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Abstract

A semiprime ring R is called a ∗-ring if the factor ring R/I is in the prime radical for every nonzero
ideal I of R. A long-standing open question posed by Gardner asks whether the prime radical coincides
with the upper radical U(∗k) generated by the essential cover of the class of all ∗-rings. This question
is related to many other open questions in radical theory which makes studying properties of U(∗k)
worthwhile. We show that U(∗k) is an N-radical and that it coincides with the prime radical if and only
if it is complemented in the lattice LN of all N-radicals. Along the way, we show how to establish left
hereditariness and left strongness of important upper radicals and give a complete description of all the
complemented elements in LN .
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1. Introduction

In this paper, all rings are associative and all classes of rings are closed under
isomorphisms and contain the one-element ring zero. The fundamental definitions and
properties of radicals can be found in [1, 15]. A class µ of rings is called hereditary
(respectively, left hereditary) if µ is closed under ideals (respectively, left ideals).
If µ is a hereditary class of rings, U( µ) denotes the upper radical generated by µ,
that is, the class of all rings which have no nonzero homomorphic images in µ. As
usual, for a radical ρ, the ρ radical of a ring R is denoted by ρ(R) and the class of
all ρ-semisimple rings is denoted by S( ρ). π denotes the class of all prime rings
and β =U(π) denotes the prime radical. For a radical ρ, let π( ρ) = S( ρ) ∩ π. The
notation I C R (respectively, I < R) means that I is a two-sided ideal (respectively, a
left ideal) of a ring R. An ideal I of a ring R is called essential in R if I ∩ J , 0 for
any nonzero two-sided ideal J of R. A ring R is called an essential extension of a
ring I if I is an essential ideal of R. A class µ of rings is called essentially closed if
µ = µk, where µk = {R : R is an essential extension of some I ∈ µ}. A hereditary and
essentially closed class of prime rings is called a special class and the upper radical
generated by a special class is called a special radical. A hereditary radical containing
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the prime radical β is called a supernilpotent radical. A radical ρ is called left strong
if L ∈ ρ implies L ⊆ ρ(R) for all L < R. ρ is an N-radical [26] if it is left strong, left
hereditary and contains the prime radical β. A semiprime ring R is called a ∗-ring
[10] if R/I ∈ β for any nonzero ideal I of R. The class of all ∗-rings will be denoted
by ∗. An ideal I of a ring R is called a prime (respectively, semiprime) ideal of R if
R/I ∈ π (respectively, R/I ∈ S( β)). The importance of the class ∗k is underlined by the
following two facts:

Theorem 1.1 [8, 19]. If R is a nonzero ∗-ring, then the smallest special (respectively,
supernilpotent) radical l̂R (respectively, lR) containing R is an atom of the lattice of all
special (respectively, supernilpotent) radicals.

Theorem 1.2 [10, Proposition 2]. If R ∈ ∗k and µ is a special class of rings, then R ∈
S(U(µ)) if and only if R ∈ µ. Thus, in particular, a ring R ∈ ∗k is Jacobson semisimple
if and only if R is primitive.

Gardner [14] introduced the notion of extraspecial radicals and gave their
characterisation. He showed that a special radical α is extraspecial if and only if
α =U(Sir(α)) where Sir(α) is the class consisting of all rings R ∈ S(α) such that ∩ {I :
0 , I C R and R/I ∈ S(α)} , 0. He asked [14, Problem 1] whether β is extraspecial.
Since Sir( β) = ∗k [10], Gardner’s question, in fact, asks whether β =U(∗k).

As proved in [14, Proposition 2.7] if a radical α is extraspecial, then any special
class µ with the property α = U( µ) contains Sir(α). In other words, Sir(α) is the
smallest special class which generates α. Thus, if β were extraspecial, then the class
∗k would be the smallest special class generating β. This would give a positive answer
to a question put by Leavitt [13, Problem 1].

It is well known [1, 2, 29] that the family of special radicals (respectively,
supernilpotent radicals, N-radicals) forms a complete lattice. We denote the lattice
by S (respectively, K, LN). The long-standing open problem of a description of special
atoms (that is, atoms in S) and supernilpotent atoms (that is, atoms in K) was raised
in [1] and then studied in [7–10, 19, 25]. The extraspeciality of β would settle this
problem. Indeed, β =U(∗k) implies that every supernilpotent (respectively, special)
radical strictly containing β contains a nonzero ∗-ring R and, hence, contains the
supernilpotent (respectively, special) atom lR (respectively, l̂R).

Thus there is a motivation for finding a solution to Gardner’s question. One way
to accomplish this task is to study properties of U(∗k) and compare them with those
enjoyed by β. This was initiated in [11, 12]. In this paper we will enrich the list of
properties of the radical U(∗k) by showing that, just like β, U(∗k) is an N-radical.
This enables us to obtain an equivalent reformulation of Gardner’s question. Along
the way, we show how to establish left hereditariness and left strongness of important
upper radicals, give a full characterisation of complemented elements of the lattice LN

and show their connections with the question of Gardner.
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2. Main results

N-radicals form an important class of radicals and have been investigated by many
prominent authors [2, 16, 17, 24, 26, 27]. It is well known [15] that the prime radical
β, the locally nilpotent radical L and the Jacobson radical J are N-radicals while the
Brown–McCoy radical G is not. Moreover, the famous Koethe problem, which asks
whether the nil radical N is left strong, is equivalent to the question whether N is an
N-radical. So there is a good reason for studying N-radicals and therefore the search
for new N-radicals continues. We will now show how to construct them.

In what follows, for a subset X of a ring A, r(A, X) := {a ∈ A : Xa = 0} is the right
annihilator of X in A. The left annihilator l(A,X) of X in A is defined similarly. It is well
known [15, page 87] that if I C A ∈ S( β), then l(A, I) = r(A, I) = {a ∈ A : aI = 0 = Ia}.
Also, it follows from [15, Example 3.17.10] that if 0 , L < A and A is a semiprime
ring, then β(L) = r(L, L).

Lemma 2.1. For any prime number p the upper radical γ =U(πp) generated by the
class πp = {R ∈ π : pR = 0} is a special N-radical.

Proof. It is easy to check that πp is a special class with π(γ) = πp. So γ is a special
radical and, as such, contains β.

In view of [2, Theorem 18], to show that γ is left strong, it suffices to show that the
class π(γ) satisfies the following condition:

L < R ∈ π(γ) implies L/r(L; L) ∈ π(γ). (2.1)

Now, since π(γ) = πp, it follows that L < R ∈ π(γ) implies pL = 0 so p(L/r(L; L)) = 0.
Moreover, since L < R ∈ π, it follows from [2, Lemma 3] that L/r(L; L) ∈ π. Thus
L/r(L; L) ∈ π(γ) and condition (2.1) holds.

Since γ is a special radical, in view of [2, Theorem 16], to show that γ is left
hereditary it suffices to show that γ enjoys the following property:

L < R ∈ π and γ(R) , 0 imply (γ(L))2 , 0. (2.2)

Suppose that it does not. Then (γ(L))2 = 0 for some nonzero L < R ∈ π with γ(R) , 0.
Then γ(L) ⊆ β(L) and, since β ⊆ γ, it follows that γ(L) = β(L). But, since L < R ∈ π,
it follows from [2, Lemma 3] that L/r(L; L) ∈ π and β(L) = r(L; L). Thus L/β(L) =

L/r(L; L) = L/γ(L) ∈ π(γ) which implies that pL ⊆ r(L; L). Then (pL)2 = 0. Since,
being a prime ring, R does not contain nonzero nilpotent left ideals and pL < R, we
must have pL = 0. Then pR = 0 which implies that R ∈ πp = π(γ). But then γ(R) = 0
which is impossible. Thus γ satisfies condition (2.2) and is therefore an N-radical. �

We will now show that the radical U(∗k) is also an N-radical. We start with a
technical but useful fact.

Lemma 2.2. Let R be any ring and I C L < R. If 0 , L/I ∈ S( β) (respectively, π), then
there exist a homomorphic image R ∈ S( β) (respectively, π) of R and K < R such that
L/I � K/β(K).
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Proof. Let J be an ideal of R maximal among all the ideals X of R that satisfy the
condition X ∩ L ⊆ I. First we will show that if 0 , L/I ∈ S( β) (respectively, π), then
R/J ∈ S( β) (respectively, π) and LI ⊆ J. Suppose that J1 and J2 are ideals of R strictly
containing J such that J1J2 ⊆ J. Then, from the maximality of J, it follows that
J1 ∩ L * I and J2 ∩ L * I. Then J1 ∩ L C L, J2 ∩ L C L and we have (J1 ∩ L)(J2 ∩ L) ⊆
J1J2 ∩ L ⊆ J ∩ L ⊆ I, a contradiction. Thus R/J ∈ S( β) (respectively, π).

Now, if LI " J, then LIR " J, as otherwise we would have (LI)2 ⊆ (LI)R ⊆ JR ⊆ J
which implies LI ⊆ J since R/J ∈ S( β), (LI + J)/J < R/J and β is left strong, which
is a contradiction. Thus LI ⊆ J. But then I2 ⊆ LI ⊆ L ∩ J ⊆ I. Let R = R/J, L =

L/(L ∩ J) � (L + J)/J = K and I = I/(L ∩ J). Clearly, (I)2 = 0 and L � K < R.
Moreover, since L/I � L/I ∈ S( β) and β(L) = ∩{S C L : L/S ∈ S( β)}, it follows that
β(L) ⊆ I. On the other hand, I ⊆ β(L) because (I)2 = 0 and β, being a superernilpotent
radical, contains all nilpotent rings. Thus β(L) = I, which gives L/I � L/β(L) �
K/β(K). �

Our next result shows how to determine left hereditariness of many important upper
radicals.

Theorem 2.3. Let µ be a hereditary class of prime rings such that, for every ring R
and every L < R, we have that L/β(L) ∈ µ implies L∗/β(L∗) ∈ µ, where L∗ denotes the
two-sided ideal of R generated by L. Then the radicalU(µk) is left hereditary.

Proof. Let L < R ∈ U(µk) and suppose that 0 , L/I ∈ µk for some I C L. Then
there exists 0 , K/I C L/I such that K/I ∈ µ ⊆ π. If LK ⊆ I, then we would have
two nonzero ideals, namely L/I and K/I, of a prime ring K/I with (L/I)(K/I) = 0,
which is impossible. Thus LK * I which implies that 0 , (LK + I)/I C K/I ∈ µ.
Then, by the hereditariness of µ, we get LK/(I ∩ LK) � (LK + I)/I ∈ µ. Thus 0 ,
LK/(I ∩ LK) ∈ µ ⊆ π and so, since LK < R, it follows from Lemma 2.2 that there exists
a homomorphic image R ∈ π of R and K < R such that LK/(I ∩ LK) � K/β(K) ∈ µ.
But then our assumption ensures that (K)∗/β((K)∗) ∈ µ, where (K)∗ is the ideal of
R generated by K. But, since R ∈ π, it follows that β((K)∗) = 0, which implies that
(K)∗ ∈ µ. Moreover, since 0 , LK/(I ∩ LK), it follows that 0 , K. So 0 , (K)∗ because
0 , K ⊆ (K)∗. Consequently we get 0 , R ∈ µk, which contradicts the assumption that
R ∈ U(µk) and concludes the proof. �

Corollary 2.4. U(∗k) is a left hereditary special radical.

Proof. We have ∗ ⊆ π, and it was proved in [7] that the class ∗ is closed under two-
sided ideals. Moreover, it was shown in [11] that L/β(L) ∈ ∗ implies L∗/β(L∗) ∈ ∗ for
every ring R and every L < R. Thus Theorem 2.3 implies thatU(∗k) is a left hereditary
radical. Clearly, ∗k is a special class, soU(∗k) is a special radical. �

We will now show how to establish left strongness of many important upper
radicals.
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Theorem 2.5. Let µ be a hereditary class of semiprime rings that satisfies condition (·):
K < A ∈ µ implies K/β(K) ∈ µ for all rings A and K. Then the class µk also satisfies
condition (·) and the radicalU(µk) is left strong.

Proof. Let µ be a hereditary class of semiprime rings that satisfies condition (·). First
we will show that the class µk also satisfies condition (·).

Let 0 , K < A ∈ µk. We want to show that K/β(K) ∈ µk. Since µk ⊆ S( β), we have
β(K) = r(K,K) and, since β is left strong and A ∈ µk, β(K) , K. Thus we need to show
that the nonzero ring K/r(K, K) is an essential extension of some ring from µ. Now,
since A ∈ µk, there exists an essential ideal L of A such that L ∈ µ. We will show that the
factor ring (LK + r(K,K))/r(K,K) is an essential ideal of K/r(K,K) and that this factor
ring belongs to µ. Since K/r(K,K) = K/β(K) ∈ S( β), for the essentiality in question,
it suffices to show that r(K/r(K,K), (LK + r(K,K))/r(K,K)) = 0. To do so, let k ∈ K
be such that LKk ⊆ r(K,K). Then, since K < A, we have (LKk)2 ⊆ K(LKk) = 0. But
since LKk < L ∈ µ ⊆ S( β) and β is left strong, it implies that LKk = 0. Now, since L
is an essential ideal of the semiprime ring A, its annihilator in A is r(A, L) = 0. We
therefore must have Kk = 0 which means that k ∈ r(K, K). This proves that, indeed,
(LK + r(K,K))/r(K,K) is an essential ideal of K/r(K,K).

Note that, in fact, we have just shown that r(K, LK) ⊆ r(K, K). Moreover, since
Kk = 0 implies LKk = 0, we also have r(K, K) ⊆ r(K, LK) which gives r(K, LK) =

r(K, K). Then LK ∩ r(K, K) = LK ∩ r(K, LK) = r(LK, LK) = β(LK) because LK <
A ∈ S( β). But we also have that LK < L ∈ µ and µ satisfies condition (·). Therefore
LK/β(LK) ∈ µ. But then we have (LK + r(K, K))/r(K, K) � (LK)/(LK ∩ r(K, K)) =

(LK)/β(LK) ∈ µ.
Thus the nonzero ring K/β(K) is an essential extension of the ring (LK +

β(K))/β(K) ∈ µ, which means that 0 , K/β(K) ∈ µk. We have therefore shown that
any nonzero left ideal K of any ring A from µk can be homomorphically mapped onto
a nonzero ring K/β(K) from µk. In view of [6, Theorem 9], this implies that U(µk) is
left strong and completes the proof. �

Corollary 2.6. U(∗k) is a left strong radical.

Proof. It follows from [11, Proof of Theorem 3], that the hereditary class ∗ ⊆ π ⊆ S(β)
satisfies condition (·). So, by Theorem 2.5, we have thatU(µk) is left strong. �

Corollaries 2.4 and 2.6 imply the following result:

Corollary 2.7. U(∗k) is a special N-radical.

It is well known (see [2]) that inclusion on the collection LN of all N-radicals of
associative rings gives rise to a complete, distributive and bounded sublattice of the
lattice K of all supernilpotent radicals. Its smallest element is the prime radical β
and its greatest element is the trivial radical 1 that consists of all associative rings.
As in the lattice K, for a family {ρi}i∈I of N-radicals, its union

∨
i∈I ρi is the lower

radical generated by the class
⋃

i∈I ρi while its meet ∧i∈Iρi is
⋂

i∈I ρi. A supernilpotent
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radical (respectively, an N-radical) ρ is complemented in K (respectively, LN) if there
exists ρc ∈ K (respectively, ρc ∈ LN) called a complement of ρ in K (respectively, a
complement of ρ in LN) such that ρ ∨ ρc = 1 and ρ ∧ ρc = β. It is well known (see [4]),
that in any distributive lattice, complements are unique if they exist. Complements
give a nice decomposition of rings [29] and they have been widely studied (see
[1, 3, 21, 22, 28, 29]). We will now show that complements of K and complements of
LN are connected.

In [29] Snider proved that for any hereditary radicals γ and ρ, the class

(γ : ρ) = {R : ρ(R/I) ⊆ γ(R/I) for every I C R}

is the largest radical among those radicals δ that satisfy the condition δ(R) ∩ ρ(R) ⊆
γ(R) for every ring R. Moreover, if δ and γ are both hereditary, then δ(R) ∩ ρ(R) =

(δ ∧ ρ)(R) for every ring R. Now, it follows from [5, Theorem 6] that if γ is a hereditary
radical and ρ is any radical containing β, then (γ : ρ) is hereditary. Thus, in the special
case where γ = β and ρ ∈ Kwe have that (β : ρ) = {R : ρ(R/I) = β(R/I) for every I C R}
is the biggest supernilpotent radical among all radicals δ that satisfy the condition
δ ∧ ρ = β. Therefore, if a supernilpotent radical ρ has a complement ρc ∈ K, the
uniqueness of the complement in K guarantees that ρc = ( β : ρ). Moreover, it was
proved in [17] that if ρ and γ are both N-radicals, then so is the radical ( ρ : γ). So,
since β is an N-radical, ( β : ρ) is also an N-radical for every N-radical ρ. We have
therefore proved the following lemma.

Lemma 2.8. Let ρ be a supernilpotent radical that has the complement ρc in K. Then
ρc = ( β : ρ) = {R : ρ(R/I) = β(R/I) for every I C R}. Moreover, if in addition, ρ is an
N-radical, then so is ρc.

Note that ( β : J) rings are known as Jacobson rings and play an important role
in commutative ring theory [18]; noncommutative Jacobson rings have been studied
by Procesi [23] and Watters [30, 31]. Similarly, to commemorate our collaborative
research, we could call the radicalU(∗k) an IndaH radical and then define IndaH rings
as ( β :U(∗k)) rings. Our next remark provides a very good reason for investigating
IndaH rings.

Remark 2.9. β =U(∗k) if and only if ( β :U(∗k)) = 1.

Complements of the latticeK have been extensively studied by Kracilov in [20–22].
To present Kracilov’s results we need to recall his notation.

For a ring A, [A]m denotes the ring of all n × n matrices over A and Var(A) is
the variety generated by A. For A ∈ π satisfying a proper polynomial identity, let
µ(A) = max{m : [F]m ∈ Var(A) for some division ring F}. Set µ(A) = ∞ if A does not
satisfy a proper polynomial identity. For any prime number p, let

πp = {A ∈ π : pA = 0},

κp =

( ⋃
i∈I,k∈K

[Z(k)
p ]i

)
∪

⋃
l∈L

(
{R ∈ π : Var(R) = Var[Z(∞)

p ]l} ∪

(⋃
m∈M

[Z(m)
p ]l

))
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where I,K, L and M are finite sets of positive integers, Zp is the p-element field, Z(n)
p

denotes the n-dimensional field over Zp and Z(∞)
p stands for the algebraic closure of Zp.

The following theorem briefly summarises Kracilov’s description of complements
of K.

Theorem 2.10 [21, 22]. A supernilpotent radical ρ has a complement ρc in K if and
only if there exist finite sets ∆1,∆2,∆3,∆4 of prime numbers and a finite set ∆0 of
positive integers (some of which may be empty) such that either π( ρ) = σ1 ∪ σ2 ∪

σ3 ∪ σ4 or π( ρc) = σ1 ∪ σ2 ∪ σ3 ∪ σ4, where σ1 =
⋃

p∈∆1
πp, σ2 =

⋃
p∈∆2

(πp\κp),
σ3 =

⋃
n∈∆0
{A ∈ π : µ(A) = n}\

⋃
p∈∆3

κp, σ4 =
⋃

p∈∆4
κp and the classes σ1, σ2, σ3 and

σ4 are mutually disjoint.

We are now ready to describe complements of the lattice LN .

Theorem 2.11. An N-radical ρ has the complement ρc in the lattice LN if and only
if there exists a finite (possibly empty) set Π of prime numbers such that either
π( ρ) =

⋃
p∈Π πp or π( ρc) =

⋃
p∈Π πp. If Π is empty, then we take

⋃
p∈Π πp = {0}.

Proof. Let ρc be the complement of ρ ∈ LN in LN . Since LN is a sublattice of the
lattice K, it follows that ρc is the complement of ρ in K. So, by Theorem 2.10, we
may assume that π( ρ) = σ1 ∪ σ2 ∪ σ3 ∪ σ4, where the σi are the classes described in
Theorem 2.10. Now, if σ2 ∪ σ3 ∪ σ4 , {0}, then it follows from the definition of the σi
that there are only a finite number of positive integers n such that [Φ]n ∈ σ2 ∪ σ3 ∪ σ4,
where Φ is either the field Q of rational numbers or the field Z(m)

p for some prime
number p and some positive integer m. This implies that [Φ]n ∈ S( ρ). Now, since ρ
is an N-radical and since every N-radical is matrix extensible [15, Corollary 4.9.7],
it follows that Φ ∈ S( ρ). Then, using the matrix extensibility of ρ again, we obtain
[Φ]t ∈ S( ρ) for every positive integer t which contradicts the finiteness of n. Thus
σ2 ∪ σ3 ∪ σ4 = {0} and then π( ρ) = σ1 =

⋃
p∈∆1

πp.
The converse follows from Theorem 2.10 and Lemma 2.1. �

Corollary 2.12. β =U(∗k) if and only ifU(∗k) is complemented in the lattice LN .

Proof. Since β ∧ 1 = β and β ∨ 1 = 1 in LN , if β =U(∗k), thenU(∗k)c = βc = 1 in LN
soU(∗k) is complemented in LN .

Conversely, suppose thatU(∗k) is complemented in LN . Then it is complemented in
K, and, by Lemma 2.8,U(∗k)c = (β :U(∗k)). Moreover, by Theorem 2.11, there exists
a finite (possibly empty) set Π of prime numbers such that either π(U(∗k)) =

⋃
p∈Π πp

or π(( β :U(∗k))) =
⋃

p∈Π πp.
But π(U(∗k)) contains simple prime rings of characteristic zero. For example, the

field Q of rational numbers is in π(U(∗k))\
⋃

p∈Π πp, so we must have π( β :U(∗k)) =⋃
p∈Π πp. Then, for every p ∈ Π, we have Zp ∈

⋃
p∈Π πp ⊆ S( β : U(∗k)). Since

β(Zp/I) = 0 = U(∗k)(Zp/I) for every I C Zp, we have Zp ∈ S( β : U(∗k)) ∩
(β :U(∗k)) = {0}, a contradiction. Thus Π is empty, which means that π((β :U(∗k))) =

{0}. This shows that ( β :U(∗k)) = 1 which, in view of our Remark 2.9, means that
β =U(∗k). �
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