BEST SIMULTANEOUS APPROXIMATION OF QUASI-CONTINUOUS FUNCTIONS BY MONOTONE FUNCTIONS

SALEM M. A. SAHAB

(Received 28 June 1989)

Communicated by E. N. Dancer

Abstract

Let denote the Banach space (under the sup norm) of quasi-continuous functions on the unit interval $[0,1]$. Let denote the closed convex cone comprised of monotone nondecreasing functions on $[0,1]$. For f and g in and $1<p<\infty$, let h_{p} denote the best L_{p} simultaneous approximant of f and g by elements of \mathscr{M}. It is shown that h_{p} converges uniformly as $p \rightarrow \infty$ to a best L_{∞}-simultaneous approximant of f and g by elements of \mathbb{M}. However, this convergence is not true in general for any pair of bounded Lebesgue measurable functions. If f and g are continuous, then each h_{p} is continuous; so is $\lim _{p \rightarrow \infty} h_{p}=h_{\infty}$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 41 A 28; secondary 41 A 30,41 A 65.

0. Introduction

Let Ω be the real unit interval $[0,1]$. Let μ be the Lebesgue measure on Ω and let \mathscr{A} be the collection of all measurable subsets of Ω. Let $L_{p}(\Omega, \mathscr{A}, \mu), 1<p<\infty$, be the well known L_{p} Banach spaces and let $Q \subseteq L_{p}(\Omega, \mathscr{A}, \mu)$ be the Banach space (under the sup norm) comprised of all quasi-continuous functions defined on Ω, that is, functions having at most discontinuities of the first kind only. Let $\mathscr{C} \subseteq \mathscr{Q}$ be the subspace of continuous functions on Ω, and let \mathscr{M} be the closed convex cone in \mathscr{Q} consisting of all monotone nondecreasing functions on Ω. Let f and g be two bounded Lebesgue measurable functions on Ω. It was shown in [3] that

[^0]if $f \notin \mathscr{M}$ or $g \notin \mathscr{M}$, then there exists a unique $h_{p} \in \mathscr{M}, p \in(1, \infty)$, such that
\[

$$
\begin{equation*}
\left[\left\|f-h_{p}\right\|_{p}^{p}+\left\|g-h_{p}\right\|_{p}^{p}\right]^{1 / p}=\inf _{h \in \mathscr{R}}\left[\|f-h\|_{p}^{p}+\|g-h\|_{p}^{p}\right]^{1 / p} . \tag{0.1}
\end{equation*}
$$

\]

We call h_{p} the best L_{p}-simultaneous approximant of f and g by elements of \mathscr{M}. Unless indicated otherwise h_{p} will be referred to as the b.s.a. of f and g. In general we say that f and g have the simultaneous Polya property if $h_{\infty}=\lim _{p \rightarrow \infty} h_{p}$ is well defined as a bounded Lebesgue measurable function on Ω.

When $f=g$ in (0.1), we have the usual L_{p}-approximation of a single function f by elements of \mathscr{M}. If f_{p} is its best L_{p}-approximant, then $\lim _{p \rightarrow \infty} f_{p}=f_{\infty}$ exists provided f is quasi-continuous, that is, f has the Polya property in this case (see [2]). In this paper, we try primarily to generalize the results discussed in [2]. As for now, there has been no similar work concerning the convergence of h_{p} as $p \rightarrow \infty$.

We devote the next section to studying the case when both f and g are real-valued functions defined on a finite point set X. We state formulas for computing h_{p} and h_{∞} in this case, and we establish the basic convergence results needed later.

In Section 2, we utilize the results of Section 1 to establish convergence results in the space of step functions defined on Ω.

The fact that the step functions are dense in the space of quasi-continuous functions together with the results of Section 2, enable us to obtain the simultaneous Polya property. This is done in Section 3 where we establish as well the continuity of $h_{p}, p>1$, whenever f ang g are continuous.

In Section 4, we show by an example that the simultaneous Polya property does not hold in general for any pair of bounded Lebesgue measurable functions. In particular, we consider the case when f is approximately continuous on Ω.

Throughout this report we may assume (unless otherwise indicated) that either f and/or g does not belong to \mathscr{K}.

1. Best L_{p}-simultaneous approximation on a finite set

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite subset of \mathscr{R} with $x_{1}<x_{2}<$ $\cdots<x_{n}$. Let $B=B(X)$ be the linear space of real functions on X and $\mathscr{M}=\mathscr{M}(X)$ the closed convex cone of monotone nondecreasing functions in B, that is, functions h satisfying $h(x) \leq h(y)$ whenever $x, y \in X$ and
$x \leq y$. For each $p \in[1, \infty)$, define a weighted L_{p}-norm ${ }_{w}\|\cdot\|_{p}$ by

$$
\begin{equation*}
{ }_{w}\|f\|_{p}=\left(\sum_{i=1}^{n} w_{i}\left|f_{i}\right|^{p}\right)^{1 / p} \tag{1.1}
\end{equation*}
$$

where $f=\left\{f_{i}\right\}_{i=1}^{n}=\left\{f\left(x_{i}\right)\right\}_{i=1}^{n} \in B$, and $w=\left\{w_{i}\right\}_{i=1}^{n}>0$ is a weight function satisfying $\sum_{i=1}^{n} w_{i}=1$.

Let $f=\left\{f_{i}\right\}_{i=1}^{n}$ and $g=\left\{g_{i}\right\}_{i=1}^{n}$ in B be fixed. For each $p \in[1, \infty)$, a function $h_{p}=\left\{h_{p, i}\right\}_{i=1}^{n} \in \mathscr{M}$ is called a best weighted L_{p}-simultaneous approximant of f and g if

$$
\begin{align*}
& \left({ }_{w}\left\|f-h_{p}\right\|_{p}^{p}+{ }_{w}\left\|g-h_{p}\right\|_{p}^{p}\right)^{1 / p} \\
& \quad=\inf \left\{\left({ }_{w}\|f-h\|_{p}^{p}+{ }_{w}\|g-h\|_{p}^{p}\right)^{1 / p}: h \in \mathscr{M}\right\} \tag{1.2}
\end{align*}
$$

or,

$$
\begin{align*}
& {\left[\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-h_{p, i}\right|^{p}+\left|g_{i}-h_{p, i}\right|^{p}\right)\right]^{1 / p}} \tag{1.2'}\\
& \quad \leq\left[\sum_{i=1}^{n} w_{i}\left(\left|f_{i}-h_{i}\right|^{p}+\left|g_{i}-h_{i}\right|^{p}\right)\right]^{1 / p},
\end{align*}
$$

for all $h=\left\{h_{i}: i=1, \ldots, n\right\} \in \mathbb{M}$.
It was shown in [3] that h_{p} is unique (up to equivalence) when $p \in$ $(1, \infty)$.

To this end we shall discuss briefly the computation of the values of h_{p} explicitly, we start with the following definitions.

Definition. A subset $L \subseteq X$ is said to be a lower set if $x_{i} \in L$ and $x_{j} \in X, x_{j} \leq x_{i}$, imply that $x_{j} \in L$. Similarly, $U \subseteq X$ is an upper set if $x_{i} \in U$ and $x_{j} \in X, x_{j} \geq x_{i}$, imply that $x_{j} \in X$. For simplicity we will write $i \in Y \subseteq X$ instead of $x_{i} \in Y$.

Fix $p \in(1, \infty)$. If $L \cap U$ is nonempty, define $\mu_{p}(L \cap U)$ to be the unique real number minimizing

$$
\left\{\sum_{j} w_{j}\left[\left|f_{j}-u\right|^{p}+\left|g_{j}-u\right|^{p}\right]: j \in L \cap U\right\} .
$$

Let $h_{p}=\left\{h_{p, i}: i=1,2, \ldots, n\right\}$ be the function defined on X by

$$
\begin{align*}
h_{p, i} & =\max _{\{U: i \in U\}\{L: i \in L\}} \min _{p} \mu_{p}(L \cap U), \\
& =\min _{\{L: i \in L\} \backslash U: i \in U\}} \max _{p}(L \cap U) . \tag{1.3}
\end{align*}
$$

It is shown in [8, pages 21-38], that h_{p} is the unique solution satisfying (1.2). Before we proceed we remind the reader of the sup norm defined by

$$
\|f\|_{\infty}=\max \left\{\left|f_{i}\right|: i=1, \ldots, n\right\}
$$

Definition. Let $a=\min \left\{-\|f\|_{\infty},-\|g\|_{\infty}\right\}$ and $b=\max \left\{\|f\|_{\infty},\|g\|_{\infty}\right\}$. For fixed $f=\left\{f_{i}\right\}_{i=1}^{n}$ and $g=\left\{g_{i}\right\}_{i=1}^{n}$, we define functions $\tau_{p}:[a, b]^{n} \rightarrow \mathscr{R}$ and $\kappa_{p}:[a, b] \rightarrow \mathscr{R}$ for $1 \leq p \leq \infty$ by

$$
\begin{equation*}
\tau_{p}(\bar{u})=\sum_{i=1}^{n} w_{p, i}\left(\left|f_{i}-u_{i}\right|^{p}+\left|g_{i}-u_{i}\right|^{p}\right), \quad p<\infty \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{\infty}(\bar{u})=\max _{1 \leq i \leq n}\left(\left|f_{i}-u_{i}\right|,\left|g_{i}-u_{i}\right|\right) \tag{1.5}
\end{equation*}
$$

$$
\begin{gather*}
\kappa_{p}(u)=\sum_{i=1}^{n} w_{p, i}\left(\left|f_{i}-u\right|^{p}+\left|g_{i}-u\right|^{p}\right) \tag{1.6}\\
\kappa_{\infty}(u)=\max _{1 \leq i \leq n}\left(\left|f_{i}-u\right|,\left|g_{i}-u\right|\right) \tag{1.7}
\end{gather*}
$$

where $\bar{u}=\left(u_{1}, \ldots, u_{n}\right) \in[a, b]^{n}$ and $u \in[a, b]$.
Lemma 1. Suppose $w_{p}=\left\{w_{p, i}\right\}_{i=1}^{n}>0$ with $\sum_{i=1}^{n} w_{p, i}=1$, and

$$
\begin{equation*}
\liminf _{p \rightarrow \infty} w_{p, i}>0 \tag{1.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(\tau_{p}(\bar{u})\right)^{1 / p}=\tau_{\infty}(\bar{u}) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{p \rightarrow \infty}\left(\kappa_{p}(u)\right)^{1 / p}=\kappa_{\infty}(u) \tag{1.10}
\end{equation*}
$$

and the convergence is uniform on the compact sets $[a, b]^{n}$ and $[a, b]$ respectively.

Proof. From (1.8) we conclude that there exist real numbers $\delta_{1}, \delta_{2} \in$ $(0,1]$ and $p_{0} \geq 1$ such that $w_{p, i} \in\left[\delta_{1}, \delta_{2}\right]$ for all i and all $p \geq p_{0}$. Hence

$$
\begin{aligned}
\tau_{p}(\bar{u}) & =\sum_{i=1}^{n} w_{p, i}\left(\left|f_{i}-u_{i}\right|^{p}+\left|g_{i}-u_{i}\right|^{p}\right) \\
& \leq \sum_{i=1}^{n} \delta_{2}\left[\left(\tau_{\infty}(\bar{u})\right)^{p}+\left(\tau_{\infty}(\bar{u})\right)^{p}\right] \\
& =\sum_{i=1}^{n} 2 \delta_{2}\left(\tau_{\infty}(\bar{u})\right)^{p}=2 n \delta_{2}\left(\tau_{\infty}(\bar{u})\right)^{p}
\end{aligned}
$$

for all $p \geq p_{0}$. In other words,

$$
\begin{equation*}
(\tau(\bar{u}))^{1 / p}-\tau_{\infty}(\bar{u}) \leq\left[\left(2 n \delta_{2}\right)^{1 / p}-1\right] \tau_{\infty}(\bar{u}) \tag{1.11}
\end{equation*}
$$

Since X is finite, we may assume without loss of generality the existence of an integer $k, 1 \leq k \leq n$, such that

$$
\tau_{\infty}(\bar{u})=\left|f_{k}-u_{k}\right| .
$$

Hence,

$$
\tau_{p}(\bar{u}) \geq w_{p, k}\left[\left|f_{k}-u_{k}\right|\right]^{p} \geq \delta_{1}\left(\tau_{\infty}(\bar{u})\right)^{p}
$$

which implies that

$$
\begin{equation*}
\left(\delta_{1}^{1 / p}-1\right) \tau_{\infty}(\bar{u}) \leq\left(\tau_{p}(\bar{u})\right)^{1 / p}-\tau_{\infty}(\bar{u}) \tag{1.12}
\end{equation*}
$$

Combining (1.11) and (1.12) it follows that

$$
\left|\tau_{p}(\bar{u})^{1 / p}-\tau_{\infty}(\bar{u})\right| \leq \max \left\{\left|\left(2 n \delta_{2}\right)^{1 / p}-1\right|,\left|\delta_{1}^{1 / p}-1\right|\right\} \tau_{\infty}(\bar{u})
$$

Now $\tau_{\infty}(\bar{u})$ is continuous in \bar{u}, so it is bounded on the compact domain $[a, b]^{n}$. Hence the uniform convergence of $\left(\tau_{p}(\bar{u})\right)^{1 / p}$ to $\tau_{\infty}(\bar{u})$ follows. This establishes (1.9). To obtain (1.10) take $\bar{u}=(u, \ldots, u)$.

REMARK. In the above lemma, we may waive the requirement that

$$
\sum_{i=1}^{n} w_{p, i}=1
$$

if we require instead that

$$
0<\liminf _{p \rightarrow \infty} w_{p, i} \leq \limsup _{p \rightarrow \infty} w_{p, i}<\infty
$$

The proof is essentially the same. See [7, Theorem 1] for a similar argument.

Lemma 2. For $1<p \leq \infty, \kappa_{p}(u)$ has a unique minimizer u_{p}. Moreover,

$$
\lim _{p \rightarrow \infty} u_{p}=u_{\infty}
$$

and u_{∞} is the minimizer of $\kappa_{\infty}(u)$.

Proof. The proof of [7, Lemma 2] can be modified to obtain the desired result.

Theorem 3. Assume that $\omega_{p}=\left\{\omega_{p, i}\right\}_{i=1}^{n}>0$ satisfies (1.8) and

$$
\sum_{i=1}^{n} \omega_{p, i}=1 \quad \text { for all } p, 1<p<\infty
$$

Then the solution $h_{p}=\left\{h_{p, i}: i=1, \ldots, n\right\}$ given by (1.3) and satisfying (1.2) converges as $p \rightarrow \infty$ to a solution $h_{\infty}=\left\{h_{\infty, i}: i=1, \ldots, n\right\}$ satisfying

$$
\begin{align*}
& \max \left(\left\|f-h_{\infty}\right\|_{\infty},\left\|g-h_{\infty}\right\|_{\infty}\right) \\
& \quad=\inf \left\{\max \left(\|f-h\|_{\infty},\|g-h\|_{\infty}\right): h \in \mathscr{M}\right\}, \tag{1.13}
\end{align*}
$$

or,

$$
\max _{1 \leq i \leq n}\left(\left|f_{i}-h_{\infty, i}\right|,\left|g-h_{\infty, i}\right|\right) \leq \max _{1 \leq i \leq n}\left(\left|f_{i}-h_{i}\right|,\left|g_{i}-h_{i}\right|\right), \quad h=\left\{h_{i}\right\}_{i=1}^{n} \in \mathscr{M} .
$$

Moreover

$$
\begin{align*}
h_{\infty, i} & =\lim _{p \rightarrow \infty} h_{p, i}=\max _{\{U: i \in U\}\{L: i \in L\}} \min _{\infty}(L \cap U) \tag{1.14}\\
& =\min _{\{L: i \in L\}\{U: i \in U\}} \max _{\infty}(L \cap U),
\end{align*}
$$

for every i, where L and U are lower and upper sets respectively and $\mu_{\infty}(L \cap U)$ is the unique real number minimizing

$$
\max _{j \in L \cap U}\left(\left|f_{j}-u\right|,\left|g_{j}-u\right|\right)
$$

for all real u.
Proof. Putting $L \cap U$ instead of X in Lemma 2 above we conclude that

$$
\lim _{p \rightarrow \infty} \mu_{p}(L \cap U)=\mu_{\infty}(L \cap U)
$$

exists and $\mu_{\infty}(L \cap U)$ is the minimizer of $\max \left\{\left|f_{j}-u\right|,\left|g_{j}-u\right|: j \in L \cap U\right\}$. Since X is finite, the number of lower and upper sets is finite, so (1.3) implies that the limit of $h_{p, i}$ exists as $p \rightarrow \infty$ for all i, and therefore (1.14) holds and it has a real value, say $h_{\infty, i}, i=1, \ldots, n$.

It remains to show that (1.13) holds, that is, h_{∞} is indeed a best L_{∞} simultaneous approximant of f and g. Since $\left\{h_{p, i}\right\}_{i=1}^{n} \in \mathscr{M}$ for every $p<\infty,\left\{h_{\infty, i}\right\}_{i=1}^{n} \in \mathscr{M}$. Clearly

$$
\min \left(f_{i}, g_{i}\right) \leq h_{p, i} \leq \max \left(f_{i}, g_{i}\right)
$$

for all p and i. By definition of $\left\{h_{p, i}\right\}_{i=1}^{n}$, we have $\left(\tau_{p}\left(h_{p}\right)\right)^{1 / p} \leq\left(\tau_{p}(\bar{u})\right)^{1 / p}$
for all $\bar{u} \in \mathscr{R}^{n}$. Now, let $p \rightarrow \infty$ to conclude from (1.9) that $\tau_{\infty}\left(h_{\infty}\right) \leq$ $\tau_{\infty}(\bar{u})$ for all $\bar{u} \in \mathscr{R}^{n}$. Hence h_{∞} satisfies (1.13). This completes the proof.

2. B.s.a. to step functions

Definition. Let π be a finite partition Ω with points $\left\{t_{i}: i=0,1, \ldots\right.$, $n\}$ such that $0=t_{0}<t_{1}<\cdots<t_{n}=1$. Let I_{E} denote the indicator function of a subset E of Ω. Let S_{π} be the linear space comprised of all step functions of the form

$$
\begin{equation*}
f=\sum_{i=1}^{n} f_{i} I_{\left(t_{i}-1, t_{i}\right]} \tag{2.1}
\end{equation*}
$$

where $f_{i} \in \mathscr{R}$ for every i, and for $i=1$, we include the point $t_{0}=0$.

Lemma 4. Let f and g be in S_{π} and let $h_{p}, 1<p<\infty$, be the b.s.a. of f and g by elements of \mathscr{M}. Then $h_{p} \in S_{\pi}$.

Proof. Suppose h_{p} is not constant on some sub-interval $\left(t_{j}-1, t_{j}\right]$. Let

$$
l=\operatorname{essinf}\left\{h_{p}(t): t_{j-1}<t \leq t_{j}\right\}
$$

and

$$
u=\operatorname{essup}\left\{h_{p}(t): t_{j-1}<t \leq t_{j}\right\}
$$

Clearly $l<u$. Choose $\zeta \in[l, u]$ such that

$$
\left|f_{j}-\zeta\right|^{p}+\left|g_{j}-\zeta\right|^{p}=\inf \left\{\left|f_{j}-r\right|^{p}+\left|g_{j}-r\right|^{p}: r \in[l, u]\right\}
$$

where f_{j} and g_{j} are respectively the values of f and g on $\left(t_{j-1}, t_{j}\right]$. Now, let h_{p}^{*} be the element of \mathscr{M} defined by

$$
h_{p}^{*}(t)= \begin{cases}\zeta, & t_{j-1}<t \leq t_{j} \\ h_{p}(t), & \text { otherwise }\end{cases}
$$

Then h_{p}^{*} is a better b.s.a. of f and g since

$$
\begin{aligned}
\left\|f-h_{p}^{*}\right\|_{p}^{p}+\left\|g-h_{p}^{*}\right\|_{p}^{p}= & \sum_{\substack{i=1 \\
i \neq j}}^{n} \int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-h_{p}(t)\right|^{p}+\left|g_{i}-h_{p}(t)\right|^{p}\right) d t \\
& +\int_{t_{j-1}}^{t_{j}}\left(\left|f_{j}-\zeta\right|^{p}+\left|g_{j}-\zeta\right|^{p}\right) d t \\
< & \sum_{\substack{i=1 \\
i \neq j}}^{n} \int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-h_{p}(t)\right|^{p}+\left|g_{i}-h_{p}(t)\right|^{p}\right) d t \\
& +\int_{t_{j-1}}^{t_{j}}\left(\left|f_{j}-h_{p}(t)\right|^{p}+\left|g_{j}-h_{p}(t)\right|^{p}\right) d t,
\end{aligned}
$$

or,

$$
\left\|f-h_{p}^{*}\right\|_{p}^{p}+\left\|g-h_{p}^{*}\right\|_{p}^{p}<\left\|f-h_{p}\right\|_{p}^{p}+\left\|g-h_{p}\right\|_{p}^{p},
$$

a contradiction. Therefore h_{p} must be constant on $\left(t_{j}-1, t_{j}\right]$, or $h_{p} \in S_{\pi}$.
Lemma 5. Let $p \in(1, \infty)$ be fixed. Let f_{1}, f_{2}, g_{1} and g_{2} be elements of S_{π}. Let h_{1} and h_{2} be the b.s.a. of f_{1}, g_{1} and f_{2}, g_{2} respectively. If $f_{1} \leq f_{2}$ and $g_{1} \leq g_{2}$, then $h_{1} \leq h_{2}$.

Proof. It was shown in [5, Lemma 2] that for $1<p<\infty$ and for all real numbers a, b, c, d with $a \geq c$,

$$
\begin{equation*}
|a-b|^{p}+|c-d|^{p} \geq|a-\max (b, d)|^{p}+|c-\min (b, d)|^{p} . \tag{2.2}
\end{equation*}
$$

Define functions T_{1} and T_{2} by $T_{1}(x)=\min \left(h_{1}(x), h_{2}(x)\right)$ and $T_{2}(x)=$ $\max \left(h_{1}(x), h_{2}(x)\right)$. Applying (2.2) at every $x \in[0,1]$ with $a=f_{2}(x)$, $b=h_{2}(x), c=f_{1}(x)$ and $d=h_{1}(x)$, we obtain

$$
\left|f_{2}(x)-h_{2}(x)\right|^{p}+\left|f_{1}(x)-h_{1}(x)\right|^{p} \geq\left|f_{2}(x)-T_{2}(x)\right|^{p}+\left|f_{1}(x)-T_{1}(x)\right|^{p}
$$

and hence by integrating over $[0,1]$ we get

$$
\begin{equation*}
\left\|f_{2}-h_{2}\right\|_{p}^{p}+\left\|f_{1}-h_{1}\right\|_{p}^{p} \geq\left\|f_{2}-T_{2}\right\|_{p}^{p}+\left\|f_{1}-T_{1}\right\|_{p}^{p} . \tag{2.3}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\left\|g_{2}-h_{2}\right\|_{p}^{p}+\left\|g_{1}-h_{1}\right\|_{p}^{p} \geq\left\|g_{2}-T_{2}\right\|_{p}^{p}+\left\|g_{1}-T_{1}\right\|_{p}^{p} . \tag{2.4}
\end{equation*}
$$

Adding (2.3) to (2.4), we conclude that either

$$
\begin{equation*}
\left\|f_{2}-h_{2}\right\|_{p}^{p}+\left\|g_{2}-h_{2}\right\|_{p}^{p} \geq\left\|f_{2}-T_{2}\right\|_{p}^{p}+\left\|g_{2}-T_{2}\right\|_{p}^{p} \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\|f_{1}-h_{1}\right\|_{p}^{p}+\left\|g_{1}-h_{1}\right\|_{p}^{p} \geq\left\|f_{1}-T_{1}\right\|_{p}^{p}+\left\|_{p}^{p}+\right\| g_{1}-T_{1} \|_{p}^{p}, \tag{2.6}
\end{equation*}
$$

or both of them. If (2.5) holds, then by definition of h_{2} we must have

$$
h_{2}=T_{2}=\max \left(h_{1}, h_{2}\right) \geq h_{1} .
$$

If (2.6) holds, then we end up with $h_{1}=T_{1} \leq h_{2}$. This completes the proof.
Lemma 6. Let f and g be elements of S_{π}, and let h_{p} be their b.s.a. Then $h_{p}+c$ is the b.s.a. of $f+c$ and $g+c$ where $c \in \mathscr{R}$.

Proof. This is clear, since $h_{p}+c \in \mathscr{M}$ for all c.
Remark. The last two lemmas are true in general for all bounded Lebesgue measurable functions on $[0,1]$. The proofs are essentially the same.

Theorem 7. Let f and g be elements of S_{π} given by

$$
\begin{equation*}
f=\sum_{i=1}^{n} f_{i} I_{\left(t_{i-1}, t_{i}\right]}, \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\sum_{i=1}^{n} g_{i} I_{\left(t_{i-1}, t_{i}\right.} . \tag{2.8}
\end{equation*}
$$

For every $p, 1<p<\infty$, let $\omega_{p}=\left\{\omega_{p, i}\right\}_{i=1}^{n}$ be defined by $\omega_{p, i}=t_{i}-t_{i-1}$ for all i, and let $h_{p}=\left\{h_{p, i}\right\}_{i=1}^{n}$ be given by (1.3). Then, the b.s.a. of f and g is given by

$$
\begin{equation*}
h_{p}^{*}=\sum_{i=1}^{n} h_{p, i} I_{\left(t_{i-1}, t_{i}\right]} . \tag{2.9}
\end{equation*}
$$

Proof. By Lemma 4, we know that $h_{p}^{*} \in S_{\pi}$. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where $x_{i}=\left(t_{i}+t_{i-1}\right) / 2, i=1, \ldots, n$. Consider $\left\{f_{i}: i=1, \ldots, n\right\}$ and $\left\{g_{i}: i=1, \ldots, n\right\}$ as two finite real valued functions defined on X and let $\left\{h_{i}: i=1, \ldots, n\right\}, h_{i} \leq h_{j}$ for all $i<j$, be a monotone nondecreasing function on X. Then by substituting the values of $\omega_{p, i}$ in equation (1.2') we obtain

$$
\begin{aligned}
& {\left[\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left(\left|f_{i}-h_{p, i}\right|^{p}+\left|g_{i}-h_{p, i}\right|^{p}\right)\right]^{1 / p}} \\
& \quad \leq\left[\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)\left(\left|f_{i}-h_{i}\right|^{p}+\left|g_{i}-h_{i}\right|^{p}\right)\right]^{1 / p}
\end{aligned}
$$

or,

$$
\begin{aligned}
& {\left[\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-h_{p, i}\right|^{p}+\left|g_{i}-h_{p, i}\right|^{p}\right)\right]^{1 / p}} \\
& \quad \leq\left[\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}}\left(\left|f_{i}-h_{i}\right|^{p}+\left|g_{i}-h_{i}\right|^{p}\right)\right]^{1 / p}
\end{aligned}
$$

which implies that

$$
\left\|f-h_{p}^{*}\right\|_{p}^{p}+\left\|g-h_{p}^{*}\right\|_{p}^{p} \leq\|f-h\|_{p}^{p}+\|g-h\|_{p}^{p},
$$

for any monotone nondecreasing function $h=\sum_{i=1}^{n} h_{i} I_{\left(t_{i-1}, t_{i}\right]}$ belonging to S_{π}.

Remark. Using Theorem 7, we are able to compute $h_{p}, p \in(1, \infty)$, when f and g are in S_{π} by applying (1.3). To compute h_{∞}, we may use (1.14) and the following theorem.

Theorem 8. Let f, g and h_{p}^{*} be as given above. Then h_{p}^{*} converges as $p \rightarrow \infty$ to the monotone nondecreasing function $h_{\infty}^{*} \in S_{\pi}$ given by

$$
h_{\infty}^{*}=\sum_{i=1}^{n} h_{\infty, i} I_{\left(t_{i-1}, t_{i}\right]}
$$

where $h_{\infty, i}=\lim _{p \rightarrow \infty} h_{p, i}$ is given by (1.14). Furthermore, h_{∞}^{*} is a best L_{∞}-simultaneous approximant of f and g by elements of \mathscr{M}.

Proof. Let X and ω_{p} be as defined above. Then Theorem 3 implies the first part of the theorem. It also implies that h_{∞}^{*} is a best L_{∞}-simultaneous approximant of f and g by monontone nondecreasing functions in S_{π}.

Let h be any monotone nondecreasing function on [0,1]. We show that there is a monotone nondecreasing function $h^{*} \in S_{\pi}$ such that

$$
\max \left(\left\|f-h^{*}\right\|_{\infty},\left\|g-h^{*}\right\|_{\infty}\right) \leq \max \left(\|f-h\|_{\infty},\|g-h\|_{\infty}\right)
$$

Indeed, for $i=1,2, \ldots, n$, let

$$
h_{i}^{*}=(1 / 2)[\operatorname{essup}(h(x))+\operatorname{essinf}(h(x))], \quad t_{i-1}<x \leq t_{i} .
$$

Then clearly

$$
\left|f_{i}-h_{i}^{*}\right| \leq \operatorname{essup}\left|f_{i}-h(x)\right|, \quad t_{i-1}<x \leq t_{i}
$$

and

$$
\left|g_{i}-h_{i}^{*}\right| \leq \operatorname{essup}\left|g_{i}-h(x)\right|, \quad t_{i-1}<x \leq t_{i}
$$

for all i. Hence,

$$
\max \left(\left|f_{i}-h_{i}^{*}\right|,\left|g_{i}-h_{i}^{*}\right|\right) \leq \max \left(\operatorname{essup}\left|f_{i}-h(x)\right|, \text { essup }\left|g_{i}-h(x)\right|\right)
$$

for all i. Now define $h^{*} \in S_{\pi}$ by

$$
h^{*}=\sum_{i=1}^{n} h_{i}^{*} I_{\left(t_{i-1}, t_{i}\right]}
$$

Then surely we conclude from the last inequality that

$$
\max \left(\left\|f-h^{*}\right\|_{\infty},\left\|g-h^{*}\right\|_{\infty}\right) \leq\left(\|f-h\|_{\infty},\|f-g\|_{\infty}\right) .
$$

This completes the proof.
Remark. We have seen that for $f, g \in S_{\pi}$, we also have $h_{p}, h_{\infty} \in S_{\pi}$.
Let us define S to be the collection of all S_{π}, that is,

$$
S=\left\{\bigcup_{\pi} S_{\pi}: \pi \text { is any finite partition of }[0,1]\right\} .
$$

If f and g are elements of a particular S_{π}, then we use the notation f_{π}, g_{π}. Let $h_{\pi, p}$ denote the best L_{p}-simultaneous approximant of f_{π} and g_{π} and let $h_{\pi, \infty}=\lim _{p \rightarrow \infty} h_{\pi, p}$ denote the limit of $h_{\pi, p}$ as p increases to infinity.

3. B.s.a. of quasi-continuous and continuous functions

Definition. A function $f:[0,1] \rightarrow \mathscr{R}$ is said to be quasi-continuous if it has at most discontinuities of the first kind only. Let Q be the Banach space (sup norm) consisting of all quasi-continuous functions on Ω.

Let \mathscr{Q}^{*} denote the space of all elements of \mathscr{Q} such that $f(0)=f\left(0^{+}\right)$ and $f(x)=f\left(x^{-}\right), 0<x \leq 1$. Then there is a linear isometry between \mathbb{Q}^{*} and \mathbb{Q}, so that we may work with elements of \mathscr{Q}^{*} only. For simplicity we denote \mathscr{Q}^{*} by \mathbb{Q}. Hence S as defined in Section 1 is a proper subset of \mathbb{Q}. We also regard \mathscr{M} as a proper subset of \mathscr{Q}, so in fact $\mathscr{M}=\mathscr{M} \cap \mathscr{Q}^{*}$.

Definition. Let f be a bounded Lebesgue measurable function on $[0,1]$, and let π be a partition of $[0,1]$. Then \bar{f}_{π} in S is defined by

$$
\begin{equation*}
\bar{f}_{\pi}(x)=\sup \left\{f(y): y \in\left(t_{i-1}, t_{i}\right]\right\}, \quad x \in\left(t_{i-1}, t_{i}\right], \quad i \geq 1 . \tag{3.1}
\end{equation*}
$$

We define \underline{f}_{π} similarly by replacing sup by inf.
A bounded function f is in Q if and only if, for any $\varepsilon>0$, there exists a partition π of $[0,1]$ such that $0 \leq \bar{f}_{\pi}-\underline{f}_{\pi}<\varepsilon$. Thus, $\lim _{\pi} \bar{f}_{\pi}=\lim _{\pi} \underline{f}_{\pi}=$ f. Moreover, if π^{\prime} is a refinement partition of π, then we have

$$
\begin{equation*}
\underline{f}_{\pi} \leq \underline{f}_{\pi^{\prime}} \leq \bar{f}_{\pi^{\prime}} \leq \bar{f}_{\pi} . \tag{3.2}
\end{equation*}
$$

For more details see [2]. Thus, when $f, g \in \mathbb{Q}$, we are able to get as close as we like to f and g. Of course, we count here on the fact that the projection $\operatorname{map}(f, g) \mapsto h_{p}$ is continuous.

Lemma 9. Let $f, g \in \mathbb{Q}$, and let $\varepsilon>0$ be given. Let π be a partition such that $0 \leq \bar{f}_{\pi}-\underline{f}_{\pi}<\varepsilon$ and $0 \leq \bar{g}_{\pi}-\underline{g}_{\pi}<\varepsilon$. Then there exists a refinement π^{\prime} of π such that

$$
\begin{equation*}
\underline{h}_{\pi, p} \leq \underline{h}_{\pi^{\prime}, p} \leq \bar{h}_{\pi^{\prime}, p} \leq \bar{h}_{\pi, p} \leq \underline{h}_{\pi, p}+\varepsilon, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{h}_{\pi, \infty} \leq \underline{h}_{\pi^{\prime}, \infty} \leq \bar{h}_{\pi^{\prime}, \infty} \leq \bar{h}_{\pi, \infty} \leq \underline{h}_{\pi, \infty}+\varepsilon, \tag{3.4}
\end{equation*}
$$

where these h 's are as defined earlier in the last remark at the end of Section 2.

Proof. The discussion preceding the statement of the lemma implies that (3.2) holds for both f and g with the addition of $\bar{f}_{\pi}<\underline{f}_{\pi}+\varepsilon$, and $\bar{g}_{\pi}<\underline{g}_{\pi}+\varepsilon$. Apply Lemmas 8 and 9 to conclude (3.3). Letting $p \rightarrow \infty$ gives us (3.4).

The proof of the next theorem can be obtained following the same line of proof as [2, Theorems 4 and 5], respectively, with the proper changes in the notations used.

Theorem 10. Let $f, g \in \mathscr{Q}$, and let $h_{p}, p \in(1, \infty)$, be their b.s.a.. Then

$$
\begin{gather*}
\lim _{\pi} \bar{h}_{\pi, p}=\lim _{\pi} \underline{h}_{\pi, p}=h_{p}, \tag{3.5}\\
\lim _{\pi} \bar{h}_{\pi, \infty}=\lim _{\pi} \underline{h}_{\pi, \infty}=h_{\infty}=\lim _{p \rightarrow \infty} h_{p} .
\end{gather*}
$$

The convergence being uniform in both cases.

Remark. (a) Let f, g, h_{p}, h_{∞} be as defined above. Let h_{p}^{c} be the best L_{p}-simultaneous approximant of $f+c$ and $g+c$. Then, $\lim _{p \rightarrow \infty} h_{p}^{c}=$ $h_{\infty}+c$, where $c \in \mathscr{R}$.
(b) Let $f_{1} \leq f_{2}, g_{1} \leq g_{2}$, and let $h_{1, p}, h_{2, p}$ be the b.s.a. of f_{1}, g_{1} and f_{2}, g_{2} respectively, $1<p<\infty$. If $h_{k, \infty}=\lim _{p \rightarrow \infty} h_{k, p}, k=1,2$, then $h_{1, \infty} \leq h_{2, \infty}$.

Our next and final result in this section is a generalization of [2, Theorem 6].

Theorem 11. Suppose f and g are continuous. Then h_{p} is continuous, and so is h_{∞}.

Proof. The second part of the conclusion is immediate once the first part is established. So let x be an arbitrary but fixed point in $(0,1)$, and let $\varepsilon>0$ be given. Then

$$
\begin{align*}
\left|h_{p}(x)-h_{p}(y)\right| \leq & \left|h_{p}(x)-\bar{h}_{\pi, p}(x)\right|+\left|\bar{h}_{\pi, p}(x)-\bar{h}_{\pi, p}(y)\right| \tag{3.7}\\
& +\left|\bar{h}_{\pi, p}(y)-h_{p}(y)\right| .
\end{align*}
$$

Since

$$
h_{p}(t)=\lim _{\pi} \bar{h}_{\pi, p}(t)
$$

for all $t \in \Omega$, we may choose a partition $\pi=\left\{t_{i}: i=0,1, \ldots, n\right\}$ such that
(i) each of the first and third term on the right-hand side of (3.7) is less than $\varepsilon / 3$.
(ii) f_{π} and g_{π} can be written as

$$
\begin{equation*}
\bar{f}_{n}=\sum_{i=1}^{n} \bar{a}_{i} I_{\left(t_{i-1}, t_{i}\right]}, \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{g}_{\pi}=\sum_{i=1}^{n} \bar{b}_{i} I_{\left(t_{i-1}, t_{i}\right)}, \tag{3.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\left|\bar{a}_{i}-\bar{a}_{i-1}\right|<\varepsilon / 9, \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\bar{b}_{i}-\bar{b}_{i-1}\right|<\varepsilon / 9, \tag{3.11}
\end{equation*}
$$

for all $i=2,3, \ldots, n$.
Thus, (3.7) becomes

$$
\begin{equation*}
\left|h_{p}(x)-h_{p}(y)\right|<\varepsilon / 3+\left|\bar{h}_{\pi, p}(x)-\bar{h}_{\pi, p}(y)\right|+\varepsilon / 3, \tag{3.12}
\end{equation*}
$$

for all $y \in[0,1]$. We still need to find $\delta>0$ such that

$$
\begin{equation*}
\left|\bar{h}_{\pi, p}(x)-\bar{h}_{\pi, p}(y)\right| \leq \varepsilon / 3, \tag{3.13}
\end{equation*}
$$

provided $y \in(x-\delta, x+\delta)$. We first observe that if \bar{f}_{π} and \bar{g}_{π} are given by (3.8) and (3.9) respectively, then Lemma 7 implies that $\bar{h}_{\pi, p}$ must have the form

$$
\begin{equation*}
\bar{h}_{\pi, p}=\sum_{i=1}^{n} c_{i} I_{\left(t_{i-1}, t_{i}\right]}, \tag{3.14}
\end{equation*}
$$

for some real numbers $c_{1} \leq c_{2} \leq \cdots \leq c_{n}$. We now have only a few cases to consider.

Case 1. If $t_{j-1}<x<t_{j}$ for some $j \leq n$, then it follows that

$$
\begin{equation*}
\left|\bar{h}_{\pi, p}(x)-\bar{h}_{\pi, p}(y)\right|=\left|c_{j}-c_{j}\right|=0<\varepsilon / 3 \tag{3.15}
\end{equation*}
$$

for all $y \in\left(t_{j-1}, t_{j}\right]$. Let $\delta=\min \left\{\left(x-t_{j-1}\right),\left(t_{j}-x\right)\right\}>0$ so (3.13) holds for all $y \in(x-\delta, x+\delta)$ and the continuity of h_{p} at x is established.

Case 2. $x=t_{j}$ for some $j<n$. Then (3.15) holds for all $y \in\left(t_{j-1}, x\right]$. Thus suppose $y \in\left(x, t_{j+1}\right]=\left(t_{j}, t_{j+1}\right]$, and suppose (3.13) does not hold, that is,

$$
\begin{equation*}
\left|h_{\pi, p}(y)-h_{\pi, p}(x)\right|=h_{\pi, p}(y)-h_{\pi, p}(x)=c_{j+1}-c_{j}>\varepsilon / 3 \tag{3.16}
\end{equation*}
$$

In Figure 1 below we fix c_{j}, c_{j+1} and we may also without loss of generality fix a_{j}, a_{j+1} and then we discuss briefly the various possibilities for the values of $\bar{b}_{j}, \bar{b}_{j+1}$ and each time we end up with a contradiction.

P1. If $a_{j+1}<\bar{b}_{j+1}<c_{j+1}$, then we may replace c_{j+1} in (3.14) by $\max \left(c_{j}, \bar{b}_{j+1}\right)$ to obtain a better b.s.a. of f and g, a contradiction. A similar conclusion holds if $c_{j}<\bar{b}_{j}<c_{j+1}$.

P2. If $\bar{b}_{j+1}<\bar{a}_{j+1}<c_{j+1}$, then we may replace c_{j+1} by $\max \left(c_{j}, \bar{b}_{j+1}\right)$ to obtain a better b.s.a., a contradiction.

P3. If $\bar{b}_{j}>c_{j+1}>c_{j}$, then replace c_{j} by \bar{a}_{j} to obtain a better b.s.a, a contradiction. The same argument is valid if in addition we assume that $\bar{b}_{j+1}>c_{j+1}$.

Figure 1

P4. If $\bar{b}_{j}<c_{j}$ and $\bar{b}_{j+1}>c_{j+1}$, then $\bar{b}_{j+1}-\bar{b}_{j}>\varepsilon / 9$, contradicting (3.11).

4. Examples

Example 1. Let f be the real-valued step function defined on $[0,1]$ by

$$
\begin{equation*}
f=3 I_{[0,1 / 15]}+5 I_{(3 / 15,4 / 15]}+7 I_{(8 / 15,9 / 15]} \tag{4.1}
\end{equation*}
$$

and let $g \equiv 0$ on $[0,1]$. Then $h_{2} \equiv 1 / 2$ on $[0,1]$ which is the same as the best L_{2}-approximant of the single function $(f+g) / 2$. This is always true, that is, the b.s.a. of f and g in the L_{2}-norm is equal to the best L_{2}-approximant of their mean [6, Theorem 3]. However, h_{3} is not constant and it is given by

$$
h_{3}=(3 /(\sqrt{5}+1)) I_{[0,3 / 15]}+(5 / 4) I_{(3 / 15,8 / 15]}+(7 /(\sqrt{13}+1)) I_{(8 / 15,1]},
$$

while

$$
\begin{equation*}
h_{\infty}=(3 / 2) I_{[0,3 / 15]}+(5 / 2) I_{(3 / 15,8 / 15]}+(7 / 2) I_{(8 / 15,1]} . \tag{4.2}
\end{equation*}
$$

In general if $g \equiv 0$ and f is given by

$$
\begin{equation*}
f=k_{1} I_{\left[0, t_{1}\right]}+k_{2} I_{\left(t_{2}, t_{3}\right]}+\cdots+k_{n} I_{\left(t_{2(n-1)}, t_{2 n-1}\right]}, \tag{4.3}
\end{equation*}
$$

where

$$
2<k_{1}<k_{2}<\cdots<k_{n}
$$

and

$$
\begin{gathered}
t_{1}=\delta=\left(\sum_{j=1}^{n} k_{j}\right)^{-1}, \\
t_{2 i}=\left(\sum_{j=1}^{i} k_{j}\right) \delta, \quad j \geq 1, \\
t_{2 i+1}=t_{2 i} \delta, \quad i \geq 1,
\end{gathered}
$$

then for every p, h_{p} must have the form

$$
\begin{equation*}
h_{p}=\zeta_{1} I_{\left[0, t_{2}\right]}+\zeta_{2} I_{\left(t_{2}, t_{4}\right]}+\cdots+\zeta_{n} I_{\left(t_{2(n-1)}, 1\right]}, \tag{4.4}
\end{equation*}
$$

where $0<\zeta_{1} \leq \zeta_{2} \leq \cdots \leq \zeta_{n}$ and ζ_{i} depends on p for every i. Let us compute h_{2} which has the form (4.4). Clearly ζ_{1} is the unique real number minimizing the quadratic function

$$
\begin{aligned}
T_{1}(\zeta) & =\delta\left(k_{1}-\zeta\right)^{2}+\delta(0-\zeta)^{2}+\left(t_{2}-t_{1}\right)(0-\zeta)^{2}+\left(t_{2}-t_{1}\right)(0-\zeta)^{2} \\
& =\delta\left(k_{1}-\zeta\right)^{2}+\delta \zeta^{2}+2 \delta\left(k_{1}-1\right) \zeta^{2}
\end{aligned}
$$

Differentiating T_{1} we get

$$
\begin{aligned}
T_{1}^{\prime}\left(\zeta_{1}\right) & =-2 \delta\left(k_{1}-\zeta_{1}\right)+2 \delta \zeta_{1}+4 \delta\left(k_{1}-1\right) \zeta_{1} \\
& =2 \delta k_{1}\left(2 \zeta_{1}-1\right)=0 .
\end{aligned}
$$

Thus, $\zeta_{1}=1 / 2$. Similarly, ζ_{i} is the unique real number minimizing the function

$$
T_{i}(\zeta)=\delta\left(k_{i}-\zeta\right)^{2}+\delta \zeta^{2}+2 \delta\left(k_{i}-1\right) \zeta^{2}
$$

which implies that $\zeta_{i}=1 / 2$ for all $i \geq n$. Hence $h_{2} \equiv 1 / 2$ on $[0,1]$.
Suppose next, that we want to compute h_{p} for $p>2$. Then in general ζ_{i} is the unique real number minimizing the function

$$
T_{i}(\zeta)=\delta\left(k_{i}-\zeta\right)^{p}+\delta \zeta^{p}+2 \delta\left(k_{i}-1\right) \zeta^{p}
$$

Differentiating T_{i}, we get

$$
T_{1}^{\prime}\left(\zeta_{i}\right)=-p\left(k_{i}-\zeta_{i}\right)^{p-1}+p\left(2 k_{i}-1\right) \zeta_{i}^{p-1}=0,
$$

which implies upon dividing by $\left(p \zeta_{i}^{p-1}\right)$ that

$$
2 k_{i}-1=\left(\left(k_{i} / \zeta_{i}\right)-1\right)^{p-1}
$$

or

$$
\left(2 k_{i}-1\right)^{1 / \lambda}=\left(k_{i} / \zeta_{i}\right)-1, \quad \lambda=p-1,
$$

Hence

$$
\zeta_{i}=k_{i} /\left(\left(2 k_{i}-1\right)^{1 / \lambda}+1\right),
$$

for $i=1,2, \ldots, n$.
Now observe that $\zeta_{i} \rightarrow k_{i} / 2$ as $p=\lambda+1 \rightarrow \infty$ which implies that h_{p} converges to a function

$$
\begin{equation*}
h_{\infty}=\lim _{p \rightarrow \infty} h_{p}=\left(k_{1} / 2\right) I_{\left[t_{0}, t_{2}\right]}+\left(k_{2} / 2\right) I_{\left(t_{2}, t_{4}\right]}+\cdots+\left(k_{n} / 2\right) I_{\left(t_{2(n-1)}, 1\right]}, \tag{4.6}
\end{equation*}
$$

which would be identical with the value of h_{∞} computed using (1.14).
It can also be shown that ζ_{i} increases as k_{i} increases by differentiating (4.5) with respect to k_{i} and observing that the derivative is always positive.

Notice that a function $h \in \mathscr{M}$ is a best simultaneous L_{∞}-approximant of f and g if and only if $\underline{h} \leq h \leq \bar{h}$, where $\underline{h}, \bar{h} \in \mathscr{M}$ are given by $\bar{h} \equiv k_{n} / 2$ on $[0,1]$, and

$$
\underline{h}=\left(\left(2 k_{1}-k_{n}\right) / 2\right) I_{\left[t_{0}, t_{2}\right]}+\left(\left(2 k_{2}-k_{n}\right) / 2\right) I_{\left(t_{2}, t_{4}\right]}+\cdots+\left(k_{n} / 2\right) I_{\left(t_{[2 n-1)}, 1\right]} .
$$

We show in Example 2 that the simultaneous Polya property does not hold in general for any two bounded Lebesgue measurable function f and g, that is, the statement of Theorem 14(b) is not true in general. But before we proceed, we prove a little lemma.

Lemma 12. Let f and g be bounded Lebesgue measurable functions with $f \neq g$. Let f_{p} and g_{p} be the best L_{p} approximant of f and g respectively by elements of \mathscr{M}, and let h_{p} be their b.s.a. by elements of \mathscr{M}. Then

$$
\begin{equation*}
\left\|f-g_{p}\right\|_{p} \geq\left\|f-h_{p}\right\|_{p}, \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g-f_{p}\right\|_{p} \geq\left\|g-h_{p}\right\|_{p} . \tag{4.8}
\end{equation*}
$$

Proof. By definition of f_{p} and g_{p} we have

$$
\begin{equation*}
\left\|f-f_{p}\right\|_{p} \leq\left\|f-h_{p}\right\|_{p}, \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g-g_{p}\right\|_{p} \leq\left\|g-h_{p}\right\|_{p} . \tag{4.10}
\end{equation*}
$$

If (4.7) does not hold, then

$$
\left\|f-g_{p}\right\|_{p}<\left\|f-h_{p}\right\|_{p} .
$$

Combining this inequality with (4.10) implies that

$$
\left\|f-g_{p}\right\|_{p}^{p}+\left\|g-g_{p}\right\|_{p}^{p}<\left\|f-h_{p}\right\|_{p}^{p}+\left\|g-h_{p}\right\|_{p}^{p},
$$

or g_{p} is a better b.s.a. of f and g, a contradiction Therefore (4.7) must be true. Similarly we obtain (4.8). This completes the proof.

Example 2. Next, let f be the bounded Lebesgue measurable function given in [1] and defined on [0,2]. Let $g \equiv 7$ on [0,2]. Then clearly $g \in \mathscr{M}$ which implies that $g=g_{p} \equiv 7$ on $[0,2]$. Also f as given is continuous on $[0,1) \cup(1,2]$ and approximately continuous at 1 . Let $\left\{p_{k}\right\}$ be as chosen in [1]. Then $7<f_{p_{2 n-1}}<7.5$ on [1,2] and $5<f_{p_{2 n}}<6$ on [1,2], $n=1,2, \ldots$. Since $g_{p_{2 n-1}}=g_{p_{2 n}} \equiv 7$ on [0,2]. Then, we clearly have by the last lemma that $h_{p_{2 n-1}}>7$, otherwise we get $\left\|f-f_{p}\right\|_{p}>\left\|f-h_{p}\right\|_{p}$. Similarly for $p_{2 n}$ we must have $h_{p_{2 n}}<7$, otherwise we get $\left\|f-g_{p}\right\|_{p}<\left\|f-h_{p}\right\|_{p}$, a contradiction. Therefore the sequence $\left\{h_{p_{k}}\right\}_{k=1}^{\infty}$ does not converge anywhere.

References

[1] R. B. Darst and R. Huotari, 'Monotone approximation on an interval', Classical real analysis, edited by D. Waterman, pp. 43-44 (Contemp. Math. 42, Amer. Math. Soc. Providence, R.I., 1985).
[2] R. B. Darst and S. Sahab, 'Approximation of continuous and quasicontinuous functions by monotone functions', J. Approx. Theory 38 (1983), 9-27.
[3] D. S. Goel, A. S. B. Holland, C. Nasim and B. N. Sahney, 'Characterization of an element of best l^{p}-simultaneous approximation', S. Ramanaujan Memorial Volume, Madras (1984), 10-14.
[4] A. S. B. Holland and B. N. Sahney, 'Some remarks on best simultaneous approximation', Theory of approximation with applications, edited by A. G. Law and B. N. Sahney, pp. 332-337 (Academic Press, New York, 1976).
[5] D. Landers and L. Rogge, 'On projections and monotony in L_{p}-spaces', Manuscripta Math 26 (1979), 363-369.
[6] G. M. Phillips and B. N. Sahney, 'Best simultaneous approximation in the L_{1} and L_{2} norms', Theory of approximation with applications, edited by A. G. Law and B. N. Sahney, pp. 332-337 (Academic Press, New York, 1976).
[7] V. A. Ubhaya, 'Isotone optimization II', J. Approx. Theory 12 (1974), 315-331.
[8] C. Van Eeden, Testing and estimating ordered parameters of probability distribution, (Ph.D. dissertation, University of Amsterdam, Studentendrukkerij Poortpers N.V., Amsterdam, 1958).

King Abdulaziz University
P.O. Box 9028

Jeddah 21413
Saudi Arabia

[^0]: © 1991 Australian Mathematical Society $0263-6115 / 91$ \$A2.00 + 0.00

