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DIFFUSIVE WAVES IN INHOMOGENEOUS MEDIA
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1. Introduction

When the function f(u) is of "bistable type", i.e. has two zeros /i_ and h+ at which
/ ' is negative and (for simplicity) has only one other zero between them, then the
constant functions u = h± are L^-stable solutions of the nonlinear diffusion equation

«, = «„ + /(«)• (1.1)

In addition, there are travelling wave solutions u+(x, t) and ii-(x,t) which, if

) f(u)ds<0, (1.2)

connect h+ to h_ in the sense that

lim u±(x,t) = h + ; lim u±(x,t) = h-, (1-3)

(-» - 0 0 t— + 00

the convergence being uniform on bounded x-intervals. These solutions are of the form

u±(x,t) = U(±x-ct), (1.4)

where U(z) is a monotone function (the wave's profile), U(±oo) = h±, and the velocity c
is a specific positive number depending on the function /

Although h+ is stable in Lx, it is therefore unstable in the weaker topology of
uniform convergence on bounded intervals. Besides these two connections between h+

and h _, there are others as well, characterized as pairs of travelling fronts approaching
each other. If the sense of the inequality in (1.2) is reversed, then the roles of h+ and /i_
are interchanged.

For definiteness, take the intermediate zero of / to be at the origin, so /(/i_) = /(0) =
f{h+) = O,h.<O<h+.

A second well-known fact [2] about the travelling wave solutions (1.4) is that they
attract a wide class of functions, exponentially in the LTO norm. For example, let S be
the set of continuous bounded functions (f>(x) which change sign exactly once, from
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negative to positive, and are bounded away from zero for large |x|. If u(x, 0) = <f>(x) e S
and u satisfies (1.1), then for some constants M, m, and t0,

for all x and positive t. This is in fact true without the restriction that (j> have only one
zero, provided x<j)(x)>0 for large |x|.

The object of this paper is to extend the above results in part to equations (1.1) in
which now f F= f{u,x) is allowed to depend on x. This turns out to be possible if the
characteristic scale of the x-variable of / is significantly larger than that of the travelling
front-like solutions, but not necessarily otherwise. This condition can be expressed by
replacing /(u,x) by f(u,sx) where 0 < e « l . But then we further rescale the space
variable by replacing ex by x again; this introduces a coefficient E2 with the second
derivative term. We then rescale the time variable to arrive at the equation

eu,=e2uxx + f(u,x). (1.5)

This is the equation to be studied here. Throughout, of course, e will be assumed to be
small "enough" and positive.

The zeros h± are now functions of x; for convenience we assume the intermediate
zero to be at u = 0 independently of x. The more general case when this is not true can
be handled with more work along the lines of [1, Section 2]; it cannot however be
reduced to the present case by a simple transformation.

The initial value problem for (1.5) with initial data in S and with nonzero derivative
at the cross-over point was studied in [1] and the present paper builds upon those
results. First, however, they must be strengthened. In [1] it was shown that for small e,
u(x,t) quickly (in time 0(e|lne|) develops an internal "layer" of thickness gO(e|lne|2),
which then moves with variable velocity determined by the function / These statements
were equipped with estimates which are uniform in bounded time intervals. (Certain
uniformity conditions on / were assumed, and we continue to assume them here.) In
Section 2 of the present paper, they are shown in fact to be uniform for all time. This
improvement, though technical, is highly involved. It is essential for the main result of
the paper.

In Section 3, the analogues of h± and u± for (1.5) are shown to exist. The analogues
H±(x) of h± are L^-stable steady solutions; they are no longer constant in x. The
analogues of u± are, as before, connections between H+ and H_, again in the topology
of uniform convergence on bounded intervals. Although not strictly travelling waves,
these new connections have a front-like spatial structure which moves with variable
velocity. They can no longer simply be obtained one from the other by reversal of the
sign of x; the equation has lost that kind of symmetry. For simplicity we study only u+;
similar constructions hold for u _, of course. Section 3 also contains a good approximate
description of the spatial profile of the connection; it remains close to //+ or to H_
except in a layer of width O(e|ln e|), and inside that layer it is approximated by the
profile of a travelling front in a homogeneous medium.
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It is true here, as before, that a large class of solutions of (1.5) is attracted to a small
neighbourhood of the orbit of the connection u + or of u_. This is shown in Section 4.
The size of this neighbourhood is estimated in terms of e. This is not so strong a result
as is known for the homogeneous case, where uniform exponential convergence to a
translate of u+ or u_ occurs.

A counterexample in Section 5 shows that the assumption that e is small is essential
for the existence of a connection, all else being the same.

Travelling wave solutions of equations like (1.1) were originally studied by the
geneticist R. A. Fisher [6], who used them to model the spread of advantageous genes
in a spatially distributed population. In that context, the connections constructed in the
present paper can also be interpreted as canonical modes of gene propagation in space
when the environment is inhomogeneous; see Section 5 for further discussion.

The formal assumptions on / are as follows; the first two correspond to the first two
assumptions in [1, §2]:

HI. For each x, f(u,x) has exactly three zeros /i_(x)<0</i+(x), these being bounded
functions of x which are bounded away from each other, independently of x. Also
for some m0 > 0,

fuih±{x), x) < -m0 <0, /u(0, x) >0; f(u, x)fm{u, x) g0. (1.6)

H2. There exist functions/(u) and J(u), each satisfying the analog of HI (the Ji's now
being constants and the middle zeros no longer 0), such that

f(u)<f(u,x) </(«), (1.7)

the differences between these functions being bounded uniformly away from 0.
Note that H2 implies

h±(x) are bounded and bounded away from 0. (1.8)

H3. f(u, x) is smooth, uniformly for x e (— oo, oo) and bounded u.

2. Persistence of layered solutions

Here, we develop some properties of solutions of the initial value problem for (1.5).
They involve a great number of technicalities; the reader who is not interested in these
things is invited to read the statements of Theorems 2.1 and 2.10, and turn to Section 3.
First, we recall some preliminary facts and introduce some needed notation.

Because of HI, it is known that for each fixed x0) the equation

u, = uxx+f(u,x0)

has a travelling wave front solution approaching h±(x0) as x->±oo and moving with a
velocity c(x0). Here c depends smoothly on x0 if / does [1] and has sign opposite that
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of jfc!jxo)/(u> xo)du. It is also known that c depends (anti-)monotonically on the function
f(u,x0), and so an easy consequence of (1.7) is that c(x) is bounded independently of x:

|c(x)|gCl. (2.1)

In [1] it was shown that the trajectories of the internal layers of solutions of (1.5) are
given approximately by x^\j/{i), where \\i is a solution of the equation

<A'(0 = <#«)• (2.2)

This approximation is uniform for t in bounded intervals.
Recall the definition of the set S of functions, given in the preceding section.
Let u(x,t) be the solution of (1.5) satisfying u(x,0) = 4>(x) for some <peS with

<£(0) = 0and <£'(0)>0. (2.3)

We assume that \(f>\ is small enough that for every x0, sup/i_ <inf<£<sup0<inf/i+,
these sup's and inf's being taken over all x. This is possible because of (1.8). Then it
follows from the maximum principle that

inf/i_(x)<u(x,t)<sup/j+(x). (2.4)

for all x and all t>0.
It is also a consequence of the maximum principle (see [1] or [3] for example) that

u(-,t)eS for each t^O. Let Y(t) be the unique zero of u(-,t): u(Y(t),t) = 0, y(0) = 0. For
definiteness we define, for each t0 and t>t0, the function \j/,0(t) to be the solution of (2.2)
satisfying ij/t0(t0) = Y(t0). The first aim of this section is to prove:

Theorem 2.1. Assume c (x)^co>0 and e is small enough. Under Assumptions HI and
H2, there exists a constant M such that for t > Me\\n e|,

\u{x,t)-h+(x)\^Me for x ^ y(r) + Me|lne|2; (2.5a)

\u(x,t)-h_(x)\^Me for x^ F(t)-Me|lne|2. (2.5b)

Also for any t0 and t>t0,
I | | n e\2 + e(t -10)). (2.6)

The constant M is independent of e. Moreover if the initial condition is replaced by
u(x,0) = (f>(x — x0), then M is also independent of xo.

The proof is based on several lemmas whose proofs in turn are based on certain
arguments and results in [1]. Generally, we shall use the same notation as in [1], except
that the time variable symbol T used there is replaced by t, and the time variable symbol
t used there is replaced by t/e.
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We define

so that Y is piecewise differentiable, Y(0) = Y"(0), and

?'(t) > 0 implies Y(t) = Y(t). (2.7)

The symbols M, C and m in this and later sections refer to various different constants,
all of them independent of e. It will always be assumed, without so stating, that 6 is a
small enough positive number.

Lemma 2.2 Given any y>0, there are constants M and m, independent of E but
depending on y, such that for t^Me|lne| and x ^ Y(t),

u(x,t)^(h+(x)-y){l-exp(-me-1(x-Y(t)))). (2.8)

Proof. First, consider the case when / does not depend on x. Then the proof is an
adaptation of that of [1, Lemma 3.6]. Define W(s) as in that lemma, and in place of
(3.18) there, take

v(x, t) = r(t)W(a(t/e)(x - Y(t))), (2.9)

the functions r and a being the same as before. In place of [1, (3.21)], we require

4>(x) = u{x,Q) for x^O. (2.10)

Then as before, £ will be a lower solution on the domain {x>Y(t),t>0} by virtue of
the fact that Y'(t)^0, and it easily follows, by the exponential convergence of r to h+,
that

u(x,r)^Ml-e-m')(l-exp[-ma(t/e)(x-y(t))]). (2.11)

For t^Ma|lne|, M large enough, we have a = e~1 and (2.8) follows with y replaced by
£. This implies the conclusion in the case when / does not depend on x. The extension
to the more general case follows exactly the argument in [1, Theorem 3.10].

Lemma 2.3. For small enough positive a and all t^.0, the set A(a,t) = {x:u(x,t)< —a}
is a nonempty semi-infinite interval ( —oo,z(a,t)).

Proof. By (2.3), we know that for a small enough, the equation <£(x)=— a has a
unique solution x = x(a,0), and <p'(x)>0 for xe[z(a,O),O]. Thus A(a,0) is an interval as
described, and by continuity so will A{a, t) be for small t. If the assertion of the lemma
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were not true, there would be a finite greatest value ^ such that A(a,i) is an infinite
interval for O^t<t i .

For each t>0, u(x, t)<— a for x in some neighbourhood of — oo. This can be seen,
for example, by use of an upper solution

M= -(a + <5)(1 -exp(x + s~1 nt2 +1+ 1))

in the domain {x< —e'lfxt2 — t—l,t>0} for sufficiently large positive n and small <5 and
e. It is known from [1, Theorem 3.2] (note the change in symbol for time) that u(x, t)<0
for x ^ —M0(e + 6~1t2), Mo being the constant in [1 , (3.6)]. This inequality for x is
satisfied on the right boundary of the comparison domain, for /x^M0. Therefore on
the boundary, «=0>u and the asserted conclusion follows by the maximum principle.

Therefore A(a, t) must include a neighbourhood of — oo for every t. But it ceases to be
connected at t = tlt so by smoothness of the function u, that function must have an
interior maximum of —a at some point (xi.tj), relative to its values in some cylindrical
set {|x — x^^vJi — S^t^ti}. In fact u(x1,ti) = —a > the value of u on the lateral and
bottom boundaries of the cylinder. In that cylinder, we also have that /i_ ̂ u^O by (1.8)
for small enough a, so

eu,-e2uxx = f(u.x)<0.

The interior maximum would contradict the maximum principle, and we conclude that
the assertion of the lemma is indeed true.

Lemma 2.4. Let t0 satisfy the bound on t given in Lemma 2.2. and suppose that
Y(t0) = Y(t0). Then for some m independent of t0 and e,

u(x,t0)^ -m(l-exp[me-1(x-y(t0)]) (2.12)

forx£Y(t0).

Proof. Lemma 2.2 with t = t0, together with the facts that Y(to)=Y(to) and u = 0
when x = Y(t0), yield

1. (2.13)

The bounds in [1, Lemma 3.3] tell us that \uxx\^Me~2, so that for £>0,

In particular for £^m/M, we have that u^—m^ for some ml. Thus

x e
u< — m-, —m — < x < 0 .

£ M (2.14)
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It follows that there is a number a, independent of e, such that u(x0, t0) = — a for some
x0 satisfying (2.14). In fact, we can choose a arbitrarily small. It will therefore be
assumed to satisfy the hypothesis of Lemma 2.3. Therefore

u(x,to)^-a<O for x^xo<0. (2.15)

This, combined with (2.14), easily yields (2.12) for small enough m.

Lemma 2.5. Let t0 = 0 or else t0 satisfy the hypothesis of Lemma 2.4. Then there is an
M such that

\u(x,t)-h+(x)\^Me (2.16)

for

\ \ 2 t0)), (2.17a)

(2.17b)

The inequality (2.16) holds with h+ replaced by /i_, if the sense of the inequality in
(2.17a) is reversed and the second plus sign on the right is replaced by minus.

Proof. When to>O satisfies the hypothesis of Lemma 2.2, the Lemmas 2.2 and 2.4
show that the function u(x,t0) satisfies the hypothesis H3 on the initial data of the
problem considered in [1]. Therefore the conclusions [1, Theorem 3.10 and 4.1] of that
paper hold for the present function u{x, t), except with t in those theorems replaced by
t —10, x replaced by x— Y{t0), and i//{t) by i/>,0(t). When to = 0, this same conclusion is
obtained directly. We thus obtain (2.16), (2.17) from [1, Theorem 4.1].

Lemma 2.6. Assume c (x )^c o >0 for all x. Then under the assumpions of Lemma 2.5,
there exists a constant M2 and another number tle{t0,to + M2e|lnep) such that Y(ti) =

Proof. By Lemma 2.5, we know that there exists a constant Af, such that u(x,f*)<0
whenever

| ( - t o ) ) a n d t * ^ o i | |

Hence Y(t*) > il/,0(t*) - M^In e\2 + e(t* —10)), and this in turn is > Y(t0), provided that

4>t0(t*) £ Y(t0) + M^elln e\2 + e(t* -10)).

But since, by the definition of ^<0, <A,0(f*)— Y(to)^co(t* —10), that will be true if we set
t* = t0+(2Mi/c0)£|ln£|2 and e is of course small enough. So under this condition,
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Y(t*) ^ Y(t*) > Y{t0) — Y(t0), and there must be a value tt in the intervening interval
(to,t*) at which Y'(t1)>0, so that Y=Y. This completes the proof.

Proof of Theorem 2.1. Lemma 2.6 can be iterated (starting with t = 0, since
Y(0) = Y(0)) to produce an increasing sequence {tn} of positive numbers, starting with
to = 0 and spaced at most a distance M2e|ln£p apart, at which

Y(O = Y(tn). (2.19)

If this sequence approaches a finite limit tK, then by continuity (2.2) holds with « = oo
and we can apply Lemma 2.6 again with to = tx, then discard all but a finite number of
elements of the sequence near tx. Hence there is no loss in generality in assuming no
finite limit is approached, so tn->oo.

By Lemma 2.2 and 2.4, at each £„, we have that the function u(x, tn) is bounded above
and below by functions independent of n:

where these upper and lower bounds each satisfy the hypothesis H3 in [1]. Therefore
each function u(x, tn) may be considered as an initial datum and all the above results
hold for the solution it generates, uniformly in n.

Therefore by [1, Theorem 4.1], for some M3, (2.5a) holds for

| | | e | . (2.20)

But from (2.1), i/ 'Jt)^ 7(tn) + Ci(t-tn), so in particular (2.5a) holds for

(2.21)

and for t in the indicated time interval (2.20). We now restrict t so that

(2.22)

This is of course possible if £ is small enough. Under (2.22), the restriction (2.21) on the
values of x may be replaced by

x ^ F ( O + (4ciM2 + M3)e|ln£|2. (2.23)

But in the time interval (2.22), we have |7(tn)—y(t)|<2Af2c1£|lne|2, so it suffices to
replace (2.23) by

|n£|2. (2.24)

Setting M4 = 6c1M2 + M3, we conclude that for any given t ̂  Me|ln a|, (2.5) holds for
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provided only that there is a tn satisfying (2.22) for the given t. We show that this is
always the case. In fact, let tn be the largest member of the sequence satisfying
tn^t — M3e|lne|. There is such a member (it might be 0) because of the restriction on t
given in the statement of the theorem, if the constant M there is ^M2 . This number
then satisfies the left side of (2.22), and in fact the right side also because of the maximal
spacing of the elements of the sequence. This completes the proof of (2.5a). The
analogous proof holds for (2.5b); in fact (2.5b) holds for

x ̂  tfrjt) - M3(e |ln e|2 + e\t - tn\), (2.20')

and the range in t given in (2.16). The rest of the argument is as before.
The estimate (2.6) follows rather directly from [1, Theorem 4.1]. Finally, the last

statement of the theorem holds because all the constants involved in the above estimates
are independent of where the initial datum changes sign. This completes the proof.

Theorem 2.1 tells us that after an initial transient period, the solution u of the initial
value problem remains close to h± in regions bounded away from Y by an amount
O(e|lne|2). Our next task is to show a complementary result, namely that in the region
close to Y, the solution's profile is close to that of a certain travelling wave.

Preliminary to this purpose, it will be convenient to define a refined subset of the set
of profiles S. Let

K± ssupli±; h± =mfh±,

the sup and inf being taken over x. Let (pm(£) and <p*(x) be bounded monotone
increasing functions satisfying, for all x,

0>4>*(-oo)>/L, 4 > * ( J

In addition, the following technical assumption on the functions <£„, and <f>* will be
useful. Let gi2(x) denote the function appearing on the right of (2.12) and #8(x) the one
on the right of (2.8). We require that

(2.25a)

for all t0 and all x < Y(t0), and

fy (2.25b)

for all t and all x> Y(t), and for some fixed <5</i+ independent of £. These inequalities
are easily accommodated by proper choice of 4>* and <f>,.
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Finally, let Sf be the set of all functions t/f(x) in S such that

for all £,, where z is the zero of t//.
For any given t0 let xo=Y(to), £ = (x-xo)/e, x = (t-to)/e, c(0) = c(x0), and v(£,z) the

solution of

"t = r « + f(v, x0), x > 0, (2.26a)

). (2.26b)

Let V(£ — c(o)T) be the travelling front solution of (2.26a) approaching /J±(X0) as
£-•±00, normalized so that F(0) = 0. This normalization will always be used when we
speak of travelling fronts.

By [2], we know that if u(-,to)eSf then for some £0> M2 and a, the function v
satisfies

|^ ,T) -K({-c ( 0 ) T-{ 0 ) |gAf 2 e -" . (2.27)

In [2, Theorem 3.1], this was proved for M2 and a possibly depending on x0 and the
initial datum w(-,f0). We shall need the estimate, however, with uniform M2 and a.

Lemma 2.7. The constants M2 and a in (2.27) are independent of t0 (hence x0), e, and
u(-,t0), as long as the latter is in Sf.

The proof is a refinement of the proof of [2, Theorem 3.1.] and is given in the
appendix.

Now let w(£,T) = u(xo + ££,to + ez) — v(£,x), so that

= f(u, x0 + e£) - f(v, xo) = a({, T)W+g(£, T), (2.28a)

) = 0, (2.28b)

where

atf, t) = /„(»({, T) + 0w(<̂ , T)), x0), &, x) = /(«, x0 + e0 - /(u, x0), (2.29)

O<0< 1. Because of the smoothness and boundedness of / , g can clearly be estimated
as follows. Let *P(̂ ) be a function such that for some C,

| | | | (2.30)

Then for some C,

| (2.31)
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Lemma 2.8. For some Mt and fi independent of e and x0,

(2.32)

Proof. Let vv(£, T) = M^tf) e"'. Then by (2.30) and (2.31),

for / i^2(C + a(^,t)) and / i^2C/Mj . Therefore w is an upper solution for (2.28), and we
have w^vv, which provides (2.32) with the absolute value signs omitted on the left. A
similar lower solution will complete the proof.

Lemma 2.29. Let u(-,to)eSf. For some £0 there are constants a, v, C, and m2,
independent of e, with 0<a, v< 1, such that

\u(x0 + e£, t0 + ex) - V(E, - cox - £0)| g£v

for

Proof. For any S > 0, we have by (2.32) that \w\ < d for e(|£| +1) < 1 and

(2.33)

(2.34)

- l -(

and if we assume that

then this is true for

M3 depending on (i and M,.
We also have from (2.27) that \v— V\<d for

(2.35)

(2.36)

T>a - l ln- (2.37)

We shall require that

(2.38)
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and

d=& (2.39)

for some v>0. Therefore since |w — K | ^ | U —D| + |W|, (2.33) will hold for

ln-
M

<r<4a - i In
M

(2.40)

But (2.38) and (2.39) are equivalent to

\ \ , (2.41)

where

a=l-Sna'lv (2.42)

and m2 depends on the other constants. This is the requirement on the right of (2.34).
We now choose v so that

in'

so 0<cr<l. Then (2.35) can be checked and found to follow from (2.41) for small
enough, e, provided 4/za~1>l, which can be arranged by increasing the size of n, if
necessary.

We also restrict e to be so small that

v-1ln(M2/2)<|lne|

and let C = oc~1v in (2.34). By simple algebra, the left part of (2.34) now implies (2.40),
which in turn implies (2.33), completing the proof.

In the following, we use the symbol Vit}(z), for t fixed and z = £ — c( Y(t))x, to denote
the travelling front solution of (2.26a) with the constant x0 replaced by Y(t), and
normalized to vanish when z = 0.

Theorem 2.10. Let c(x)^co>0. Then for all t^Me\lne\2, we have (2.5), and for some

\u( Y(t) + et, t) - V(t)(S - Ut))\ < ev (2.43)

for |£| <m2£", where m2, v, and a are the same as in Lemma 2.9.

Note. This theorem shows that near the position x0, where the function u(-,t)

https://doi.org/10.1017/S0013091500028704 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028704


DIFFUSIVE WAVES IN INHOMOGENEOUS MEDIA 303

vanishes, it has a profile which can be approximated by the travelling front profile of
(2.26a) associated with that value of x0.

Proof. First, we show that u(-,t)eSf for all t subject to the stated restriction.
Let t0 be such that u(-,to)eS?. Let T satisfy the left part of (2.34), but

Then using the constants M, C, and ct from (2.5), (2.34), and (2.1), and setting
x = x0 + zt,, t = to + ET, we have

> Y(t)-2c1Ce\\ne\

>Y(t) + Ms\\ne\2

for e small enough. Therefore by Theorem 2.1, (2.5a) holds. Similarly, (2.5b) holds for

This means that for l^^/nje"" and the left part of (2.34) satisfied, u(x, t) differs from
/i+(x) by an amount ^O(e). On the other hand for |^|^m2e~", Lemma 2.9 shows that u
differs from V by an amount ^ev. Combining the two clearly implies that w(-,t)eSf for

| | | |
We apply Lemma 2.9 again, replacing t0 by to + £T for all possible x in that allowed

range, and so obtain that u(-,f)eS* for C|lne|^T^4C|ln£|. Continuing this iteration
procedure, we find that u(-,t)eSf for all T^C|lnej, i.e.

e\, (2.44)

subject only to the requirement that u(-,to)eSf. This latter would follow in turn from
(2.12), (2.8), and the technical restrictions (2.25), if Y(to)=Y(to) and to^Afe|lne|.
However by Lemma 2.6 with t0 set equal to 0 in that lemma, we know that these
conditions do hold for some point tle(0,Me|lne|2). Take that point to be to; we use
(2.44) to obtain that u(-,t)eS* for t in the range

For each fixed t in this range, we may now apply Lemma 2.9, setting x0 = Y(t),
T = C|lne| fixed, and replacing the expression — C(0)T — £O in (2.33) by — £0; it clearly
depends on t. We then obtain (2.43) with the second argument "f" of u replaced by
t + Cejlnej. Now (2.43) as written can be obtained by observing that u(-,t + C£|ln£|)
differs from u(-,t) by a quantity uniformly small of order Ce|lne|; one need only reduce

https://doi.org/10.1017/S0013091500028704 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028704


304 P. C. FIFE

the exponent v by a small amount and require e to be small enough. This completes the
proof.

3. Existence of a connection

Theorem 3.1. For small enough e, there exist stationary solutions H±(x) of (1.5)
satisfying

\H±(x)-h±(x)\<Me (3.1)

for some M independent of e. Moreover for any fixed M, either choice of the subscript,
and small enough e, there is at most one stationary solution satisfying (3.1). They are
exponentially stable in the Lx norm.

Proof. Define the operator Jf by

Jfu = eu, — e2uxx — f(u, x).

A (-independent upper solution in the required neighbourhood of h+ can be constructed
by setting

u(x) = h+{x) + ne, (3.2)

for n sufficiently large; in fact since by (1.6) fu(u,x)^ — m<0 for u in a neighbourhood of
h±(x), we have

Jfu = -t2uxx- f(h+(x) + /ze,x)^ —e2h'L(x) + mfie^0

for large \i independent of z. A corresponding lower solution is obtained by replacing fi
by — fi. Since the lower solution is below the upper one, there exists an exact stationary
solution H+(x) between them, and it satisfies (3.1) with M=fi. The existence of //_ is
obtained the same way.

Now suppose there were two solutions H(+> and //'+' satisfying (3.1) for some fixed M.
The difference w(x) of the two satisfies a linear differential equation of the form
E2W" — a(x)w = 0, with a(x)>0 for small enough e. The maximum principle shows that
w = 0, establishing uniqueness.

Finally, the fact that fu<0 in a neighbourhood of H± shows that there is a lower
solution of the form H+(x) — de~ml for small enough <5 and m. This and the upper
solution obtained by replacing <5 by — 5 shows H + to be exponentially stable in Lx.

Lemma 3.2. There exists an m>0 such that if, for some x0, t0, and T and for some
small enough 5 (independent of e),

\u(x,t)-H+(x)\<d (3.3)
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for x>xQ, to<t<T, then

|u(x,£)-#+(jc)|^<5(e-m(*-Jt0) + e-m('-t0)) (3.4)

for x > x0, t0 < t < T. Moreover if

\u(x,t)-H.(x)\<3 (3.5)

for x<x0, to<t<T, then

\u(x,t)-H4x)\^5(e-mlx°-x) + e-mi'-'0)) (3.6)

for x<x0, to<t<T.

Proof. Let w(x,t) = 5(e~" + e~") and v(x,t) = H+(x) + w(x-xQ,t-10). Then since H+
is an exact solution,

J\Tv\x, t) =- (ea + e2a2)w - e2H"+ (x) -f(H + + w, x) = - (ea + e2a2)w -fu(H + + 6w)w,

where 0<9< 1. Now since fu{H+ +6w)<0 for <5 and e sufficiently small, we have JVV^O
for small enough ea. Moreover assuming (3.3), we have v^u for x = x0, te(to,T), and
also for t = t0, x^.x0. Therefore v is an upper solution for (1) in the domain x>x 0 ,
to<t< T, and we conclude that in this domain

A corresponding lower estimate can be derived, and together they give (3.4) with m = a.
The other assertion of the lemma is established the same way.

For the following, we recall the velocity function c(x) used in (2.1).

Theorem 3.3. Assume

c{x)>co>0forailx. (3.7)

/ / £ is small enough, there exists a solution ux(x, t) of (1.5) for all real x and t, satisfying

Urn \uJx,t)-H±(x)\ = Qforallt; (3.8)
x-»±oo

lim u^x , t) = H±(x) uniformly for x in bounded intervals; (3.9)
!-• Too

um has a unique zero Yx(t) for each t satisfying
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U±oo)=+oo; (3.10)

and u^ satisfies the estimates given in Theorem 2.10 for all t.

Remark. This is our most basic result. It establishes the existence of a connection
from H + to H _, and also shows that the connection is in the form of a solution with a
single moving internal layer. The approximate law of motion of this layer is given by
(2.2) and (2.6). Finally, it characterizes the inner structure of the layer as being near that
of a wave front for the homogeneous equation, the argument x in (1.5) being frozen.

Proof. For each integer n>0, let ujix,t) be the solution of (1.5) with initial datum at
some t = tn to be given below: uj[x, tn) = <j>*(x + n). Let YJ^t) denote the position of the
unique zero of un{x, t). By Theorems 2.1 and 2.10, and (3.7), we know that un develops a
layer which propagates indefinitely far to the right. (Note that tpt0(t)^ Y(to) + co(t — t0).)
This implies that

lim yn(t) = oo. (3.12)
r-»oo

We define the numbers tn < 0, used above, so that

yn(0)=0foralln. (3.13)

This is clearly possible because of (3.12) and the fact that Ya(tn)=—n. Moreover the
bound on speed of propagation implied by (2.1) together with Theorem 2.1 shows that

tn-* — oo as n-»oo. (3.14)

By (3.14), for each K there exists an N(K) such that the set of functions {«„} for
n>N, together with their derivatives up to some order, are equicontinuous in the region
t>K~\ so there is a subsequence of the un's approaching a solution ux(x,t), defined for
all f as well as for all x. The approach is uniform on bounded sets in the (x, t) plane.

Each un satisfies the estimates in Theorem 2.10 for t^tn + Me|lne|2, so the limit ux

does also , for each t without restriction.
Those estimates imply, of course, that «„(-,!) has at least one 0, Yx(t).
To show that Yx is unique, we argue as follows. Given any interval / on the x-axis of

length M2£|lne|2 (M2 as in Lemma 2.6), there exists a sequence of values xn, n = n*,
n* + l,..., with n* sufficiently large, such that yn(tn) = yn(tn)e/ for each n in the
sequence. This follows by iterating Lemma 2.6 as in the proof of Theorem 2.1. We have
from Lemma 2.2 that

dxitn(Yn(Tn),xn) is bounded away from 0, independently of n. (3.17)

By the construction of the functions un, the sequence {tn} will be bounded. Take a
subsequence along which tn-*xaa, Yj^x^-^Y^el, and un(x,tj-^w^x,t) for xel and t in a
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neighbourhood of T^. Then uJJx,x J = 0 and by (3.17), 5;tM00(yoo,Tj>0. The function
"<*>(•>O cannot vanish at another place besides x = Yx, for then by convergence to ux,
there would be a function un which takes on arbitrarily small values (for large enough n)
at a point bounded away from Yn(xn). If these values are negative, this would contradict
Lemma 2.3 and (3.17). But the analogue of Lemma 2.3 also holds for positive u. This
shows that Yx is unique.

Now (3.10) with the + sign follows from (3.12), and the — sign follows from (3.14).
It only remains to establish (3.8) and (3.9). Given numbers 5>0 and x0, let T(xo,d)

be the largest time such that \uaa(x,i) — H+(x)\<5 for x ^ x 0 , t^T(xo,5). Then from
(3.10) and (3.11)

T(X0,5)->±OD asx0->±oo. (3.18)

Now fix t and let x0 be such that T(xo,5)>t (this is possible by (3.18)). Use these
values of x0 and T in (3.4). Let x->oo and t0-* — oo in that inequality to obtain (3.8)
with the plus sign.

Similarly, let T*(xo,<5) be the smallest time such that \ux(x,t) — H_(x)\<5 for x ^ x 0 ,
f^T*(xo,<5) with x0 restricted to be negative and so large that to<t. In (3.6), first let
x-* — oo; then let x0 and hence t0 approach — oo. This yields (3.8) with the minus sign.

On the other hand in (3.6) if we fix x, let t-*co, and then let x0 and to = T*(x0,8)
approach +oo, we obtain (3.9) with H_. A similar argument will give (3.9) with H + .
This completes the proof.

4. Attraction to the connection

The following theorem shows that initial data in S are rapidly (in time O(ejln e|2)
attracted to a neighbourhood of the orbit of «„. This neighbourhood is uniformly of
size O(e") for some v>0. At locations at least a distance O(e|lne|2) away from the layer,
the closeness estimate is improved to O(E).

Theorem 4.1. Let u(x,t) be a solution of (1.5) with u(-,0)eS, under the assumptions of
Theorem 2.1. There are positive constants M and v, and a function ij/(t) such that

\u(x,t)-uJx,il}(t))\<Mev (4.1)

for t^Me\lne\2. Moreover,

| R | (4.2)

for t^Me|lne | 2 , |x -y( t ) |>Me| lne | 2 .
Here for each t0 and t>t0,

\t(t)-il>,0(t)\<Me(t-t0). (4.3)

Proof. Choose t0 so that Yn(t0) = 7(0).
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Then u(x, t) and u0O(x, t —10) will both satisfy the estimates of Theorem 2.10 for
| e j 2 . Hence (4.1) follows from the fact that

and similarly for (4.2).

5. The question of connections and barriers when e is not small

The assumption in Theorem 3.3 that e is small enough was crucial to the argument.
Suppose that e=l , for example. Then conditions were given in [4] for there to exist a
stationary solution uo(x) of (1.5) which satifies (3.8) with «„ replaced by u0 (but not
(3.9), of course, since w0 is independent of t). Stationary solutions of this type were called
clines there because of their relevance to geographic problems in population genetics. It
can be shown [5] that in some sense clines, if they exist, block the propagation of wave
fronts whose profiles are monotone in the same direction as that of the cline.

Here we merely give an example to illustrate this blockage phenomenon. Specifically,
we show that a certain sufficient condition given in [4] for the existence of a cline will
also prevent the existence of a connection ««,, in the sense of this paper.

The case in point is when f(u, x) = s(x)/(u), where s(x) is identically one for |x| ^ b for
some b, and for |x| ^ b,

Here the function 8 is smooth and nonnegative, vanishes for |x|>b, and has a
maximum of 1. In [4, Theorem 4], it was shown that if

*+

8b2 J" f{r)dr>hl,
o

then a cline exists for sufficiently large \i. In fact, a stationary lower solution u(x) was
constructed there, of the form (for some p with |p| < b)

M(X) = /I_, x<p, u(x) = v1(x),p^x^b, u{x) = v2(x),p>b,

where v1(p) = 0, v1(b) = 0 = v2(b), v2(oo) = h+, and î  and v2 satisfy certain autonomous
differential equations.

It can be checked that under HI (/"(«) ̂ 0 for M>0), another lower solution u can
also be constructed with

u(co) = yh+,
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where y < 1 and 1 —y is sufficiently small. Specifically, one replaces i;2(x) above by yv2(x).
Then if u~lf{u) is a monotone decreasing function of u for u > 0 (which it will be if
/"(u)<0), then yv2 is a lower solution. Then vt and p can be adjusted in an obvious
manner.

Note that the new u is bounded above by yh+ <h + , and is identically /i_ for x< — b.
If a connection uJ(X,t) existed, it would satisfy /i_<u00</i + , so for sufficiently large
negative t would lie above u. By the maximum principle, it would have to lie above u
for all t, and so could never attain a neighbourhood of the stationary state /i_. So it
could not be a connection.

It is natural to expect that if a cline uo(x) exists and no other stationary solution lies
between it and h+, then a connection will exist from h+ to u0. Under certain conditions,
this can be shown to be the case; we shall not pursue that point here.

Appendix: Proof of Lemma 2.7

Denote z = £ — C(0)T and v(z, T) = v{z + C(0)T, T). We shall work with v instead of v;
however to simplify the notation, we drop the "tilde" and write U(Z,T). The constants v
and n below are not the same as in Section 2.

Let (f>(£,) = M(X0 + el;, t0). From (2.26), then, v(z,t) will be the solution of

«\ ~ c(0)vz - vzz - f(v, x0) = 0, T > 0, (A. 1 a)

The assumption was that

#z)e(0,(2),0*(z)). (A.2)

The proof of Lemma 2.7 depends on certain uniform continuity results, which we now
develop. Let f(v,X) be a smooth function which is bistable (i.e., HI holds) for each X in
some bounded open interval A on the real line. Also, let 4>(z; A) be a smooth function for
all real z and k in A which, as a function of z, is in S for each L It is continuous in the
uniform norm on the real line, which we denote by | | 0 . Let c(A) be the speed and V(z;X)
the profile of the travelling front solution with nonlinearity f(v,p). Thus

ctf) Vs + Vzz + /(V, X) = 0, V( ± oo; k) = h ±(k), V(0; k) = 0. (A.3)

Let v(z,x,k) be the solution of the initial value problem (A.I) with c(0) replaced by c(A),
f(v,x0) by f(v,k), and <£(z) by <£(z;A).

By [2], we know there exists a number zo(A) such that

\v(z,v,k)-V(z-zo(k);k)\o->0 as T^OO. (A.4)

Let the function a(v, k) be such that
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J e'w'h(z, T; A)V\z -zo(A) -a(x; A); A) dz = 0, (A.5)

— 00

where

h(z, T; A) = v(z, T; A) - V(z - zo{X) - a(r; A); A), (A.6)

so that
a(oo,A) = 0. (A.7)

It was shown in [2, §5] that for each A a unique function OC(T;A), continuous in x and
satisfying (A.5), (A.7), exists for x sufficiently large, say T>T*(A).

The functions h and a figure into the proof of exponential convergence in [2].

Lemma A.I.

(i) The functions c(X) and zo(l) are continuous;

(ii) V(z; A) is continuous in A, uniformly in z;

(iii) a(t;A) is continuous in A, uniformly for (x, A) in a neighbourhood of (oo,0). Also
T*(A) is bounded for A in a neighbourhood ofO;

(iv) D(Z, T;A) and hence /I(Z,T;A) are continuous, uniformly for all z and for bounded
T>T*(A) ; and

(v) for any (5>0, There exist numbers T and £, such that |n|0<<5 far x=T and |A|<£lt

Proof. The continuity of c and V were proved in [1, Appendix]. Consider zo{X). It
suffices to prove its continuity at the point A = 0, which we suppose lies in A. Given any
<5>0, let T=T(5) be such that

|I ;(Z,T;0)-F(Z-ZO(0),0) |O<<5

for T > T (possible by (A.4)).
Next, let £i be such that

\V(z,0)-V(z,X)\0<S

and

for |A|<£!. The first of these two requirements is possible by (ii); the latter is possible by
the continuity of v with respect to A in the uniform norm, uniformly for bounded x-
intervals. This in turn is a standard result which can be proved with the maximum
principle. (Incidentally, it establishes the continuity of v in (iv).)

For this range of A, these last three inequalities may be added to yield
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\v(z,T;X)-V(z-zo(0),X)\o^36.

By [2, Lemma 4.2], it follows that \v{z,r,X)- V(z-zo(0),X)\o can be made to stay
arbitrarily small for all T^T(<5) by choosing 8, hence eu to be sufficiently small. But its
limit as T->OO is |K(z — zo(X),X) — V(z — zo(0),A)|o, which is therefore arbitrarily small
when X is sufficiently small. But this norm is ^m|zo(A) — zo(0)| for some m>0, so z0

depends continuously on X.
Next, consider a. In (A.5) let us disregard for the moment the dependence of z0 and a

on X and T, considering them instead to be free parameters. Then we may write the left
side as a function. F(a, X, T,Z0). When a = 0 , T = OO, and zo = zo(A), we have of course
/i = 0, so that

F ( ( U oo, zo(A)) = 0.

Moreover,

dF OT

— (0,A,T,ZO)= J e"{V\z-zQ)fdz
da. _ „

is nonzero and independent of T.
It can easily be checked that F is a smooth function of its four variables, uniformly in

a neighbourhood of (0,0, oo,zo(0)). This follows by direct differentiation, using the
boundedness of v and its derivatives, and the exponential convergence of V and its
derivatives to their limits, uniformly in that neighbourhood. Therefore by the implicit
function theorem, we may solve the equation F(<x, X, x, z0) = 0 for a = a(r;A,z0) defined in
a neighbourhood of (oo;0,z0(0)), and a is a smooth function of its three variables in that
neighbourhood. We now combine this with the fact that z0 is a continuous function of X
to obtain that a(r;A) is continuous, uniformly for X near 0 and T near oo. This implies
that T*(X) is bounded for X in that range. This establishes (iii).

This together with the continuity of v in (iv), provides the continuity of h in (iv).
There remains only (v).

By [2], h approaches 0 for each X. Given any <5>0, (1) let T > T * ( 0 ) be such that
<jd for |A|<£i. This
0<<5. This completes

\h(z,T;Q)\<\5. Then (2) let £ l be so small that \h(z, T; X) - h(z, T; 0)
is possible by (iii) and (iv). Thus for |A|<e!(^), we have \h(z,x(S);X
the proof.

Certain functions w and y figure into the proof of exponential convergence in [2, § 5].
They are defined as follows. For a certain small enough positive number y, w(z, T) is set
equal to v(z, T) for |Z|^>/T, and for larger \z\, w attains the limit h+ or h_ smoothly
within a z-interval of length /. We set

where z0 (depending on (j>) and a are as defined above. In the context of Lemma A.I,
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these are all functions of k as well, and we must restrict T>T*(A). We denote the L2

norm over the real line by || | |.

Lemma A.2. The norm \\y{z, T; k)\\ is continuous in k, uniformly for T>T*(A) in bounded
intervals.

Proof. Let T*(A)<T<T0. Let Z be such that w-h±(k) for \z\>Z in this t-interval for
all k, so that

y(z, T; k) = - exp(iC(A)z)( V(z - zo(k) - «(T; k); k)-h±(k))

for \z\>Z, T<T 0 , keA. Then ]\z\>zy
2dz depends continuously on k, because of the

uniform exponential convergence of V to its limits at ± oo.
Also h*, hence y, depends continuously on k, uniformly for T * < T < T 0 , \Z\<Z, SO that

\\z\<zy2dz does as well. Combining these two establishes the lemma.

Lemma A.3. Let 4> satisfy (A.2). Then there exist numbers zl<z2, M, and v,
independent of <t> and of x0, such that

V(z-z2)-Me-vr<v(z,x)<V(z-z1) + Me-vt.

Proof. Let zx and z2 be the numbers such that the solution u(z,T) of (A.I) with (j>
replaced by (p^z) approaches V(z — z2) as T-»OO, and the solution v(z,z) with initial
datum <p* approaches V{z — z^). By the maximum principle, the actual solution v(z,t)
lies between t; and v. The conclusion now follows directly from [2, Lemma 4.1] applied
to y and to v. The constants M, z,-, and v are properties of the upper and lower
solutions, so do not depend on (f>. Moreover, they do not depend on x0 either, because
the estimates used in the proof of [2, Lemma 4.1] depend only on the properties of
f(u,x0), which are uniform in x0, according to H1-H3.

Proof of Lemma 2.7. We recall that the proof of exponential convergence in [2, § 5]
relied on the exponential decay of \\y\\ and of a(x):

| b | | « , (A.8)

|a(T)|<Ce"vt. (A.9)

For our proof, then, it suffices to show that these two constants C and v do not
depend on <t> or x0, under the conditions stated in Lemma 2.7. The constant v certainly
does not; it is clear from [2, §5] that it depends only on specific properties of the
function / ; by H1-H3, these properties are uniform in x0. So any possible dependence
would have to be in the constant C, which does in general depend on <j>. Also examining
the proof in [2, § 5], it is clear that C depends only on the time To beyond which \h*\0
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remains less than a certain sufficiently small number d0 (independent of <f> and x0), and
on the magnitudes of \\y\\ and |a| at that time To. Therefore for our proof, it suffices to
show the existence of a number T, independent of (f> or x0, such that for T > T,

\h(z,x)\Q<30, (A. 10)

|H|o<<5o(say), (A.ll)

and

Assume this were not possible. Then there would be a sequence {<£„} of functions
satisfying (A.2) and of numbers {xn} such that for some sequence Tn approaching + oo,
one of the inequalities (A. 10-12) is violated for the solution corresponding to 4>n and xn,
for some x > Tn.

More specifically, let vn{z,z) be the solution of (A.I) with c(0) replaced by cn = c{xn), x0

by xn, and </> by </>„. Then the corresponding functions hn, yn, Vn, wn, and <xn have the
obvious meaning. Placing subscripts "«" on h, y, a, and T in (A.10)-(A.12), we suppose
that at least one of them is violated for each n, for z> Tn, and that Tn->oo.

There is no loss of generality in assuming the <f>n's to be smooth uniformly in n and z;
if they are not, then replace them by the functions vj^z, T J for any small positive Tt; the
smoothing properties of the equation (A.la) will establish the required equismoothness.
In fact, for smooth enough /, standard estimates show that any given derivative is
bounded in the uniform norm in terms of TX and |</>n|0 alone. By this equicontinuity,
there is a subsequence of the <pn's which converges to a limit function 4><x> which also
satisfies (A.2). We use the same symbol {$„} to denote this subsequence. This
convergence is uniform for z in bounded intervals. Again by equicontinuity, we may
assume that there is a function fjfi) which is the uniform limit of the (same)
subsequence of f(v, xn). Let v^z^) denote the solution with / = / „ and initial datum
(j)^. In the notation hn, yn, an, zn, Vn referred to above, we also allow n = oo.

We now apply the results in [2, §5] to vm. They imply there is a number T00<oo
such that for T > T 0 0 , (A.10)-(A.12) hold with subscript n = oo, and with <50 replaced by
|(50- For example,

KW|o< i<5 0 fo rT>r a ) . (A. 13)

Lemma A.I is applicable; we set Xn = n~x, (j>(l^ = <j>n, etc., so that results of the lemma
about uniformity properties in A for A in a neighbourhood of 0 are now translated into
uniformity properties in n for n sufficiently large. In particular, part (v) shows that
(A. 10) hold for h = hn with n sufficiently large and T > some Tj independent of n.
Therefore (A. 10) is not violated for more than a finite number of n. This leaves (A.ll) or
(A.12).

The continuity statement (iii) in Lemma A.I can be restated as follows: Given an
£! >0, there exists a <5(£,) and a t t such that if
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(1) 4>i and <j>2 are functions satisfying (A.2) and |</>j — <A2|o
<

(2) f^v) and f2(v) are bistable functions satisfying H1-H3 with \fi(v) — f2(v)\<3 for
all v in the range of interest,

then the corresponding functions a satisfy

for all ^ J
Now let £i = i(5o and 8 = 5(Si). Choose 7, and Zx so that \vx(z,x) — vn(z,x)\<j8 for

|z |>Z,, tSiTi, and all n. This is possible by Lemma A.3. With no loss of generality, we
may assume that Tl>T*(n~1) for n sufficiently large, and Tl>Tco. Then choose N so
that \vx — yn|<i<5 for |z|<Z1( n>N, and t = 7\. Thus for n>Af.

li^z, T,)-»„(*, 71)1 < 5,

so from (iii), |an(r) — a00(r)|<e1 for all T ^ T I + T^EJ). Thus from (A.13),

for n^N, T ^ T J . This shows that (A. 12) holds for a number T independent of n. This
leaves (A.ll).

Again, choose Z2 such that

J y2
ndz<±S0fora\\n, x = Tx.

|z|>Z2

Then take N so that

j
|z|<Z2

It follows that

From this and (A.ll) with subscript oo, we obtain that (A.ll) holds as written with a
fixed T and x > T, but with a subscript n attached by y. This contradicts our
assumption, and we conclude that Lemma 2.7 is valid.
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