of 0 in $\mathscr{E}(M)$ and a positive integer k such that for each element (g_1, g_2) in $\mathscr{E}(M)^2$ with $g_i - f_i$ belonging to \mathscr{V} and being k-flat at $S(f_1, f_2)$, i = 1, 2, one has $S(g_1, g_2) = S(f_1, f_2)$.

PROOF. Since one can choose finitely many analytic vector fields on M generating the $\mathscr{E}(M)$ -module of all C^{∞} vector fields on M, the ideal $I(f_1, f_2)$ is generated by finitely many C^{∞} functions which are analytic in a neighborhood of $S(f_1, f_2)$. Now the conclusion is a consequence of the following observation.

Let $u: \mathbb{R}^n \to \mathbb{R}$ be an analytic function with $u^{-1}(0) = \{0\}$. By the Lojasiewicz inequality [7], there exist positive real numbers c and ε and a positive integer l such that

$$|u(x)| \ge c ||x||'$$
 for $||x|| \le \varepsilon$.

If $v : \mathbf{R}^n \to \mathbf{R}$ is a C^{∞} function such that v - u is *l*-flat at 0 in \mathbf{R}^n , then, by the Taylor formula,

$$|v(x)| \ge |u(x)| - |v(x) - u(x)|$$

$$\ge c ||x||^{l} - \left(\sup \left\{ \sum_{\alpha} \frac{1}{\alpha!} |D^{\alpha}(v-u)(x)| : ||x|| \le \varepsilon \right\} \right) ||x||^{l+1}$$

We shall also need a special local version of Lemma 2.1. Let $(f_1, f_2): (\mathbb{R}^n, 0) \to \mathbb{R}^2$ be a C^{∞} map-germ. Denote by $I_0(f_1, f_2)$ the ideal of the ring \mathscr{E}_0 of C^{∞} function-germs $(\mathbb{R}^n, 0) \to \mathbb{R}$ generated by all 2×2 minors of the matrix

$$M_0(f_1, f_2) = \begin{pmatrix} f_1 & \frac{\partial f_1}{\partial x_1} \cdots \frac{\partial f_1}{\partial x_n} \\ f_2 & \frac{\partial f_2}{\partial x_1} \cdots \frac{\partial f_2}{\partial x_n} \end{pmatrix}$$

LEMMA 2.3. Let $(f_1, f_2): (\mathbb{R}^n, 0) \to \mathbb{R}^2$ be an analytic map-germ. Assume that the set-germ of zeros of $I_0(f_1, f_2)$ is contained in $\{0\}$. Then there exists a positive integer k such that for each analytic map-germ $(g_1, g_2): (\mathbb{R}^n,) \to \mathbb{R}^2$ with $g_i - f_i$ being k-flat at 0 in \mathbb{R}^n , i = 1, 2, one can find a local C^1 orientation preserving diffeomorphism $\sigma: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ and a C^1 function-germ $u: (\mathbb{R}^n, 0) \to \mathbb{R}$, both analytic off the origin and satisfying u > 0 and $(g_1, g_2) = (u(f_1 \circ \sigma), u(f_2 \circ \sigma))$.

PROOF. Let k be a positive integer and let (g_1, g_2) : $\mathbb{R}^n \to \mathbb{R}^2$ be an analytic map-germ such that $g_i - f_i$ is k-flat at 0 in \mathbb{R}^n for i = 1, 2. Define $F(x, t) = (F_1(x, t), F_2(x, t))$ by $F_i(x, t) = (1 - t)f_i(x) + tg_i(x)$ for t in [0, 1] and i = 1, 2. Let $\mathcal{O}_n[0, 1]$ be the ring of analytic function-germs ($\mathbb{R}^n \times \mathbb{R}$, $\{0\} \times [0, 1]) \to \mathbb{R}$. Set

$$M_0(F_1, F_2) = \begin{pmatrix} F_1 & \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ F_2 & \frac{\partial F_2}{\partial x_1} & \cdots & \frac{\partial F_2}{\partial x_n} \end{pmatrix}$$

and

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

If Δ is a 2 × 2 minor of $M_0(F_1, F_2)$, then Δe_i is a linear combination of the columns of $M_0(F_1, F_2)$ with coefficients in $\mathcal{O}_n[0, 1]$. Let δ be the sum of squares of all 2 × 2 minors of $M_0(F_1, F_2)$. Then

$$-\delta(x,t)\frac{\partial F}{\partial t}(x,t) = \sum_{j=1}^{n} \xi_{j}(x,t)\frac{\partial F}{\partial x_{j}}(x,t) + \eta(x,t)F(x,t)$$

for some ξ_j , η in $\mathcal{O}_n[0, 1]$. Moreover, $\xi_j(\cdot, t)$ and $\eta(\cdot, t)$ are k-flat at 0 in \mathbb{R}^n for all t in [0, 1]. Notice that $\delta(\cdot, 0)$ is the sum of squares of all 2×2 minors of the matrix $M_0(f_1, f_2)$. Thus the set-germ of zeros of $\delta(\cdot, 0)$ is contained in $\{0\}$. By the Lojasiewicz inequality [7],

$$\delta(x,0) \ge c \|x\|^l$$
 for $\|x\| < \alpha$,

where $c, \alpha > 0$ and l is a positive integer. Now assume that k has been chosen satisfying $k \ge 2(l+1)$. Since $\delta(\cdot, t) - \delta(\cdot, 0)$ is (k-1)-flat at 0 in \mathbb{R}^n , it follows that

$$\delta(x,t) \ge \frac{c}{2} ||x||^{t}$$
 for $||x|| < \beta$ and $t \in [0,1]$,

where $\beta > 0$. By choice of k, for each j = 1, ..., n, ξ_j/δ and η/δ have C^1 extensions ξ'_j and η' on a neighborhood of $\{0\} \times [0, 1]$ vanishing on $\{0\} \times [0, 1]$. One also has

$$-\frac{\partial F}{\partial t}(x,t) = d_2 F(x,t) \big(\xi'(x,t)\big) + \eta'(x,t) F(x,t),$$

where

$$\xi'(x,t) = \sum_{j=1}^n \xi'(x,t) \frac{\partial}{\partial x_j}.$$

Let $\tau: (\mathbf{R}^n \times \mathbf{R}, \{0\} \times [0, 1]) \to (\mathbf{R}^n, 0)$ be a C^1 map-germ satisfying

$$\begin{cases} \frac{\partial \tau}{\partial t}(x,t) = \xi'(\tau(x,t),t),\\ \tau(x,0) = x \end{cases}$$

and let

$$v(x,t) = \exp\left(-\int_0^t \eta'(\tau(x,s),s) \, ds\right).$$

Notice that

$$\frac{\partial}{\partial t}(F(\tau(x,t),t)) = -\eta'(\tau(x,t),t)F(\tau(x,t),t)$$

and

$$\frac{\partial}{\partial t}(v(x,t)F(x,0)) = -\eta'(\tau(x,t),t)(v(x,t)F(x,0)).$$

By the uniqueness of the solution of ordinary differential equations, one obtains $F(\tau(x, t), t) = v(x, t)F(x, 0)$. It suffices to set $\sigma^{-1}(x) = \tau(x, 1)$ and $u(x) = v(\sigma(x), 1)$. Clearly, σ and u are analytic off the origin and the conclusion follows.

Let M and N be C^{∞} manifolds and let $f: M \to N$ be a C^{∞} map. The set of critical points of f will be denoted by $\Sigma(f)$ and the germ of f at a point x in M by f_x . If X is a subset of \mathbb{R}^n , then by a polynomial function on X we shall mean the restriction to X of a polynomial function on \mathbb{R}^n .

PROOF OF THEOREM 1.5. It follows from the assumption that the set $\Sigma(f)$ is discrete. Assume that $f \circ \sigma$ is a regular function for some analytic diffeomorphism $\sigma : \mathbb{R}^n \to \mathbb{R}^n$. Clearly, the set $\Sigma(f \circ \sigma)$ is semi-algebraic. Since every semi-algebraic set has only finitely many connected components [3], the set $\Sigma(f \circ \sigma)$ and, hence also $\Sigma(f)$, is finite. By Proposition 1.4, f is meromorphic at infinity.

Now suppose that $\Sigma(f)$ is finite and f is meromorphic at infinity. Let $\tau: S^n \setminus \{a\} \to \mathbb{R}^n$ be an analytic diffeomorphism and let $u_1, u_2: U \to \mathbb{R}$ be analytic functions defined on a neighborhood U of a in S^n such that u_2 does not vanish on $U \setminus \{a\}$ and $f \circ \tau = u_1/u_2$ on $U \setminus \{a\}$. We may assume that $u_2 \ge 0$ on U (replace u_1 and u_2 by u_1u_2 and u_2^2 , respectively, if necessary). It is easy to construct two C^{∞} functions $f_1, f_2: S^n \to \mathbb{R}$ such that $f_i = u_i$ on a neighborhood of $a, i = 1, 2, f_2 \ge 0, f_2$ does not vanish on $S^n \setminus \{a\}$ and $f \circ \tau = f_1/f_2$ on $S^n \setminus \{a\}$. Notice that

$$S(f_1, f_2) \subseteq \sum (f \circ \tau) \cup \{a\}.$$

Let \mathscr{V} be a small neighborhood of 0 in $\mathscr{E}(S^n)$ and let k be a large positive integer (how small \mathscr{V} is and how large k is will be clear later on). For each i = 1, 2, one can find a polynomial map $\varphi_i : S^n \to \mathbf{R}$ such that $f_i - \varphi_i$ belongs to

 \mathscr{V} and $f_i - \varphi_i$ is k-flat at $\Sigma(f \circ \tau) \cup \{a\}$ (cf. [1], Corollary 1). By Lemma 2.2, $S(\varphi_1, \varphi_2) = S(f_1, f_2)$. Moreover, for each point x in $\Sigma(f \circ \tau)$ one can find a local C^{∞} orientation preserving diffeomorphism $\alpha_x: (S^n, x) \to (S^n, x)$ and a C^{∞} function-germ $v_x: (S^n, x) \to \mathbf{R}$ such that $v_x > 0$ and $(\varphi_{1x}, \varphi_{2x}) = (v_x(f_{1x} \circ \alpha_x), g_{2x})$ $v_x(f_{2x} \circ \alpha_x)$ (this follows from the fact that the Milnor number of f at $\tau(x)$ is finite and from [7], p. 169, Theorem 3.11 applied for p = 2 and the subgroup G of $Gl(2, \mathbf{R})$ consisting of all diagonal matrices having the diagonal of the form (λ, λ) , where $\lambda > 0$). By Lemma 2.3, there exists a local C^1 orientation preserving diffeomorphism $\alpha_a: (S^n, a) \to (S^n, a)$ and a C^1 function-germ $v_a: (S^n, a) \to \mathbb{R}$ such that $v_a > 0$, α_a and v_a are analytic off a and $(\varphi_{1a}, \varphi_{2a}) = (v_a(f_{1a} \circ \alpha_a),$ $v_a(f_{2a} \circ \alpha_a)$). Now one can find a C^1 diffeomorphism $\beta: S^n \to S^n$ and a C^1 function $w: S^n \to \mathbf{R}$ such that β and w are of class C^{∞} on $S^n \setminus \{a\}, \beta_a = \alpha_a$, $w_a = v_a$, w > 0 on S^n and for each x in $\Sigma(f \circ \tau)$, $\beta_x = \alpha_x$ and $w_x = v_x$. Set $g_i = w(f_i \circ \beta)$ for i = 1, 2. Clearly, g_i is a C^{∞} function on S^n and $g_i = \varphi_i$ on a neighborhood of $\Sigma(f \circ \tau) \cup \{\alpha\}$. Notice that the ideal $I(g_1, g_2)^2 = I(\varphi_1, \varphi_2)^2$ is closed in $\mathscr{E}(S^n)$. Indeed, the ideal $I(\varphi_2, \varphi_2)^2$ can be generated by polynomial functions (choose the appropriate vector fields on S^n) and, hence, is closed [7]. Fix a polynomial function λ in $I(g_1, g_2)^2$ with $\lambda^{-1}(0) = S(g_1, g_2)$. For each i = 1, 2, we can find a C^{∞} function $h_i: S^n \to \mathbf{R}$ satisfies

$$g_i - \varphi_i = h_i \lambda$$
 and $h_i(a) = 0$.

Let μ_i be a polynomial approximation to h_i with $\mu_i(a) = 0$. By Lemma 2.1 (with $Z = \{a\}$), there exist a C^{∞} diffeomorphism $\gamma: S^n \to S^n$ and a C^{∞} function $u: S^n \to \mathbf{R}$ such that u > 0, $\gamma(a) = a$ and $(\psi_1, \psi_2) = (u(g_1 \circ \gamma), u(g_2 \circ \gamma))$, where $\psi_i = \varphi_i + \mu_i \lambda$ for i = 1, 2. It follows that $f \circ \tau \circ \beta \circ \gamma \circ \rho^{-1} = (\psi_1/\psi_2) \circ \rho^{-1}$ on \mathbf{R}^n , where $\rho: S^n \setminus \{a\} \to \mathbf{R}^n$ is the stereographic projection. Notice that $\tau \circ \beta \circ \gamma \circ \rho^{-1}$ is a C^{∞} diffeomorphism and $(\psi_1/\psi_2) \circ \rho^{-1}$ is a regular function. By [4], Theorem 8.4, f and $(\psi_1/\psi_2) \circ \rho^{-1}$ are analytically equivalent.

References

- J. Bochnak, W. Kucharz and M. Shiota, 'On equivalence of ideals of real global analytic functions and the 17th Hilbert problem', *Invent. Math.* 63 (1981), 403-421.
- [2] J. Bochnak, W. Kucharz, and M. Shiota, 'On algebraicity of global real analytic sets and functions', *Invent. Math.* 70 (1982), 115-156.
- [3] S. Lojasiewicz, Ensembles semi-analytiques (I.H.E.S., Lecture notes 1965).
- [4] M. Shiota, 'Equivalence of differentiable mappings and analytic mappings', Inst. Hautes Etudes Sci. Publ. Math. 54 (1981), 37-122.

- [5] M. Shiota, 'Equivalence of differentiable functions, rational functions and polynomials', Ann. Inst. Fourier (Grenoble) 32 (1982), 167-204.
- [6] R. Thom, 'L'équivalence d'une fonction différentiable et d'un polynôme', Topology 3, Suppl. 2 (1965), 297–307.
- [7] J. Cl. Tougeron, *Idéaux de fonctions différentiables*, (Springer, Berlin-Heidelberg-New York, 1972).

Department of Mathematics University of New Mexico Albuquerque, New Mexico 87131 U.S.A.